#include "journal.h" #include "valexpr.h" #include "binary.h" #include #include #include #define TIMELOG_SUPPORT 1 namespace ledger { static unsigned long binary_magic_number = 0xFFEED765; #ifdef DEBUG_ENABLED static unsigned long format_version = 0x00020609; #else static unsigned long format_version = 0x00020608; #endif static account_t ** accounts; static account_t ** accounts_next; static unsigned int account_index; static commodity_base_t ** base_commodities; static commodity_base_t ** base_commodities_next; static unsigned int base_commodity_index; static commodity_t ** commodities; static commodity_t ** commodities_next; static unsigned int commodity_index; extern char * bigints; extern char * bigints_next; extern unsigned int bigints_index; extern unsigned int bigints_count; #if DEBUG_LEVEL >= ALPHA #define read_binary_guard(in, id) { \ unsigned short guard; \ in.read((char *)&guard, sizeof(guard)); \ assert(guard == id); \ } #else #define read_binary_guard(in, id) #endif template inline void read_binary_number(std::istream& in, T& num) { in.read((char *)&num, sizeof(num)); } template inline void read_binary_long(std::istream& in, T& num) { unsigned char len; in.read((char *)&len, sizeof(unsigned char)); num = 0; unsigned char temp; if (len > 3) { in.read((char *)&temp, sizeof(unsigned char)); num |= ((unsigned long)temp) << 24; } if (len > 2) { in.read((char *)&temp, sizeof(unsigned char)); num |= ((unsigned long)temp) << 16; } if (len > 1) { in.read((char *)&temp, sizeof(unsigned char)); num |= ((unsigned long)temp) << 8; } in.read((char *)&temp, sizeof(unsigned char)); num |= ((unsigned long)temp); } template inline T read_binary_number(std::istream& in) { T num; read_binary_number(in, num); return num; } template inline T read_binary_long(std::istream& in) { T num; read_binary_long(in, num); return num; } inline void read_binary_string(std::istream& in, std::string& str) { read_binary_guard(in, 0x3001); unsigned char len; read_binary_number(in, len); if (len == 0xff) { unsigned short slen; read_binary_number(in, slen); char * buf = new char[slen + 1]; in.read(buf, slen); buf[slen] = '\0'; str = buf; delete[] buf; } else if (len) { char buf[256]; in.read(buf, len); buf[len] = '\0'; str = buf; } else { str = ""; } read_binary_guard(in, 0x3002); } inline std::string read_binary_string(std::istream& in) { std::string temp; read_binary_string(in, temp); return temp; } template inline void read_binary_number(char *& data, T& num) { num = *((T *) data); data += sizeof(T); } template inline void read_binary_long(char *& data, T& num) { unsigned char len = *((unsigned char *)data++); num = 0; unsigned char temp; if (len > 3) { temp = *((unsigned char *)data++); num |= ((unsigned long)temp) << 24; } if (len > 2) { temp = *((unsigned char *)data++); num |= ((unsigned long)temp) << 16; } if (len > 1) { temp = *((unsigned char *)data++); num |= ((unsigned long)temp) << 8; } temp = *((unsigned char *)data++); num |= ((unsigned long)temp); } template inline T read_binary_number(char *& data) { T num; read_binary_number(data, num); return num; } template inline T read_binary_long(char *& data) { T num; read_binary_long(data, num); return num; } inline void read_binary_string(char *& data, std::string& str) { #if DEBUG_LEVEL >= ALPHA unsigned short guard; guard = *((unsigned short *) data); data += sizeof(unsigned short); assert(guard == 0x3001); #endif unsigned char len = *data++; if (len == 0xff) { unsigned short slen = *((unsigned short *) data); str = std::string(data + sizeof(unsigned short), slen); data += sizeof(unsigned short) + slen; } else if (len) { str = std::string(data, len); data += len; } else { str = ""; } #if DEBUG_LEVEL >= ALPHA guard = *((unsigned short *) data); data += sizeof(unsigned short); assert(guard == 0x3002); #endif } inline std::string read_binary_string(char *& data) { std::string temp; read_binary_string(data, temp); return temp; } inline void read_binary_string(char *& data, std::string * str) { #if DEBUG_LEVEL >= ALPHA unsigned short guard; guard = *((unsigned short *) data); data += sizeof(unsigned short); assert(guard == 0x3001); #endif unsigned char len = *data++; if (len == 0xff) { unsigned short slen = *((unsigned short *) data); new(str) std::string(data + sizeof(unsigned short), slen); data += sizeof(unsigned short) + slen; } else if (len) { new(str) std::string(data, len); data += len; } else { new(str) std::string(""); } #if DEBUG_LEVEL >= ALPHA guard = *((unsigned short *) data); data += sizeof(unsigned short); assert(guard == 0x3002); #endif } inline void read_binary_amount(char *& data, amount_t& amt) { commodity_t::ident_t ident; read_binary_long(data, ident); if (ident == 0xffffffff) amt.commodity_ = NULL; else if (ident == 0) amt.commodity_ = commodity_t::null_commodity; else amt.commodity_ = commodities[ident - 1]; amt.read_quantity(data); } inline void read_binary_value(char *& data, value_t& val) { val.type = static_cast(read_binary_long(data)); switch (val.type) { case value_t::BOOLEAN: *((bool *) val.data) = read_binary_number(data) == 1; break; case value_t::INTEGER: read_binary_long(data, *((long *) val.data)); break; case value_t::DATETIME: read_binary_number(data, ((datetime_t *) val.data)->when); break; case value_t::AMOUNT: read_binary_amount(data, *((amount_t *) val.data)); break; case value_t::BALANCE: case value_t::BALANCE_PAIR: assert(0); break; } } inline void read_binary_mask(char *& data, mask_t *& mask) { bool exclude; read_binary_number(data, exclude); std::string pattern; read_binary_string(data, pattern); mask = new mask_t(pattern); mask->exclude = exclude; } inline void read_binary_value_expr(char *& data, value_expr_t *& expr) { if (read_binary_number(data) == 0) { expr = NULL; return; } value_expr_t::kind_t kind; read_binary_number(data, kind); expr = new value_expr_t(kind); if (kind > value_expr_t::TERMINALS) { read_binary_value_expr(data, expr->left); if (expr->left) expr->left->acquire(); } switch (expr->kind) { case value_expr_t::O_ARG: case value_expr_t::INDEX: read_binary_long(data, expr->arg_index); break; case value_expr_t::CONSTANT: expr->value = new value_t; read_binary_value(data, *expr->value); break; case value_expr_t::F_CODE_MASK: case value_expr_t::F_PAYEE_MASK: case value_expr_t::F_NOTE_MASK: case value_expr_t::F_ACCOUNT_MASK: case value_expr_t::F_SHORT_ACCOUNT_MASK: case value_expr_t::F_COMMODITY_MASK: if (read_binary_number(data) == 1) read_binary_mask(data, expr->mask); break; default: if (kind > value_expr_t::TERMINALS) { read_binary_value_expr(data, expr->right); if (expr->right) expr->right->acquire(); } break; } } inline void read_binary_transaction(char *& data, transaction_t * xact) { read_binary_long(data, xact->_date); read_binary_long(data, xact->_date_eff); xact->account = accounts[read_binary_long(data) - 1]; char flag = read_binary_number(data); if (flag == 0) { read_binary_amount(data, xact->amount); } else if (flag == 1) { read_binary_amount(data, xact->amount); read_binary_string(data, xact->amount_expr.expr); } else { value_expr_t * ptr = NULL; read_binary_value_expr(data, ptr); assert(ptr); xact->amount_expr.reset(ptr); read_binary_string(data, xact->amount_expr.expr); } if (*data++ == 1) { xact->cost = new amount_t; read_binary_amount(data, *xact->cost); read_binary_string(data, xact->cost_expr); } else { xact->cost = NULL; } read_binary_number(data, xact->state); read_binary_number(data, xact->flags); xact->flags |= TRANSACTION_BULK_ALLOC; read_binary_string(data, &xact->note); xact->beg_pos = read_binary_long(data); read_binary_long(data, xact->beg_line); xact->end_pos = read_binary_long(data); read_binary_long(data, xact->end_line); xact->data = NULL; if (xact->amount_expr) compute_amount(xact->amount_expr, xact->amount, xact); } inline void read_binary_entry_base(char *& data, entry_base_t * entry, transaction_t *& xact_pool, bool& finalize) { read_binary_long(data, entry->src_idx); entry->beg_pos = read_binary_long(data); read_binary_long(data, entry->beg_line); entry->end_pos = read_binary_long(data); read_binary_long(data, entry->end_line); bool ignore_calculated = read_binary_number(data) == 1; for (unsigned long i = 0, count = read_binary_long(data); i < count; i++) { new(xact_pool) transaction_t; read_binary_transaction(data, xact_pool); if (ignore_calculated && xact_pool->flags & TRANSACTION_CALCULATED) finalize = true; entry->add_transaction(xact_pool++); } } inline void read_binary_entry(char *& data, entry_t * entry, transaction_t *& xact_pool, bool& finalize) { read_binary_entry_base(data, entry, xact_pool, finalize); read_binary_long(data, entry->_date); read_binary_long(data, entry->_date_eff); read_binary_string(data, &entry->code); read_binary_string(data, &entry->payee); } inline void read_binary_auto_entry(char *& data, auto_entry_t * entry, transaction_t *& xact_pool) { bool ignore; read_binary_entry_base(data, entry, xact_pool, ignore); value_expr_t * expr; read_binary_value_expr(data, expr); // the item_predicate constructor will acquire the reference entry->predicate = new item_predicate(expr); } inline void read_binary_period_entry(char *& data, period_entry_t * entry, transaction_t *& xact_pool, bool& finalize) { read_binary_entry_base(data, entry, xact_pool, finalize); read_binary_string(data, &entry->period_string); std::istringstream stream(entry->period_string); entry->period.parse(stream); } inline commodity_base_t * read_binary_commodity_base(char *& data) { commodity_base_t * commodity = new commodity_base_t; *base_commodities_next++ = commodity; read_binary_string(data, commodity->symbol); read_binary_string(data, commodity->name); read_binary_string(data, commodity->note); read_binary_number(data, commodity->precision); read_binary_number(data, commodity->flags); return commodity; } inline void read_binary_commodity_base_extra(char *& data, commodity_t::ident_t ident) { commodity_base_t * commodity = base_commodities[ident]; bool read_history = false; for (unsigned long i = 0, count = read_binary_long(data); i < count; i++) { std::time_t when; read_binary_long(data, when); amount_t amt; read_binary_amount(data, amt); // Upon insertion, amt will be copied, which will cause the amount // to be duplicated (and thus not lost when the journal's // item_pool is deleted). if (! commodity->history) commodity->history = new commodity_base_t::history_t; commodity->history->prices.insert(history_pair(when, amt)); read_history = true; } if (read_history) read_binary_long(data, commodity->history->last_lookup); unsigned char flag; flag = read_binary_number(data); if (flag) { amount_t amt; read_binary_amount(data, amt); commodity->smaller = new amount_t(amt); } flag = read_binary_number(data); if (flag) { amount_t amt; read_binary_amount(data, amt); commodity->larger = new amount_t(amt); } } inline commodity_t * read_binary_commodity(char *& data) { commodity_t * commodity = new commodity_t; *commodities_next++ = commodity; commodity->base = base_commodities[read_binary_long(data) - 1]; read_binary_string(data, commodity->qualified_symbol); commodity->annotated = false; return commodity; } inline commodity_t * read_binary_commodity_annotated(char *& data) { annotated_commodity_t * commodity = new annotated_commodity_t; *commodities_next++ = commodity; commodity->base = base_commodities[read_binary_long(data) - 1]; read_binary_string(data, commodity->qualified_symbol); commodity->annotated = true; commodity->ptr = commodities[read_binary_long(data) - 1]; // This read-and-then-assign causes a new amount to be allocated // which does not live within the bulk allocation pool, since that // pool will be deleted *before* the commodities are destroyed. amount_t amt; read_binary_amount(data, amt); commodity->price = amt; read_binary_long(data, commodity->date); read_binary_string(data, commodity->tag); return commodity; } inline account_t * read_binary_account(char *& data, journal_t * journal, account_t * master = NULL) { account_t * acct = new account_t(NULL); *accounts_next++ = acct; acct->journal = journal; account_t::ident_t id; read_binary_long(data, id); // parent id if (id == 0xffffffff) acct->parent = NULL; else acct->parent = accounts[id - 1]; read_binary_string(data, acct->name); read_binary_string(data, acct->note); read_binary_number(data, acct->depth); // If all of the subaccounts will be added to a different master // account, throw away what we've learned about the recorded // journal's own master account. if (master && acct != master) { delete acct; acct = master; } for (account_t::ident_t i = 0, count = read_binary_long(data); i < count; i++) { account_t * child = read_binary_account(data, journal); child->parent = acct; assert(acct != child); acct->add_account(child); } return acct; } unsigned int read_binary_journal(std::istream& in, const std::string& file, journal_t * journal, account_t * master) { account_index = base_commodity_index = commodity_index = 0; // Read in the files that participated in this journal, so that they // can be checked for changes on reading. if (! file.empty()) { for (unsigned short i = 0, count = read_binary_number(in); i < count; i++) { std::string path = read_binary_string(in); std::time_t old_mtime; read_binary_long(in, old_mtime); struct stat info; stat(path.c_str(), &info); if (std::difftime(info.st_mtime, old_mtime) > 0) return 0; journal->sources.push_back(path); } // Make sure that the cache uses the same price database, // otherwise it means that LEDGER_PRICE_DB has been changed, and // we should ignore this cache file. if (read_binary_string(in) != journal->price_db) return 0; } // Read all of the data in at once, so that we're just dealing with // a big data buffer. unsigned long data_size = read_binary_number(in); char * data_pool = new char[data_size]; char * data = data_pool; in.read(data, data_size); // Read in the accounts account_t::ident_t a_count = read_binary_long(data); accounts = accounts_next = new account_t *[a_count]; assert(journal->master); delete journal->master; journal->master = read_binary_account(data, journal, master); if (read_binary_number(data)) journal->basket = accounts[read_binary_long(data) - 1]; // Allocate the memory needed for the entries and transactions in // one large block, which is then chopped up and custom constructed // as necessary. unsigned long count = read_binary_long(data); unsigned long auto_count = read_binary_long(data); unsigned long period_count = read_binary_long(data); unsigned long xact_count = read_binary_number(data); unsigned long bigint_count = read_binary_number(data); std::size_t pool_size = (sizeof(entry_t) * count + sizeof(transaction_t) * xact_count + sizeof_bigint_t() * bigint_count); char * item_pool = new char[pool_size]; journal->item_pool = item_pool; journal->item_pool_end = item_pool + pool_size; entry_t * entry_pool = (entry_t *) item_pool; transaction_t * xact_pool = (transaction_t *) (item_pool + sizeof(entry_t) * count); bigints_index = 0; bigints = bigints_next = (item_pool + sizeof(entry_t) * count + sizeof(transaction_t) * xact_count); // Read in the base commodities and then derived commodities commodity_base_t::ident_t bc_count = read_binary_long(data); base_commodities = base_commodities_next = new commodity_base_t *[bc_count]; for (commodity_base_t::ident_t i = 0; i < bc_count; i++) { commodity_base_t * commodity = read_binary_commodity_base(data); std::pair result = commodity_base_t::commodities.insert (base_commodities_pair(commodity->symbol, commodity)); if (! result.second) { base_commodities_map::iterator c = commodity_base_t::commodities.find(commodity->symbol); // It's possible the user might have used a commodity in a value // expression passed to an option, we'll just override the // flags, but keep the commodity pointer intact. if (c == commodity_base_t::commodities.end()) throw new error(std::string("Failed to read base commodity from cache: ") + commodity->symbol); (*c).second->name = commodity->name; (*c).second->note = commodity->note; (*c).second->precision = commodity->precision; (*c).second->flags = commodity->flags; if ((*c).second->smaller) delete (*c).second->smaller; (*c).second->smaller = commodity->smaller; if ((*c).second->larger) delete (*c).second->larger; (*c).second->larger = commodity->larger; *(base_commodities_next - 1) = (*c).second; delete commodity; } } commodity_t::ident_t c_count = read_binary_long(data); commodities = commodities_next = new commodity_t *[c_count]; for (commodity_t::ident_t i = 0; i < c_count; i++) { commodity_t * commodity; std::string mapping_key; if (read_binary_number(data) == 0) { commodity = read_binary_commodity(data); mapping_key = commodity->base->symbol; } else { read_binary_string(data, mapping_key); commodity = read_binary_commodity_annotated(data); } std::pair result = commodity_t::commodities.insert(commodities_pair (mapping_key, commodity)); if (! result.second) { commodities_map::iterator c = commodity_t::commodities.find(mapping_key); if (c == commodity_t::commodities.end()) throw new error(std::string("Failed to read commodity from cache: ") + commodity->symbol()); *(commodities_next - 1) = (*c).second; delete commodity; } } for (commodity_base_t::ident_t i = 0; i < bc_count; i++) read_binary_commodity_base_extra(data, i); commodity_t::ident_t ident; read_binary_long(data, ident); if (ident == 0xffffffff || ident == 0) commodity_t::default_commodity = NULL; else commodity_t::default_commodity = commodities[ident - 1]; // Read in the entries and transactions for (unsigned long i = 0; i < count; i++) { new(entry_pool) entry_t; bool finalize = false; read_binary_entry(data, entry_pool, xact_pool, finalize); entry_pool->journal = journal; if (finalize && ! entry_pool->finalize()) continue; journal->entries.push_back(entry_pool++); } for (unsigned long i = 0; i < auto_count; i++) { auto_entry_t * auto_entry = new auto_entry_t; read_binary_auto_entry(data, auto_entry, xact_pool); auto_entry->journal = journal; journal->auto_entries.push_back(auto_entry); } for (unsigned long i = 0; i < period_count; i++) { period_entry_t * period_entry = new period_entry_t; bool finalize = false; read_binary_period_entry(data, period_entry, xact_pool, finalize); period_entry->journal = journal; if (finalize && ! period_entry->finalize()) continue; journal->period_entries.push_back(period_entry); } // Clean up and return the number of entries read delete[] accounts; delete[] commodities; delete[] data_pool; VALIDATE(journal->valid()); return count; } bool binary_parser_t::test(std::istream& in) const { if (read_binary_number(in) == binary_magic_number && read_binary_number(in) == format_version) return true; in.clear(); in.seekg(0, std::ios::beg); return false; } unsigned int binary_parser_t::parse(std::istream& in, config_t& config, journal_t * journal, account_t * master, const std::string * original_file) { return read_binary_journal(in, original_file ? *original_file : "", journal, master); } #if DEBUG_LEVEL >= ALPHA #define write_binary_guard(in, id) { \ unsigned short guard = id; \ out.write((char *)&guard, sizeof(guard)); \ } #else #define write_binary_guard(in, id) #endif template inline void write_binary_number(std::ostream& out, T num) { out.write((char *)&num, sizeof(num)); } template inline void write_binary_long(std::ostream& out, T num) { unsigned char len = 4; if (((unsigned long)num) < 0x00000100UL) len = 1; else if (((unsigned long)num) < 0x00010000UL) len = 2; else if (((unsigned long)num) < 0x01000000UL) len = 3; out.write((char *)&len, sizeof(unsigned char)); if (len > 3) { unsigned char temp = (((unsigned long)num) & 0xFF000000UL) >> 24; out.write((char *)&temp, sizeof(unsigned char)); } if (len > 2) { unsigned char temp = (((unsigned long)num) & 0x00FF0000UL) >> 16; out.write((char *)&temp, sizeof(unsigned char)); } if (len > 1) { unsigned char temp = (((unsigned long)num) & 0x0000FF00UL) >> 8; out.write((char *)&temp, sizeof(unsigned char)); } unsigned char temp = (((unsigned long)num) & 0x000000FFUL); out.write((char *)&temp, sizeof(unsigned char)); } inline void write_binary_string(std::ostream& out, const std::string& str) { write_binary_guard(out, 0x3001); unsigned long len = str.length(); if (len > 255) { assert(len < 65536); write_binary_number(out, 0xff); write_binary_number(out, len); } else { write_binary_number(out, len); } if (len) out.write(str.c_str(), len); write_binary_guard(out, 0x3002); } void write_binary_amount(std::ostream& out, const amount_t& amt) { if (amt.commodity_) write_binary_long(out, amt.commodity_->ident); else write_binary_long(out, 0xffffffff); amt.write_quantity(out); } void write_binary_value(std::ostream& out, const value_t& val) { write_binary_long(out, (int)val.type); switch (val.type) { case value_t::BOOLEAN: write_binary_number(out, *((bool *) val.data) ? 1 : 0); break; case value_t::INTEGER: write_binary_long(out, *((long *) val.data)); break; case value_t::DATETIME: write_binary_number(out, ((datetime_t *) val.data)->when); break; case value_t::AMOUNT: write_binary_amount(out, *((amount_t *) val.data)); break; case value_t::BALANCE: case value_t::BALANCE_PAIR: throw new error("Cannot write a balance to the binary cache"); } } void write_binary_mask(std::ostream& out, mask_t * mask) { write_binary_number(out, mask->exclude); write_binary_string(out, mask->pattern); } void write_binary_value_expr(std::ostream& out, const value_expr_t * expr) { if (! expr) { write_binary_number(out, 0); return; } write_binary_number(out, 1); write_binary_number(out, expr->kind); if (expr->kind > value_expr_t::TERMINALS) write_binary_value_expr(out, expr->left); switch (expr->kind) { case value_expr_t::O_ARG: case value_expr_t::INDEX: write_binary_long(out, expr->arg_index); break; case value_expr_t::CONSTANT: write_binary_value(out, *expr->value); break; case value_expr_t::F_CODE_MASK: case value_expr_t::F_PAYEE_MASK: case value_expr_t::F_NOTE_MASK: case value_expr_t::F_ACCOUNT_MASK: case value_expr_t::F_SHORT_ACCOUNT_MASK: case value_expr_t::F_COMMODITY_MASK: if (expr->mask) { write_binary_number(out, 1); write_binary_mask(out, expr->mask); } else { write_binary_number(out, 0); } break; default: if (expr->kind > value_expr_t::TERMINALS) write_binary_value_expr(out, expr->right); break; } } void write_binary_transaction(std::ostream& out, transaction_t * xact, bool ignore_calculated) { write_binary_long(out, xact->_date); write_binary_long(out, xact->_date_eff); write_binary_long(out, xact->account->ident); if (ignore_calculated && xact->flags & TRANSACTION_CALCULATED) { write_binary_number(out, 0); write_binary_amount(out, amount_t()); } else if (xact->amount_expr) { write_binary_number(out, 2); write_binary_value_expr(out, xact->amount_expr.get()); write_binary_string(out, xact->amount_expr.expr); } else if (! xact->amount_expr.expr.empty()) { write_binary_number(out, 1); write_binary_amount(out, xact->amount); write_binary_string(out, xact->amount_expr.expr); } else { write_binary_number(out, 0); write_binary_amount(out, xact->amount); } if (xact->cost && (! (ignore_calculated && xact->flags & TRANSACTION_CALCULATED))) { write_binary_number(out, 1); write_binary_amount(out, *xact->cost); write_binary_string(out, xact->cost_expr); } else { write_binary_number(out, 0); } write_binary_number(out, xact->state); write_binary_number(out, xact->flags); write_binary_string(out, xact->note); write_binary_long(out, xact->beg_pos); write_binary_long(out, xact->beg_line); write_binary_long(out, xact->end_pos); write_binary_long(out, xact->end_line); } void write_binary_entry_base(std::ostream& out, entry_base_t * entry) { write_binary_long(out, entry->src_idx); write_binary_long(out, entry->beg_pos); write_binary_long(out, entry->beg_line); write_binary_long(out, entry->end_pos); write_binary_long(out, entry->end_line); bool ignore_calculated = false; for (transactions_list::const_iterator i = entry->transactions.begin(); i != entry->transactions.end(); i++) if ((*i)->amount_expr) { ignore_calculated = true; break; } write_binary_number(out, ignore_calculated ? 1 : 0); write_binary_long(out, entry->transactions.size()); for (transactions_list::const_iterator i = entry->transactions.begin(); i != entry->transactions.end(); i++) write_binary_transaction(out, *i, ignore_calculated); } void write_binary_entry(std::ostream& out, entry_t * entry) { write_binary_entry_base(out, entry); write_binary_long(out, entry->_date); write_binary_long(out, entry->_date_eff); write_binary_string(out, entry->code); write_binary_string(out, entry->payee); } void write_binary_auto_entry(std::ostream& out, auto_entry_t * entry) { write_binary_entry_base(out, entry); write_binary_value_expr(out, entry->predicate->predicate); } void write_binary_period_entry(std::ostream& out, period_entry_t * entry) { write_binary_entry_base(out, entry); write_binary_string(out, entry->period_string); } void write_binary_commodity_base(std::ostream& out, commodity_base_t * commodity) { commodity->ident = ++base_commodity_index; write_binary_string(out, commodity->symbol); write_binary_string(out, commodity->name); write_binary_string(out, commodity->note); write_binary_number(out, commodity->precision); write_binary_number(out, commodity->flags); } void write_binary_commodity_base_extra(std::ostream& out, commodity_base_t * commodity) { if (commodity->history && commodity->history->bogus_time) commodity->remove_price(commodity->history->bogus_time); if (! commodity->history) { write_binary_long(out, 0); } else { write_binary_long(out, commodity->history->prices.size()); for (history_map::const_iterator i = commodity->history->prices.begin(); i != commodity->history->prices.end(); i++) { write_binary_long(out, (*i).first); write_binary_amount(out, (*i).second); } write_binary_long(out, commodity->history->last_lookup); } if (commodity->smaller) { write_binary_number(out, 1); write_binary_amount(out, *commodity->smaller); } else { write_binary_number(out, 0); } if (commodity->larger) { write_binary_number(out, 1); write_binary_amount(out, *commodity->larger); } else { write_binary_number(out, 0); } } void write_binary_commodity(std::ostream& out, commodity_t * commodity) { commodity->ident = ++commodity_index; write_binary_long(out, commodity->base->ident); write_binary_string(out, commodity->qualified_symbol); } void write_binary_commodity_annotated(std::ostream& out, commodity_t * commodity) { commodity->ident = ++commodity_index; write_binary_long(out, commodity->base->ident); write_binary_string(out, commodity->qualified_symbol); annotated_commodity_t * ann_comm = static_cast(commodity); write_binary_long(out, ann_comm->base->ident); write_binary_amount(out, ann_comm->price); write_binary_long(out, ann_comm->date); write_binary_string(out, ann_comm->tag); } static inline account_t::ident_t count_accounts(account_t * account) { account_t::ident_t count = 1; for (accounts_map::iterator i = account->accounts.begin(); i != account->accounts.end(); i++) count += count_accounts((*i).second); return count; } void write_binary_account(std::ostream& out, account_t * account) { account->ident = ++account_index; if (account->parent) write_binary_long(out, account->parent->ident); else write_binary_long(out, 0xffffffff); write_binary_string(out, account->name); write_binary_string(out, account->note); write_binary_number(out, account->depth); write_binary_long(out, account->accounts.size()); for (accounts_map::iterator i = account->accounts.begin(); i != account->accounts.end(); i++) write_binary_account(out, (*i).second); } void write_binary_journal(std::ostream& out, journal_t * journal) { account_index = base_commodity_index = commodity_index = 0; write_binary_number(out, binary_magic_number); write_binary_number(out, format_version); // Write out the files that participated in this journal, so that // they can be checked for changes on reading. if (journal->sources.size() == 0) { write_binary_number(out, 0); } else { write_binary_number(out, journal->sources.size()); for (strings_list::const_iterator i = journal->sources.begin(); i != journal->sources.end(); i++) { write_binary_string(out, *i); struct stat info; stat((*i).c_str(), &info); write_binary_long(out, std::time_t(info.st_mtime)); } // Write out the price database that relates to this data file, so // that if it ever changes the cache can be invalidated. write_binary_string(out, journal->price_db); } ostream_pos_type data_val = out.tellp(); write_binary_number(out, 0); // Write out the accounts write_binary_long(out, count_accounts(journal->master)); write_binary_account(out, journal->master); if (journal->basket) { write_binary_number(out, true); write_binary_long(out, journal->basket->ident); } else { write_binary_number(out, false); } // Write out the number of entries, transactions, and amounts write_binary_long(out, journal->entries.size()); write_binary_long(out, journal->auto_entries.size()); write_binary_long(out, journal->period_entries.size()); ostream_pos_type xacts_val = out.tellp(); write_binary_number(out, 0); ostream_pos_type bigints_val = out.tellp(); write_binary_number(out, 0); bigints_count = 0; // Write out the commodities write_binary_long (out, commodity_base_t::commodities.size()); for (base_commodities_map::const_iterator i = commodity_base_t::commodities.begin(); i != commodity_base_t::commodities.end(); i++) write_binary_commodity_base(out, (*i).second); write_binary_long (out, commodity_t::commodities.size()); for (commodities_map::const_iterator i = commodity_t::commodities.begin(); i != commodity_t::commodities.end(); i++) { if (! (*i).second->annotated) { write_binary_number(out, 0); write_binary_commodity(out, (*i).second); } } for (commodities_map::const_iterator i = commodity_t::commodities.begin(); i != commodity_t::commodities.end(); i++) { if ((*i).second->annotated) { write_binary_number(out, 1); write_binary_string(out, (*i).first); // the mapping key write_binary_commodity_annotated(out, (*i).second); } } // Write out the history and smaller/larger convertible links after // both the base and the main commodities have been written, since // the amounts in both will refer to the mains. for (base_commodities_map::const_iterator i = commodity_base_t::commodities.begin(); i != commodity_base_t::commodities.end(); i++) write_binary_commodity_base_extra(out, (*i).second); if (commodity_t::default_commodity) write_binary_long(out, commodity_t::default_commodity->ident); else write_binary_long(out, 0xffffffff); // Write out the entries and transactions unsigned long xact_count = 0; for (entries_list::const_iterator i = journal->entries.begin(); i != journal->entries.end(); i++) { write_binary_entry(out, *i); xact_count += (*i)->transactions.size(); } for (auto_entries_list::const_iterator i = journal->auto_entries.begin(); i != journal->auto_entries.end(); i++) { write_binary_auto_entry(out, *i); xact_count += (*i)->transactions.size(); } for (period_entries_list::const_iterator i = journal->period_entries.begin(); i != journal->period_entries.end(); i++) { write_binary_period_entry(out, *i); xact_count += (*i)->transactions.size(); } // Back-patch the count for amounts unsigned long data_size = (((unsigned long) out.tellp()) - ((unsigned long) data_val) - sizeof(unsigned long)); out.seekp(data_val); write_binary_number(out, data_size); out.seekp(xacts_val); write_binary_number(out, xact_count); out.seekp(bigints_val); write_binary_number(out, bigints_count); } } // namespace ledger