/* * Copyright (c) 2003-2009, John Wiegley. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * - Neither the name of New Artisans LLC nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "amount.h" #include "binary.h" namespace ledger { commodity_pool_t * amount_t::current_pool = NULL; bool amount_t::keep_base = false; bool amount_t::keep_price = false; bool amount_t::keep_date = false; bool amount_t::keep_tag = false; bool amount_t::stream_fullstrings = false; #if !defined(THREADSAFE) // These global temporaries are pre-initialized for the sake of // efficiency, and are reused over and over again. static mpz_t temp; static mpfr_t tempf; #ifdef INTEGER_MATH static mpz_t divisor; #else static mpq_t tempq; static mpfr_t tempfb; #endif #endif struct amount_t::bigint_t : public supports_flags<> { #define BIGINT_BULK_ALLOC 0x01 #define BIGINT_KEEP_PREC 0x02 #ifdef INTEGER_MATH mpz_t val; #else mpq_t val; #endif precision_t prec; uint_least16_t ref; uint_fast32_t index; #define MP(bigint) ((bigint)->val) bigint_t() : prec(0), ref(1), index(0) { TRACE_CTOR(bigint_t, ""); #ifdef INTEGER_MATH mpz_init(val); #else mpq_init(val); #endif } bigint_t(const bigint_t& other) : supports_flags<>(other.flags() & ~BIGINT_BULK_ALLOC), prec(other.prec), ref(1), index(0) { TRACE_CTOR(bigint_t, "copy"); #ifdef INTEGER_MATH mpz_init_set(val, other.val); #else mpq_init(val); mpq_set(val, other.val); #endif } ~bigint_t() { TRACE_DTOR(bigint_t); assert(ref == 0); #ifdef INTEGER_MATH mpz_clear(val); #else mpq_clear(val); #endif } bool valid() const { if (prec > 128) { DEBUG("ledger.validate", "amount_t::bigint_t: prec > 128"); return false; } if (ref > 16535) { DEBUG("ledger.validate", "amount_t::bigint_t: ref > 16535"); return false; } return true; } }; uint_fast32_t amount_t::sizeof_bigint_t() { return sizeof(bigint_t); } amount_t * one = NULL; void amount_t::initialize() { mpz_init(temp); mpfr_init(tempf); #ifdef INTEGER_MATH mpz_init(divisor); #else mpq_init(tempq); mpfr_init(tempfb); #endif one = new amount_t(amount_t(1L).unround()); if (! current_pool) current_pool = new commodity_pool_t; // Add time commodity conversions, so that timelog's may be parsed // in terms of seconds, but reported as minutes or hours. if (commodity_t * commodity = current_pool->create("s")) { commodity->add_flags(COMMODITY_BUILTIN | COMMODITY_NOMARKET); parse_conversion("1.0m", "60s"); parse_conversion("1.0h", "60m"); } else { assert(false); } } void amount_t::shutdown() { mpz_clear(temp); mpfr_clear(tempf); #ifdef INTEGER_MATH mpz_clear(divisor); #else mpq_clear(tempq); mpfr_clear(tempfb); #endif checked_delete(one); if (current_pool) { checked_delete(current_pool); current_pool = NULL; } } void amount_t::_copy(const amount_t& amt) { assert(amt.valid()); if (quantity != amt.quantity) { if (quantity) _release(); // Never maintain a pointer into a bulk allocation pool; such // pointers are not guaranteed to remain. if (amt.quantity->has_flags(BIGINT_BULK_ALLOC)) { quantity = new bigint_t(*amt.quantity); } else { quantity = amt.quantity; DEBUG("amounts.refs", quantity << " ref++, now " << (quantity->ref + 1)); quantity->ref++; } } commodity_ = amt.commodity_; assert(valid()); } void amount_t::_dup() { assert(valid()); if (quantity->ref > 1) { bigint_t * q = new bigint_t(*quantity); _release(); quantity = q; } assert(valid()); } #ifdef INTEGER_MATH void amount_t::_resize(precision_t prec) { assert(prec < 256); if (! quantity || prec == quantity->prec) return; _dup(); assert(prec > quantity->prec); mpz_ui_pow_ui(divisor, 10, prec - quantity->prec); mpz_mul(MP(quantity), MP(quantity), divisor); quantity->prec = prec; assert(valid()); } #endif // INTEGER_MATH void amount_t::_clear() { if (quantity) { _release(); quantity = NULL; commodity_ = NULL; } else { assert(! commodity_); } } void amount_t::_release() { assert(valid()); DEBUG("amounts.refs", quantity << " ref--, now " << (quantity->ref - 1)); if (--quantity->ref == 0) { if (quantity->has_flags(BIGINT_BULK_ALLOC)) quantity->~bigint_t(); else checked_delete(quantity); quantity = NULL; commodity_ = NULL; } assert(valid()); } amount_t::amount_t(const double val) : commodity_(NULL) { TRACE_CTOR(amount_t, "const double"); quantity = new bigint_t; #ifdef INTEGER_MATH mpfr_set_d(tempf, val, GMP_RNDN); mpfr_get_z(MP(quantity), tempf); #else mpq_set_d(MP(quantity), val); #endif quantity->prec = extend_by_digits; // an approximation } amount_t::amount_t(const unsigned long val) : commodity_(NULL) { TRACE_CTOR(amount_t, "const unsigned long"); quantity = new bigint_t; #ifdef INTEGER_MATH mpz_set_ui(MP(quantity), val); #else mpq_set_ui(MP(quantity), val, 1); #endif } amount_t::amount_t(const long val) : commodity_(NULL) { TRACE_CTOR(amount_t, "const long"); quantity = new bigint_t; #ifdef INTEGER_MATH mpz_set_si(MP(quantity), val); #else mpq_set_si(MP(quantity), val, 1); #endif } amount_t& amount_t::operator=(const amount_t& amt) { if (this != &amt) { if (amt.quantity) _copy(amt); else if (quantity) _clear(); } return *this; } int amount_t::compare(const amount_t& amt) const { assert(amt.valid()); if (! quantity || ! amt.quantity) { if (quantity) throw_(amount_error, "Cannot compare an amount to an uninitialized amount"); else if (amt.quantity) throw_(amount_error, "Cannot compare an uninitialized amount to an amount"); else throw_(amount_error, "Cannot compare two uninitialized amounts"); } if (has_commodity() && amt.has_commodity() && commodity() != amt.commodity()) throw_(amount_error, "Cannot compare amounts with different commodities: " << commodity().symbol() << " and " << amt.commodity().symbol()); #ifdef INTEGER_MATH if (quantity->prec == amt.quantity->prec) { return mpz_cmp(MP(quantity), MP(amt.quantity)); } else if (quantity->prec < amt.quantity->prec) { amount_t t(*this); t._resize(amt.quantity->prec); return mpz_cmp(MP(t.quantity), MP(amt.quantity)); } else { amount_t t = amt; t._resize(quantity->prec); return mpz_cmp(MP(quantity), MP(t.quantity)); } #else return mpq_cmp(MP(quantity), MP(amt.quantity)); #endif } amount_t& amount_t::operator+=(const amount_t& amt) { assert(amt.valid()); if (! quantity || ! amt.quantity) { if (quantity) throw_(amount_error, "Cannot add an amount to an uninitialized amount"); else if (amt.quantity) throw_(amount_error, "Cannot add an uninitialized amount to an amount"); else throw_(amount_error, "Cannot add two uninitialized amounts"); } if (commodity() != amt.commodity()) throw_(amount_error, "Adding amounts with different commodities: " << (has_commodity() ? commodity().symbol() : "NONE") << " != " << (amt.has_commodity() ? amt.commodity().symbol() : "NONE")); _dup(); #ifdef INTEGER_MATH if (quantity->prec == amt.quantity->prec) { mpz_add(MP(quantity), MP(quantity), MP(amt.quantity)); } else if (quantity->prec < amt.quantity->prec) { _resize(amt.quantity->prec); mpz_add(MP(quantity), MP(quantity), MP(amt.quantity)); } else { amount_t t = amt; t._resize(quantity->prec); mpz_add(MP(quantity), MP(quantity), MP(t.quantity)); } #else mpq_add(MP(quantity), MP(quantity), MP(amt.quantity)); if (quantity->prec < amt.quantity->prec) quantity->prec = amt.quantity->prec; #endif return *this; } amount_t& amount_t::operator-=(const amount_t& amt) { assert(amt.valid()); if (! quantity || ! amt.quantity) { if (quantity) throw_(amount_error, "Cannot subtract an amount from an uninitialized amount"); else if (amt.quantity) throw_(amount_error, "Cannot subtract an uninitialized amount from an amount"); else throw_(amount_error, "Cannot subtract two uninitialized amounts"); } if (commodity() != amt.commodity()) throw_(amount_error, "Subtracting amounts with different commodities: " << (has_commodity() ? commodity().symbol() : "NONE") << " != " << (amt.has_commodity() ? amt.commodity().symbol() : "NONE")); _dup(); #ifdef INTEGER_MATH if (quantity->prec == amt.quantity->prec) { mpz_sub(MP(quantity), MP(quantity), MP(amt.quantity)); } else if (quantity->prec < amt.quantity->prec) { _resize(amt.quantity->prec); mpz_sub(MP(quantity), MP(quantity), MP(amt.quantity)); } else { amount_t t = amt; t._resize(quantity->prec); mpz_sub(MP(quantity), MP(quantity), MP(t.quantity)); } #else mpq_sub(MP(quantity), MP(quantity), MP(amt.quantity)); if (quantity->prec < amt.quantity->prec) quantity->prec = amt.quantity->prec; #endif return *this; } #ifdef INTEGER_MATH namespace { void mpz_round(mpz_t out, mpz_t value, int value_prec, int round_prec) { // Round `value', with an encoding precision of `value_prec', to a // rounded value with precision `round_prec'. Result is stored in // `out'. assert(value_prec > round_prec); mpz_t quotient; mpz_t remainder; mpz_init(quotient); mpz_init(remainder); mpz_ui_pow_ui(divisor, 10, value_prec - round_prec); mpz_tdiv_qr(quotient, remainder, value, divisor); mpz_divexact_ui(divisor, divisor, 10); mpz_mul_ui(divisor, divisor, 5); if (mpz_sgn(remainder) < 0) { mpz_neg(divisor, divisor); if (mpz_cmp(remainder, divisor) < 0) { mpz_ui_pow_ui(divisor, 10, value_prec - round_prec); mpz_add(remainder, divisor, remainder); mpz_ui_sub(remainder, 0, remainder); mpz_add(out, value, remainder); } else { mpz_sub(out, value, remainder); } } else { if (mpz_cmp(remainder, divisor) >= 0) { mpz_ui_pow_ui(divisor, 10, value_prec - round_prec); mpz_sub(remainder, divisor, remainder); mpz_add(out, value, remainder); } else { mpz_sub(out, value, remainder); } } mpz_clear(quotient); mpz_clear(remainder); // chop off the rounded bits mpz_ui_pow_ui(divisor, 10, value_prec - round_prec); mpz_tdiv_q(out, out, divisor); } } #endif // INTEGER_MATH amount_t& amount_t::operator*=(const amount_t& amt) { assert(amt.valid()); if (! quantity || ! amt.quantity) { if (quantity) throw_(amount_error, "Cannot multiply an amount by an uninitialized amount"); else if (amt.quantity) throw_(amount_error, "Cannot multiply an uninitialized amount by an amount"); else throw_(amount_error, "Cannot multiply two uninitialized amounts"); } _dup(); #ifdef INTEGER_MATH mpz_mul(MP(quantity), MP(quantity), MP(amt.quantity)); #else mpq_mul(MP(quantity), MP(quantity), MP(amt.quantity)); #endif quantity->prec += amt.quantity->prec; if (! has_commodity()) commodity_ = amt.commodity_; if (has_commodity() && ! keep_precision()) { precision_t comm_prec = commodity().precision(); if (quantity->prec > comm_prec + extend_by_digits) { #ifdef INTEGER_MATH mpz_round(MP(quantity), MP(quantity), quantity->prec, comm_prec + extend_by_digits); #endif // INTEGER_MATH quantity->prec = comm_prec + extend_by_digits; } } return *this; } amount_t& amount_t::operator/=(const amount_t& amt) { assert(amt.valid()); if (! quantity || ! amt.quantity) { if (quantity) throw_(amount_error, "Cannot divide an amount by an uninitialized amount"); else if (amt.quantity) throw_(amount_error, "Cannot divide an uninitialized amount by an amount"); else throw_(amount_error, "Cannot divide two uninitialized amounts"); } if (! amt) throw_(amount_error, "Divide by zero"); _dup(); // Increase the value's precision, to capture fractional parts after // the divide. Round up in the last position. #ifdef INTEGER_MATH mpz_ui_pow_ui(divisor, 10, (2 * amt.quantity->prec) + quantity->prec + extend_by_digits + 1U); mpz_mul(MP(quantity), MP(quantity), divisor); mpz_tdiv_q(MP(quantity), MP(quantity), MP(amt.quantity)); quantity->prec += amt.quantity->prec + quantity->prec + extend_by_digits + 1U; mpz_round(MP(quantity), MP(quantity), quantity->prec, quantity->prec - 1); quantity->prec -= 1; #else mpq_div(MP(quantity), MP(quantity), MP(amt.quantity)); quantity->prec += amt.quantity->prec + quantity->prec + extend_by_digits; #endif if (! has_commodity()) commodity_ = amt.commodity_; // If this amount has a commodity, and we're not dealing with plain // numbers, or internal numbers (which keep full precision at all // times), then round the number to within the commodity's precision // plus six places. if (has_commodity() && ! keep_precision()) { precision_t comm_prec = commodity().precision(); if (quantity->prec > comm_prec + extend_by_digits) { #ifdef INTEGER_MATH mpz_round(MP(quantity), MP(quantity), quantity->prec, comm_prec + extend_by_digits); #endif // INTEGER_MATH quantity->prec = comm_prec + extend_by_digits; } } return *this; } amount_t::precision_t amount_t::precision() const { if (! quantity) throw_(amount_error, "Cannot determine precision of an uninitialized amount"); return quantity->prec; } bool amount_t::keep_precision() const { if (! quantity) throw_(amount_error, "Cannot determine if precision of an uninitialized amount is kept"); return quantity->has_flags(BIGINT_KEEP_PREC); } void amount_t::set_keep_precision(const bool keep) const { if (! quantity) throw_(amount_error, "Cannot set whether to keep the precision of an uninitialized amount"); if (keep) quantity->add_flags(BIGINT_KEEP_PREC); else quantity->drop_flags(BIGINT_KEEP_PREC); } amount_t::precision_t amount_t::display_precision(const bool full_precision) const { if (! quantity) throw_(amount_error, "Cannot determine display precision of an uninitialized amount"); commodity_t& comm(commodity()); if (! comm || full_precision || keep_precision()) return quantity->prec; else if (comm.precision() != quantity->prec) return comm.precision(); else return quantity->prec; } amount_t& amount_t::in_place_negate() { if (quantity) { _dup(); #ifdef INTEGER_MATH mpz_neg(MP(quantity), MP(quantity)); #else mpq_neg(MP(quantity), MP(quantity)); #endif } else { throw_(amount_error, "Cannot negate an uninitialized amount"); } return *this; } #ifdef INTEGER_MATH amount_t& amount_t::in_place_round() { if (! quantity) throw_(amount_error, "Cannot round an uninitialized amount"); if (has_commodity()) in_place_round(commodity().precision()); return *this; } amount_t& amount_t::in_place_round(precision_t prec) { if (! quantity) throw_(amount_error, "Cannot round an uninitialized amount"); if (quantity && quantity->prec <= prec) { if (keep_precision()) { _dup(); set_keep_precision(false); } return *this; } DEBUG("amount.round", "Rounding " << *this << " to precision " << prec); _dup(); mpz_round(MP(quantity), MP(quantity), quantity->prec, prec); quantity->prec = prec; set_keep_precision(false); DEBUG("amount.round", " result = " << *this); return *this; } #endif // INTEGER_MATH amount_t amount_t::unround() const { if (! quantity) throw_(amount_error, "Cannot unround an uninitialized amount"); else if (keep_precision()) return *this; amount_t t(*this); t._dup(); t.set_keep_precision(true); return t; } amount_t& amount_t::in_place_reduce() { if (! quantity) throw_(amount_error, "Cannot reduce an uninitialized amount"); while (commodity_ && commodity().smaller()) { *this *= commodity().smaller()->number(); commodity_ = commodity().smaller()->commodity_; } return *this; } amount_t& amount_t::in_place_unreduce() { if (! quantity) throw_(amount_error, "Cannot unreduce an uninitialized amount"); while (commodity_ && commodity().larger()) { *this /= commodity().larger()->number(); commodity_ = commodity().larger()->commodity_; if (abs() < amount_t(1L)) break; } return *this; } optional amount_t::value(const optional& moment, const optional& in_terms_of) const { if (quantity) { optional point(commodity().find_price(in_terms_of, moment)); if (point) #ifdef INTEGER_MATH return (point->price * number()).round(); #else return point->price * number(); #endif } else { throw_(amount_error, "Cannot determine value of an uninitialized amount"); } return none; } int amount_t::sign() const { if (! quantity) throw_(amount_error, "Cannot determine sign of an uninitialized amount"); #ifdef INTEGER_MATH return mpz_sgn(MP(quantity)); #else return mpq_sgn(MP(quantity)); #endif } #ifndef INTEGER_MATH namespace { void stream_out_mpq(std::ostream& out, mpq_t quant, amount_t::precision_t prec, const optional& comm = none) { char * buf = NULL; try { IF_DEBUG("amount.convert") { char * tbuf = mpq_get_str(NULL, 10, quant); DEBUG("amount.convert", "Rational to convert = " << tbuf); std::free(tbuf); } // Convert the rational number to a floating-point, extending the // floating-point to a large enough size to get a precise answer. const std::size_t bits = (mpz_sizeinbase(mpq_numref(quant), 2) + mpz_sizeinbase(mpq_denref(quant), 2)); mpfr_set_prec(tempfb, bits + amount_t::extend_by_digits*8); mpfr_set_q(tempfb, quant, GMP_RNDN); mpfr_asprintf(&buf, "%.*Rf", prec, tempfb); DEBUG("amount.convert", "mpfr_print = " << buf << " (precision " << prec << ")"); if (comm) { int integer_digits = 0; if (comm && comm->has_flags(COMMODITY_STYLE_THOUSANDS)) { // Count the number of integer digits for (const char * p = buf; *p; p++) { if (*p == '.') break; else if (std::isdigit(*p)) integer_digits++; } } for (const char * p = buf; *p; p++) { if (*p == '.') { if (comm && comm->has_flags(COMMODITY_STYLE_EUROPEAN)) out << ','; else out << *p; assert(integer_digits < 3); } else { if (integer_digits >= 3 && std::isdigit(*p) && integer_digits-- % 3 == 0) { if (comm && comm->has_flags(COMMODITY_STYLE_EUROPEAN)) out << '.'; else out << ','; } out << *p; } } } else { out << buf; } } catch (...) { if (buf != NULL) mpfr_free_str(buf); throw; } if (buf != NULL) mpfr_free_str(buf); } } #endif // INTEGER_MATH bool amount_t::is_zero() const { if (! quantity) throw_(amount_error, "Cannot determine if an uninitialized amount is zero"); if (has_commodity()) { if (keep_precision() || quantity->prec <= commodity().precision()) { return is_realzero(); } else { #ifdef INTEGER_MATH return round(commodity().precision()).sign() == 0; #else std::ostringstream out; stream_out_mpq(out, MP(quantity), commodity().precision()); for (const char * p = out.str().c_str(); *p; p++) if (*p != '0' && *p != '.') return false; return true; #endif } } return is_realzero(); } double amount_t::to_double(bool no_check) const { if (! quantity) throw_(amount_error, "Cannot convert an uninitialized amount to a double"); #ifdef INTEGER_MATH mpz_t remainder; mpz_init(remainder); mpz_set(temp, MP(quantity)); mpz_ui_pow_ui(divisor, 10, quantity->prec); mpz_tdiv_qr(temp, remainder, temp, divisor); char * quotient_s = mpz_get_str(NULL, 10, temp); char * remainder_s = mpz_get_str(NULL, 10, remainder); std::ostringstream num; num << quotient_s << '.' << remainder_s; std::free(quotient_s); std::free(remainder_s); mpz_clear(remainder); double value = lexical_cast(num.str()); #else mpfr_set_q(tempf, MP(quantity), GMP_RNDN); double value = mpfr_get_d(tempf, GMP_RNDN); #endif if (! no_check && *this != value) throw_(amount_error, "Conversion of amount to_double loses precision"); return value; } long amount_t::to_long(bool no_check) const { if (! quantity) throw_(amount_error, "Cannot convert an uninitialized amount to a long"); #ifdef INTEGER_MATH mpz_set(temp, MP(quantity)); mpz_ui_pow_ui(divisor, 10, quantity->prec); mpz_tdiv_q(temp, temp, divisor); long value = mpz_get_si(temp); #else mpfr_set_q(tempf, MP(quantity), GMP_RNDN); long value = mpfr_get_si(tempf, GMP_RNDN); #endif if (! no_check && *this != value) throw_(amount_error, "Conversion of amount to_long loses precision"); return value; } bool amount_t::fits_in_double() const { double value = to_double(true); return *this == amount_t(value); } bool amount_t::fits_in_long() const { long value = to_long(true); return *this == amount_t(value); } void amount_t::annotate(const annotation_t& details) { commodity_t * this_base; annotated_commodity_t * this_ann = NULL; if (! quantity) throw_(amount_error, "Cannot annotate the commodity of an uninitialized amount"); else if (! has_commodity()) throw_(amount_error, "Cannot annotate an amount with no commodity"); if (commodity().annotated) { this_ann = &as_annotated_commodity(commodity()); this_base = &this_ann->referent(); } else { this_base = &commodity(); } assert(this_base); DEBUG("amounts.commodities", "Annotating commodity for amount " << *this << std::endl << details); if (commodity_t * ann_comm = this_base->parent().find_or_create(*this_base, details)) set_commodity(*ann_comm); #ifdef ASSERTS_ON else assert(false); #endif DEBUG("amounts.commodities", " Annotated amount is " << *this); } bool amount_t::is_annotated() const { if (! quantity) throw_(amount_error, "Cannot determine if an uninitialized amount's commodity is annotated"); assert(! commodity().annotated || as_annotated_commodity(commodity()).details); return commodity().annotated; } annotation_t& amount_t::annotation() { if (! quantity) throw_(amount_error, "Cannot return commodity annotation details of an uninitialized amount"); if (! commodity().is_annotated()) throw_(amount_error, "Request for annotation details from an unannotated amount"); annotated_commodity_t& ann_comm(as_annotated_commodity(commodity())); return ann_comm.details; } amount_t amount_t::strip_annotations(const bool _keep_price, const bool _keep_date, const bool _keep_tag) const { if (! quantity) throw_(amount_error, "Cannot strip commodity annotations from an uninitialized amount"); if (! commodity().annotated || (_keep_price && _keep_date && _keep_tag)) return *this; amount_t t(*this); t.set_commodity(as_annotated_commodity(commodity()). strip_annotations(_keep_price, _keep_date, _keep_tag)); return t; } namespace { void parse_quantity(std::istream& in, string& value) { char buf[256]; char c = peek_next_nonws(in); READ_INTO(in, buf, 255, c, std::isdigit(c) || c == '-' || c == '.' || c == ','); int len = std::strlen(buf); while (len > 0 && ! std::isdigit(buf[len - 1])) { buf[--len] = '\0'; in.unget(); } value = buf; } } bool amount_t::parse(std::istream& in, const parse_flags_t& flags) { // The possible syntax for an amount is: // // [-]NUM[ ]SYM [@ AMOUNT] // SYM[ ][-]NUM [@ AMOUNT] string symbol; string quant; annotation_t details; bool negative = false; commodity_t::flags_t comm_flags = COMMODITY_STYLE_DEFAULTS; char c = peek_next_nonws(in); if (c == '-') { negative = true; in.get(c); c = peek_next_nonws(in); } char n; if (std::isdigit(c)) { parse_quantity(in, quant); if (! in.eof() && ((n = in.peek()) != '\n')) { if (std::isspace(n)) comm_flags |= COMMODITY_STYLE_SEPARATED; commodity_t::parse_symbol(in, symbol); if (! symbol.empty()) comm_flags |= COMMODITY_STYLE_SUFFIXED; if (! in.eof() && ((n = in.peek()) != '\n')) details.parse(in); } } else { commodity_t::parse_symbol(in, symbol); if (! in.eof() && ((n = in.peek()) != '\n')) { if (std::isspace(in.peek())) comm_flags |= COMMODITY_STYLE_SEPARATED; parse_quantity(in, quant); if (! quant.empty() && ! in.eof() && ((n = in.peek()) != '\n')) details.parse(in); } } if (quant.empty()) { if (flags.has_flags(PARSE_SOFT_FAIL)) return false; else throw_(amount_error, "No quantity specified for amount"); } // Allocate memory for the amount's quantity value. We have to // monitor the allocation in an auto_ptr because this function gets // called sometimes from amount_t's constructor; and if there is an // exeception thrown by any of the function calls after this point, // the destructor will never be called and the memory never freed. std::auto_ptr safe_holder; if (! quantity) { quantity = new bigint_t; safe_holder.reset(quantity); } else if (quantity->ref > 1) { _release(); quantity = new bigint_t; safe_holder.reset(quantity); } // Create the commodity if has not already been seen, and update the // precision if something greater was used for the quantity. bool newly_created = false; if (symbol.empty()) { commodity_ = NULL; } else { commodity_ = current_pool->find(symbol); if (! commodity_) { commodity_ = current_pool->create(symbol); newly_created = true; } assert(commodity_); if (details) commodity_ = current_pool->find_or_create(*commodity_, details); } // Determine the precision of the amount, based on the usage of // comma or period. string::size_type last_comma = quant.rfind(','); string::size_type last_period = quant.rfind('.'); if (last_comma != string::npos && last_period != string::npos) { comm_flags |= COMMODITY_STYLE_THOUSANDS; if (last_comma > last_period) { comm_flags |= COMMODITY_STYLE_EUROPEAN; quantity->prec = quant.length() - last_comma - 1; } else { quantity->prec = quant.length() - last_period - 1; } } else if (last_comma != string::npos && commodity().has_flags(COMMODITY_STYLE_EUROPEAN)) { comm_flags |= COMMODITY_STYLE_EUROPEAN; quantity->prec = quant.length() - last_comma - 1; } else if (last_period != string::npos && ! (commodity().has_flags(COMMODITY_STYLE_EUROPEAN))) { quantity->prec = quant.length() - last_period - 1; } else { quantity->prec = 0; } // Set the commodity's flags and precision accordingly if (commodity_ && ! flags.has_flags(PARSE_NO_MIGRATE)) { commodity().add_flags(comm_flags); if (quantity->prec > commodity().precision()) commodity().set_precision(quantity->prec); } // Setup the amount's own flags if (flags.has_flags(PARSE_NO_MIGRATE)) set_keep_precision(true); // Now we have the final number. Remove commas and periods, if // necessary. if (last_comma != string::npos || last_period != string::npos) { int len = quant.length(); scoped_array buf(new char[len + 1]); const char * p = quant.c_str(); char * t = buf.get(); while (*p) { if (*p == ',' || *p == '.') p++; *t++ = *p++; } *t = '\0'; #ifdef INTEGER_MATH mpz_set_str(MP(quantity), buf.get(), 10); #else mpq_set_str(MP(quantity), buf.get(), 10); mpz_ui_pow_ui(temp, 10, quantity->prec); mpq_set_z(tempq, temp); mpq_div(MP(quantity), MP(quantity), tempq); IF_DEBUG("amount.parse") { char * buf = mpq_get_str(NULL, 10, MP(quantity)); DEBUG("amount.parse", "Rational parsed = " << buf); std::free(buf); } #endif } else { #ifdef INTEGER_MATH mpz_set_str(MP(quantity), quant.c_str(), 10); #else mpq_set_str(MP(quantity), quant.c_str(), 10); #endif } if (negative) in_place_negate(); if (! flags.has_flags(PARSE_NO_REDUCE)) in_place_reduce(); safe_holder.release(); // `this->quantity' owns the pointer assert(valid()); return true; } void amount_t::parse_conversion(const string& larger_str, const string& smaller_str) { amount_t larger, smaller; larger.parse(larger_str, PARSE_NO_REDUCE); smaller.parse(smaller_str, PARSE_NO_REDUCE); larger *= smaller.number(); if (larger.commodity()) { larger.commodity().set_smaller(smaller); larger.commodity().add_flags(smaller.commodity().flags() | COMMODITY_NOMARKET); } if (smaller.commodity()) smaller.commodity().set_larger(larger); } void amount_t::print(std::ostream& _out, bool omit_commodity, bool full_precision) const { assert(valid()); if (! quantity) { _out << ""; return; } amount_t base(*this); if (! amount_t::keep_base) base.in_place_unreduce(); std::ostringstream out; commodity_t& comm(base.commodity()); precision_t precision = 0; #ifdef INTEGER_MATH mpz_t quotient; mpz_t rquotient; mpz_t remainder; mpz_init(quotient); mpz_init(rquotient); mpz_init(remainder); bool negative = false; // Ensure the value is rounded to the commodity's precision before // outputting it. NOTE: `rquotient' is used here as a temp variable! if (quantity) { if (! comm || full_precision || base.keep_precision()) { mpz_ui_pow_ui(divisor, 10, base.quantity->prec); mpz_tdiv_qr(quotient, remainder, MP(base.quantity), divisor); precision = base.quantity->prec; } else if (comm.precision() < base.quantity->prec) { mpz_round(rquotient, MP(base.quantity), base.quantity->prec, comm.precision()); mpz_ui_pow_ui(divisor, 10, comm.precision()); mpz_tdiv_qr(quotient, remainder, rquotient, divisor); precision = comm.precision(); } else if (comm.precision() > base.quantity->prec) { mpz_ui_pow_ui(divisor, 10, comm.precision() - base.quantity->prec); mpz_mul(rquotient, MP(base.quantity), divisor); mpz_ui_pow_ui(divisor, 10, comm.precision()); mpz_tdiv_qr(quotient, remainder, rquotient, divisor); precision = comm.precision(); } else if (base.quantity->prec) { mpz_ui_pow_ui(divisor, 10, base.quantity->prec); mpz_tdiv_qr(quotient, remainder, MP(base.quantity), divisor); precision = base.quantity->prec; } else { mpz_set(quotient, MP(base.quantity)); mpz_set_ui(remainder, 0); precision = 0; } if (mpz_sgn(quotient) < 0 || mpz_sgn(remainder) < 0) { negative = true; mpz_abs(quotient, quotient); mpz_abs(remainder, remainder); } mpz_set(rquotient, remainder); } if (! omit_commodity && ! comm.has_flags(COMMODITY_STYLE_SUFFIXED)) { comm.print(out); if (comm.has_flags(COMMODITY_STYLE_SEPARATED)) out << " "; } if (negative) out << "-"; if (! quantity || mpz_sgn(quotient) == 0) { out << '0'; } else if (omit_commodity || ! comm.has_flags(COMMODITY_STYLE_THOUSANDS)) { char * p = mpz_get_str(NULL, 10, quotient); out << p; std::free(p); } else { std::list strs; char buf[4]; for (int powers = 0; true; powers += 3) { if (powers > 0) { mpz_ui_pow_ui(divisor, 10, powers); mpz_tdiv_q(temp, quotient, divisor); if (mpz_sgn(temp) == 0) break; mpz_tdiv_r_ui(temp, temp, 1000); } else { mpz_tdiv_r_ui(temp, quotient, 1000); } mpz_get_str(buf, 10, temp); strs.push_back(buf); } bool printed = false; for (std::list::reverse_iterator i = strs.rbegin(); i != strs.rend(); i++) { if (printed) { out << (comm.has_flags(COMMODITY_STYLE_EUROPEAN) ? '.' : ','); out.width(3); out.fill('0'); } out << *i; printed = true; } } if (quantity && precision) { std::ostringstream final; final.width(precision); final.fill('0'); char * p = mpz_get_str(NULL, 10, rquotient); final << p; std::free(p); const string& str(final.str()); int i, len = str.length(); const char * q = str.c_str(); for (i = len; i > 0; i--) if (q[i - 1] != '0') break; string ender; if (i == len) ender = str; else if (i < comm.precision()) ender = string(str, 0, comm.precision()); else ender = string(str, 0, i); if (! ender.empty()) { if (omit_commodity) out << '.'; else out << (comm.has_flags(COMMODITY_STYLE_EUROPEAN) ? ',' : '.'); out << ender; } } if (! omit_commodity && comm.has_flags(COMMODITY_STYLE_SUFFIXED)) { if (comm.has_flags(COMMODITY_STYLE_SEPARATED)) out << " "; comm.print(out); } mpz_clear(quotient); mpz_clear(rquotient); mpz_clear(remainder); #else // INTEGER_MATH if (! omit_commodity && ! comm.has_flags(COMMODITY_STYLE_SUFFIXED)) { comm.print(out); if (comm.has_flags(COMMODITY_STYLE_SEPARATED)) out << " "; } stream_out_mpq(out, MP(quantity), base.display_precision(full_precision), omit_commodity ? optional() : comm); if (! omit_commodity && comm.has_flags(COMMODITY_STYLE_SUFFIXED)) { if (comm.has_flags(COMMODITY_STYLE_SEPARATED)) out << " "; comm.print(out); } #endif // INTEGER_MATH // If there are any annotations associated with this commodity, // output them now. if (! omit_commodity && comm.annotated) { annotated_commodity_t& ann(static_cast(comm)); assert(&*ann.details.price != this); ann.write_annotations(out); } // Things are output to a string first, so that if anyone has // specified a width or fill for _out, it will be applied to the // entire amount string, and not just the first part. _out << out.str(); } void amount_t::read(std::istream& in) { using namespace ledger::binary; // Read in the commodity for this amount commodity_t::ident_t ident; read_long(in, ident); if (ident == 0xffffffff) commodity_ = NULL; else if (ident == 0) commodity_ = current_pool->null_commodity; else { commodity_ = current_pool->find(ident); assert(commodity_); } // Read in the quantity char byte; in.read(&byte, sizeof(byte)); if (byte < 3) { quantity = new bigint_t; #ifndef INTEGER_MATH mpz_t numerator; mpz_t denominator; #endif unsigned short len; in.read(reinterpret_cast(&len), sizeof(len)); assert(len < 4096); static char buf[4096]; in.read(buf, len); #ifdef INTEGER_MATH mpz_import(MP(quantity), len / sizeof(short), 1, sizeof(short), 0, 0, buf); #else mpz_init(numerator); mpz_import(numerator, len / sizeof(short), 1, sizeof(short), 0, 0, buf); in.read(reinterpret_cast(&len), sizeof(len)); assert(len < 4096); in.read(buf, len); mpz_init(denominator); mpz_import(denominator, len / sizeof(short), 1, sizeof(short), 0, 0, buf); mpq_set_num(MP(quantity), numerator); mpq_set_den(MP(quantity), denominator); #endif char negative; in.read(&negative, sizeof(negative)); if (negative) #ifdef INTEGER_MATH mpz_neg(MP(quantity), MP(quantity)); #else mpq_neg(MP(quantity), MP(quantity)); #endif in.read(reinterpret_cast(&quantity->prec), sizeof(quantity->prec)); bigint_t::flags_t tflags; in.read(reinterpret_cast(&tflags), sizeof(tflags)); quantity->set_flags(tflags); } else { assert(false); } } void amount_t::read(const char *& data, char ** pool, char ** pool_next) { using namespace ledger::binary; // Read in the commodity for this amount commodity_t::ident_t ident; read_long(data, ident); if (ident == 0xffffffff) commodity_ = NULL; else if (ident == 0) commodity_ = current_pool->null_commodity; else { commodity_ = current_pool->find(ident); assert(commodity_); } // Read in the quantity char byte = *data++;; if (byte < 3) { if (byte == 2) { quantity = new(reinterpret_cast(*pool_next)) bigint_t; *pool_next += sizeof(bigint_t); } else { quantity = new bigint_t; } #ifndef INTEGER_MATH mpz_t numerator; mpz_t denominator; #endif unsigned short len = *reinterpret_cast(const_cast(data)); data += sizeof(unsigned short); #ifdef INTEGER_MATH mpz_import(MP(quantity), len / sizeof(short), 1, sizeof(short), 0, 0, data); #else mpz_init(numerator); mpz_import(numerator, len / sizeof(short), 1, sizeof(short), 0, 0, data); len = *reinterpret_cast(const_cast(data)); data += sizeof(unsigned short); mpz_init(denominator); mpz_import(denominator, len / sizeof(short), 1, sizeof(short), 0, 0, data); mpq_set_num(MP(quantity), numerator); mpq_set_den(MP(quantity), denominator); #endif data += len; char negative = *data++; if (negative) #ifdef INTEGER_MATH mpz_neg(MP(quantity), MP(quantity)); #else mpq_neg(MP(quantity), MP(quantity)); #endif quantity->prec = *reinterpret_cast(const_cast(data)); data += sizeof(precision_t); quantity->set_flags(*reinterpret_cast(const_cast(data))); data += sizeof(bigint_t::flags_t); if (byte == 2) quantity->add_flags(BIGINT_BULK_ALLOC); } else { uint_fast32_t index = *reinterpret_cast(const_cast(data)); data += sizeof(uint_fast32_t); quantity = reinterpret_cast(*pool + (index - 1) * sizeof(bigint_t)); DEBUG("amounts.refs", quantity << " ref++, now " << (quantity->ref + 1)); quantity->ref++; } } void amount_t::write(std::ostream& out, std::size_t index) const { using namespace ledger::binary; // Write out the commodity for this amount if (! quantity) throw_(amount_error, "Cannot serialize an uninitialized amount"); if (commodity_) write_long(out, commodity_->ident); else write_long(out, 0xffffffff); // Write out the quantity char byte; if (index == 0 || quantity->index == 0) { if (index != 0) { quantity->index = index; // if !optimized, this is garbage byte = 2; } else { byte = 1; } out.write(&byte, sizeof(byte)); std::size_t size; static char buf[4096]; #ifdef INTEGER_MATH mpz_export(buf, &size, 1, sizeof(short), 0, 0, MP(quantity)); #else mpz_t numerator; mpz_t denominator; mpz_init(numerator); mpq_get_num(numerator, MP(quantity)); mpz_export(buf, &size, 1, sizeof(short), 0, 0, numerator); mpz_init(denominator); mpq_get_den(denominator, MP(quantity)); mpz_export(buf, &size, 1, sizeof(short), 0, 0, denominator); #endif unsigned short len = size * sizeof(short); out.write(reinterpret_cast(&len), sizeof(len)); if (len) { assert(len < 4096); out.write(buf, len); } #ifdef INTEGER_MATH byte = mpz_sgn(MP(quantity)) < 0 ? 1 : 0; #else byte = mpq_sgn(MP(quantity)) < 0 ? 1 : 0; #endif out.write(&byte, sizeof(byte)); out.write(reinterpret_cast(&quantity->prec), sizeof(quantity->prec)); bigint_t::flags_t tflags = quantity->flags() & ~BIGINT_BULK_ALLOC; assert(sizeof(tflags) == sizeof(bigint_t::flags_t)); out.write(reinterpret_cast(&tflags), sizeof(tflags)); } else { assert(quantity->ref > 1); // Since this value has already been written, we simply write // out a reference to which one it was. byte = 3; out.write(&byte, sizeof(byte)); out.write(reinterpret_cast(&quantity->index), sizeof(quantity->index)); } } void amount_t::read_xml(std::istream& in) { } void amount_t::write_xml(std::ostream& out, const int depth) const { xml_print(out, "\n", depth); commodity().write_xml(out, depth + 1); xml_print(out, "", depth + 1); out << quantity_string() << "\n"; xml_print(out, "\n", depth); } bool amount_t::valid() const { if (quantity) { if (! quantity->valid()) return false; if (quantity->ref == 0) { DEBUG("ledger.validate", "amount_t: quantity->ref == 0"); return false; } } else if (commodity_) { DEBUG("ledger.validate", "amount_t: commodity_ != NULL"); return false; } return true; } } // namespace ledger