/* * Copyright (c) 2003-2009, John Wiegley. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * - Neither the name of New Artisans LLC nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "amount.h" #include "commodity.h" #include "unistring.h" namespace ledger { bool amount_t::stream_fullstrings = false; #if !defined(THREADSAFE) // These global temporaries are pre-initialized for the sake of // efficiency, and are reused over and over again. static mpz_t temp; static mpq_t tempq; static mpfr_t tempf; static mpfr_t tempfb; #endif struct amount_t::bigint_t : public supports_flags<> { #define BIGINT_BULK_ALLOC 0x01 #define BIGINT_KEEP_PREC 0x02 mpq_t val; precision_t prec; uint_least16_t ref; #define MP(bigint) ((bigint)->val) bigint_t() : prec(0), ref(1) { TRACE_CTOR(bigint_t, ""); mpq_init(val); } bigint_t(const bigint_t& other) : supports_flags<>(other.flags() & ~BIGINT_BULK_ALLOC), prec(other.prec), ref(1) { TRACE_CTOR(bigint_t, "copy"); mpq_init(val); mpq_set(val, other.val); } ~bigint_t() { TRACE_DTOR(bigint_t); assert(ref == 0); mpq_clear(val); } bool valid() const { if (prec > 1024) { DEBUG("ledger.validate", "amount_t::bigint_t: prec > 128"); return false; } if (ref > 16535) { DEBUG("ledger.validate", "amount_t::bigint_t: ref > 16535"); return false; } if (flags() & ~(BIGINT_BULK_ALLOC | BIGINT_KEEP_PREC)) { DEBUG("ledger.validate", "amount_t::bigint_t: flags() & ~(BULK_ALLOC | KEEP_PREC)"); return false; } return true; } }; shared_ptr amount_t::current_pool; bool amount_t::is_initialized = false; void amount_t::initialize(shared_ptr pool) { if (! is_initialized) { mpz_init(temp); mpq_init(tempq); mpfr_init(tempf); mpfr_init(tempfb); is_initialized = true; } current_pool = pool; } void amount_t::initialize() { initialize(shared_ptr(new commodity_pool_t)); } void amount_t::shutdown() { current_pool.reset(); if (is_initialized) { mpz_clear(temp); mpq_clear(tempq); mpfr_clear(tempf); mpfr_clear(tempfb); is_initialized = false; } } void amount_t::_copy(const amount_t& amt) { assert(amt.valid()); if (quantity != amt.quantity) { if (quantity) _release(); // Never maintain a pointer into a bulk allocation pool; such // pointers are not guaranteed to remain. if (amt.quantity->has_flags(BIGINT_BULK_ALLOC)) { quantity = new bigint_t(*amt.quantity); } else { quantity = amt.quantity; DEBUG("amounts.refs", quantity << " ref++, now " << (quantity->ref + 1)); quantity->ref++; } } commodity_ = amt.commodity_; VERIFY(valid()); } void amount_t::_dup() { VERIFY(valid()); if (quantity->ref > 1) { bigint_t * q = new bigint_t(*quantity); _release(); quantity = q; } VERIFY(valid()); } void amount_t::_clear() { if (quantity) { _release(); quantity = NULL; commodity_ = NULL; } else { assert(! commodity_); } } void amount_t::_release() { VERIFY(valid()); DEBUG("amounts.refs", quantity << " ref--, now " << (quantity->ref - 1)); if (--quantity->ref == 0) { if (quantity->has_flags(BIGINT_BULK_ALLOC)) quantity->~bigint_t(); else checked_delete(quantity); quantity = NULL; commodity_ = NULL; } VERIFY(valid()); } amount_t::amount_t(const double val) : commodity_(NULL) { TRACE_CTOR(amount_t, "const double"); quantity = new bigint_t; mpq_set_d(MP(quantity), val); quantity->prec = extend_by_digits; // an approximation } amount_t::amount_t(const unsigned long val) : commodity_(NULL) { TRACE_CTOR(amount_t, "const unsigned long"); quantity = new bigint_t; mpq_set_ui(MP(quantity), val, 1); } amount_t::amount_t(const long val) : commodity_(NULL) { TRACE_CTOR(amount_t, "const long"); quantity = new bigint_t; mpq_set_si(MP(quantity), val, 1); } amount_t& amount_t::operator=(const amount_t& amt) { if (this != &amt) { if (amt.quantity) _copy(amt); else if (quantity) _clear(); } return *this; } int amount_t::compare(const amount_t& amt) const { assert(amt.valid()); if (! quantity || ! amt.quantity) { if (quantity) throw_(amount_error, _("Cannot compare an amount to an uninitialized amount")); else if (amt.quantity) throw_(amount_error, _("Cannot compare an uninitialized amount to an amount")); else throw_(amount_error, _("Cannot compare two uninitialized amounts")); } if (has_commodity() && amt.has_commodity() && commodity() != amt.commodity()) throw_(amount_error, _("Cannot compare amounts with different commodities: %1 and %2") << commodity().symbol() << amt.commodity().symbol()); return mpq_cmp(MP(quantity), MP(amt.quantity)); } bool amount_t::operator==(const amount_t& amt) const { if ((quantity && ! amt.quantity) || (! quantity && amt.quantity)) return false; else if (! quantity && ! amt.quantity) return true; else if (commodity() != amt.commodity()) return false; return mpq_equal(MP(quantity), MP(amt.quantity)); } amount_t& amount_t::operator+=(const amount_t& amt) { assert(amt.valid()); if (! quantity || ! amt.quantity) { if (quantity) throw_(amount_error, _("Cannot add an uninitialized amount to an amount")); else if (amt.quantity) throw_(amount_error, _("Cannot add an amount to an uninitialized amount")); else throw_(amount_error, _("Cannot add two uninitialized amounts")); } if (has_commodity() && amt.has_commodity() && commodity() != amt.commodity()) throw_(amount_error, _("Adding amounts with different commodities: %1 != %2") << (has_commodity() ? commodity().symbol() : _("NONE")) << (amt.has_commodity() ? amt.commodity().symbol() : _("NONE"))); _dup(); mpq_add(MP(quantity), MP(quantity), MP(amt.quantity)); if (has_commodity() == amt.has_commodity()) if (quantity->prec < amt.quantity->prec) quantity->prec = amt.quantity->prec; return *this; } amount_t& amount_t::operator-=(const amount_t& amt) { assert(amt.valid()); if (! quantity || ! amt.quantity) { if (quantity) throw_(amount_error, _("Cannot subtract an amount from an uninitialized amount")); else if (amt.quantity) throw_(amount_error, _("Cannot subtract an uninitialized amount from an amount")); else throw_(amount_error, _("Cannot subtract two uninitialized amounts")); } if (has_commodity() && amt.has_commodity() && commodity() != amt.commodity()) throw_(amount_error, _("Subtracting amounts with different commodities: %1 != %2") << (has_commodity() ? commodity().symbol() : _("NONE")) << (amt.has_commodity() ? amt.commodity().symbol() : _("NONE"))); _dup(); mpq_sub(MP(quantity), MP(quantity), MP(amt.quantity)); if (has_commodity() == amt.has_commodity()) if (quantity->prec < amt.quantity->prec) quantity->prec = amt.quantity->prec; return *this; } amount_t& amount_t::operator*=(const amount_t& amt) { assert(amt.valid()); if (! quantity || ! amt.quantity) { if (quantity) throw_(amount_error, _("Cannot multiply an amount by an uninitialized amount")); else if (amt.quantity) throw_(amount_error, _("Cannot multiply an uninitialized amount by an amount")); else throw_(amount_error, _("Cannot multiply two uninitialized amounts")); } _dup(); mpq_mul(MP(quantity), MP(quantity), MP(amt.quantity)); quantity->prec += amt.quantity->prec; if (! has_commodity()) commodity_ = amt.commodity_; if (has_commodity() && ! keep_precision()) { precision_t comm_prec = commodity().precision(); if (quantity->prec > comm_prec + extend_by_digits) quantity->prec = comm_prec + extend_by_digits; } return *this; } amount_t& amount_t::operator/=(const amount_t& amt) { assert(amt.valid()); if (! quantity || ! amt.quantity) { if (quantity) throw_(amount_error, _("Cannot divide an amount by an uninitialized amount")); else if (amt.quantity) throw_(amount_error, _("Cannot divide an uninitialized amount by an amount")); else throw_(amount_error, _("Cannot divide two uninitialized amounts")); } if (! amt) throw_(amount_error, _("Divide by zero")); _dup(); // Increase the value's precision, to capture fractional parts after // the divide. Round up in the last position. mpq_div(MP(quantity), MP(quantity), MP(amt.quantity)); quantity->prec += amt.quantity->prec + quantity->prec + extend_by_digits; if (! has_commodity()) commodity_ = amt.commodity_; // If this amount has a commodity, and we're not dealing with plain // numbers, or internal numbers (which keep full precision at all // times), then round the number to within the commodity's precision // plus six places. if (has_commodity() && ! keep_precision()) { precision_t comm_prec = commodity().precision(); if (quantity->prec > comm_prec + extend_by_digits) quantity->prec = comm_prec + extend_by_digits; } return *this; } amount_t::precision_t amount_t::precision() const { if (! quantity) throw_(amount_error, _("Cannot determine precision of an uninitialized amount")); return quantity->prec; } bool amount_t::keep_precision() const { if (! quantity) throw_(amount_error, _("Cannot determine if precision of an uninitialized amount is kept")); return quantity->has_flags(BIGINT_KEEP_PREC); } void amount_t::set_keep_precision(const bool keep) const { if (! quantity) throw_(amount_error, _("Cannot set whether to keep the precision of an uninitialized amount")); if (keep) quantity->add_flags(BIGINT_KEEP_PREC); else quantity->drop_flags(BIGINT_KEEP_PREC); } amount_t::precision_t amount_t::display_precision() const { if (! quantity) throw_(amount_error, _("Cannot determine display precision of an uninitialized amount")); commodity_t& comm(commodity()); if (! comm || keep_precision()) return quantity->prec; else if (comm.precision() != quantity->prec) return comm.precision(); else return quantity->prec; } void amount_t::in_place_negate() { if (quantity) { _dup(); mpq_neg(MP(quantity), MP(quantity)); } else { throw_(amount_error, _("Cannot negate an uninitialized amount")); } } amount_t amount_t::inverted() const { if (! quantity) throw_(amount_error, _("Cannot invert an uninitialized amount")); amount_t t(*this); t._dup(); mpq_inv(MP(t.quantity), MP(t.quantity)); return t; } amount_t amount_t::rounded() const { if (! quantity) throw_(amount_error, _("Cannot set rounding for an uninitialized amount")); else if (! keep_precision()) return *this; amount_t t(*this); t._dup(); t.set_keep_precision(false); return t; } amount_t amount_t::unrounded() const { if (! quantity) throw_(amount_error, _("Cannot unround an uninitialized amount")); else if (keep_precision()) return *this; amount_t t(*this); t._dup(); t.set_keep_precision(true); return t; } void amount_t::in_place_reduce() { if (! quantity) throw_(amount_error, _("Cannot reduce an uninitialized amount")); while (commodity_ && commodity().smaller()) { *this *= commodity().smaller()->number(); commodity_ = commodity().smaller()->commodity_; } } void amount_t::in_place_unreduce() { if (! quantity) throw_(amount_error, _("Cannot unreduce an uninitialized amount")); amount_t temp = *this; commodity_t * comm = commodity_; bool shifted = false; while (comm && comm->larger()) { temp /= comm->larger()->number(); if (temp.abs() < amount_t(1L)) break; shifted = true; comm = comm->larger()->commodity_; } if (shifted) { *this = temp; commodity_ = comm; } } optional amount_t::value(const bool primary_only, const optional& moment, const optional& in_terms_of) const { if (quantity) { #if defined(DEBUG_ON) DEBUG("commodity.prices.find", "amount_t::value of " << commodity().symbol()); if (moment) DEBUG("commodity.prices.find", "amount_t::value: moment = " << *moment); if (in_terms_of) DEBUG("commodity.prices.find", "amount_t::value: in_terms_of = " << in_terms_of->symbol()); #endif if (has_commodity() && (! primary_only || ! commodity().has_flags(COMMODITY_PRIMARY))) { if (in_terms_of && commodity() == *in_terms_of) { return *this; } else if (optional point = commodity().find_price(in_terms_of, moment)) { return (point->price * number()).rounded(); } } } else { throw_(amount_error, _("Cannot determine value of an uninitialized amount")); } return none; } int amount_t::sign() const { if (! quantity) throw_(amount_error, _("Cannot determine sign of an uninitialized amount")); return mpq_sgn(MP(quantity)); } namespace { void stream_out_mpq(std::ostream& out, mpq_t quant, amount_t::precision_t prec, bool no_trailing_zeroes = false, const optional& comm = none) { char * buf = NULL; try { IF_DEBUG("amount.convert") { char * tbuf = mpq_get_str(NULL, 10, quant); DEBUG("amount.convert", "Rational to convert = " << tbuf); std::free(tbuf); } // Convert the rational number to a floating-point, extending the // floating-point to a large enough size to get a precise answer. const std::size_t bits = (mpz_sizeinbase(mpq_numref(quant), 2) + mpz_sizeinbase(mpq_denref(quant), 2)); mpfr_set_prec(tempfb, bits + amount_t::extend_by_digits*8); mpfr_set_q(tempfb, quant, GMP_RNDN); mpfr_asprintf(&buf, "%.*Rf", prec, tempfb); DEBUG("amount.convert", "mpfr_print = " << buf << " (precision " << prec << ")"); if (no_trailing_zeroes) { int index = std::strlen(buf); int point = 0; for (int i = 0; i < index; i++) { if (buf[i] == '.') { point = i; break; } } if (point > 0) { while (--index >= point && buf[index] == '0') buf[index] = '\0'; if (index >= point && buf[index] == '.') buf[index] = '\0'; } } if (comm) { int integer_digits = 0; if (comm && comm->has_flags(COMMODITY_STYLE_THOUSANDS)) { // Count the number of integer digits for (const char * p = buf; *p; p++) { if (*p == '.') break; else if (*p != '-') integer_digits++; } } for (const char * p = buf; *p; p++) { if (*p == '.') { if (comm && comm->has_flags(COMMODITY_STYLE_EUROPEAN)) out << ','; else out << *p; assert(integer_digits <= 3); } else if (*p == '-') { out << *p; } else { out << *p; if (integer_digits > 3 && --integer_digits % 3 == 0) { if (comm && comm->has_flags(COMMODITY_STYLE_EUROPEAN)) out << '.'; else out << ','; } } } } else { out << buf; } } catch (...) { if (buf != NULL) mpfr_free_str(buf); throw; } if (buf != NULL) mpfr_free_str(buf); } } bool amount_t::is_zero() const { if (! quantity) throw_(amount_error, _("Cannot determine if an uninitialized amount is zero")); if (has_commodity()) { if (keep_precision() || quantity->prec <= commodity().precision()) { return is_realzero(); } else if (is_realzero()) { return true; } else if (mpz_cmp(mpq_numref(MP(quantity)), mpq_denref(MP(quantity))) > 0) { DEBUG("amount.is_zero", "Numerator is larger than the denominator"); return false; } else { DEBUG("amount.is_zero", "We have to print the number to check for zero"); std::ostringstream out; stream_out_mpq(out, MP(quantity), commodity().precision()); for (const char * p = out.str().c_str(); *p; p++) if (*p != '0' && *p != '.' && *p != '-') return false; return true; } } return is_realzero(); } double amount_t::to_double() const { if (! quantity) throw_(amount_error, _("Cannot convert an uninitialized amount to a double")); mpfr_set_q(tempf, MP(quantity), GMP_RNDN); return mpfr_get_d(tempf, GMP_RNDN); } long amount_t::to_long() const { if (! quantity) throw_(amount_error, _("Cannot convert an uninitialized amount to a long")); mpfr_set_q(tempf, MP(quantity), GMP_RNDN); return mpfr_get_si(tempf, GMP_RNDN); } bool amount_t::fits_in_long() const { mpfr_set_q(tempf, MP(quantity), GMP_RNDN); return mpfr_fits_slong_p(tempf, GMP_RNDN); } commodity_t& amount_t::commodity() const { return has_commodity() ? *commodity_ : *current_pool->null_commodity; } bool amount_t::has_commodity() const { return commodity_ && commodity_ != commodity_->parent().null_commodity; } void amount_t::annotate(const annotation_t& details) { commodity_t * this_base; annotated_commodity_t * this_ann = NULL; if (! quantity) throw_(amount_error, _("Cannot annotate the commodity of an uninitialized amount")); else if (! has_commodity()) throw_(amount_error, _("Cannot annotate an amount with no commodity")); if (commodity().annotated) { this_ann = &as_annotated_commodity(commodity()); this_base = &this_ann->referent(); } else { this_base = &commodity(); } assert(this_base); DEBUG("amounts.commodities", "Annotating commodity for amount " << *this << std::endl << details); if (commodity_t * ann_comm = this_base->parent().find_or_create(*this_base, details)) set_commodity(*ann_comm); #ifdef ASSERTS_ON else assert(false); #endif DEBUG("amounts.commodities", "Annotated amount is " << *this); } bool amount_t::is_annotated() const { if (! quantity) throw_(amount_error, _("Cannot determine if an uninitialized amount's commodity is annotated")); assert(! commodity().annotated || as_annotated_commodity(commodity()).details); return commodity().annotated; } annotation_t& amount_t::annotation() { if (! quantity) throw_(amount_error, _("Cannot return commodity annotation details of an uninitialized amount")); if (! commodity().is_annotated()) throw_(amount_error, _("Request for annotation details from an unannotated amount")); annotated_commodity_t& ann_comm(as_annotated_commodity(commodity())); return ann_comm.details; } amount_t amount_t::strip_annotations(const keep_details_t& what_to_keep) const { if (! quantity) throw_(amount_error, _("Cannot strip commodity annotations from an uninitialized amount")); if (! what_to_keep.keep_all(commodity())) { amount_t t(*this); t.set_commodity(commodity().strip_annotations(what_to_keep)); return t; } return *this; } namespace { void parse_quantity(std::istream& in, string& value) { char buf[256]; char c = peek_next_nonws(in); READ_INTO(in, buf, 255, c, std::isdigit(c) || c == '-' || c == '.' || c == ','); int len = std::strlen(buf); while (len > 0 && ! std::isdigit(buf[len - 1])) { buf[--len] = '\0'; in.unget(); } value = buf; } } bool amount_t::parse(std::istream& in, const parse_flags_t& flags) { // The possible syntax for an amount is: // // [-]NUM[ ]SYM [@ AMOUNT] // SYM[ ][-]NUM [@ AMOUNT] string symbol; string quant; annotation_t details; bool negative = false; commodity_t::flags_t comm_flags = COMMODITY_STYLE_DEFAULTS; char c = peek_next_nonws(in); if (c == '-') { negative = true; in.get(c); c = peek_next_nonws(in); } char n; if (std::isdigit(c)) { parse_quantity(in, quant); if (! in.eof() && ((n = in.peek()) != '\n')) { if (std::isspace(n)) comm_flags |= COMMODITY_STYLE_SEPARATED; commodity_t::parse_symbol(in, symbol); if (! symbol.empty()) comm_flags |= COMMODITY_STYLE_SUFFIXED; if (! in.eof() && ((n = in.peek()) != '\n')) details.parse(in); } } else { commodity_t::parse_symbol(in, symbol); if (! in.eof() && ((n = in.peek()) != '\n')) { if (std::isspace(in.peek())) comm_flags |= COMMODITY_STYLE_SEPARATED; parse_quantity(in, quant); if (! quant.empty() && ! in.eof() && ((n = in.peek()) != '\n')) details.parse(in); } } if (quant.empty()) { if (flags.has_flags(PARSE_SOFT_FAIL)) return false; else throw_(amount_error, _("No quantity specified for amount")); } // Allocate memory for the amount's quantity value. We have to // monitor the allocation in an auto_ptr because this function gets // called sometimes from amount_t's constructor; and if there is an // exeception thrown by any of the function calls after this point, // the destructor will never be called and the memory never freed. std::auto_ptr safe_holder; if (! quantity) { quantity = new bigint_t; safe_holder.reset(quantity); } else if (quantity->ref > 1) { _release(); quantity = new bigint_t; safe_holder.reset(quantity); } // Create the commodity if has not already been seen, and update the // precision if something greater was used for the quantity. bool newly_created = false; if (symbol.empty()) { commodity_ = NULL; } else { commodity_ = current_pool->find(symbol); if (! commodity_) { commodity_ = current_pool->create(symbol); newly_created = true; } assert(commodity_); if (details) commodity_ = current_pool->find_or_create(*commodity_, details); } // Determine the precision of the amount, based on the usage of // comma or period. string::size_type last_comma = quant.rfind(','); string::size_type last_period = quant.rfind('.'); if (last_comma != string::npos && last_period != string::npos) { comm_flags |= COMMODITY_STYLE_THOUSANDS; if (last_comma > last_period) { comm_flags |= COMMODITY_STYLE_EUROPEAN; quantity->prec = quant.length() - last_comma - 1; } else { quantity->prec = quant.length() - last_period - 1; } } else if (last_comma != string::npos && commodity().has_flags(COMMODITY_STYLE_EUROPEAN)) { comm_flags |= COMMODITY_STYLE_EUROPEAN; quantity->prec = quant.length() - last_comma - 1; } else if (last_period != string::npos && ! (commodity().has_flags(COMMODITY_STYLE_EUROPEAN))) { quantity->prec = quant.length() - last_period - 1; } else { quantity->prec = 0; } // Set the commodity's flags and precision accordingly if (commodity_ && (newly_created || ! flags.has_flags(PARSE_NO_MIGRATE))) { commodity().add_flags(comm_flags); if (quantity->prec > commodity().precision()) commodity().set_precision(quantity->prec); } else if (flags.has_flags(PARSE_NO_MIGRATE)) { set_keep_precision(true); } // Now we have the final number. Remove commas and periods, if // necessary. if (last_comma != string::npos || last_period != string::npos) { int len = quant.length(); scoped_array buf(new char[len + 1]); const char * p = quant.c_str(); char * t = buf.get(); while (*p) { if (*p == ',' || *p == '.') p++; *t++ = *p++; } *t = '\0'; mpq_set_str(MP(quantity), buf.get(), 10); mpz_ui_pow_ui(temp, 10, quantity->prec); mpq_set_z(tempq, temp); mpq_div(MP(quantity), MP(quantity), tempq); IF_DEBUG("amount.parse") { char * buf = mpq_get_str(NULL, 10, MP(quantity)); DEBUG("amount.parse", "Rational parsed = " << buf); std::free(buf); } } else { mpq_set_str(MP(quantity), quant.c_str(), 10); } if (negative) in_place_negate(); if (! flags.has_flags(PARSE_NO_REDUCE)) in_place_reduce(); safe_holder.release(); // `this->quantity' owns the pointer VERIFY(valid()); return true; } void amount_t::parse_conversion(const string& larger_str, const string& smaller_str) { amount_t larger, smaller; larger.parse(larger_str, PARSE_NO_REDUCE); smaller.parse(smaller_str, PARSE_NO_REDUCE); larger *= smaller.number(); if (larger.commodity()) { larger.commodity().set_smaller(smaller); larger.commodity().add_flags(smaller.commodity().flags() | COMMODITY_NOMARKET); } if (smaller.commodity()) smaller.commodity().set_larger(larger); } void amount_t::print(std::ostream& _out) const { VERIFY(valid()); if (! quantity) { _out << ""; return; } std::ostringstream out; commodity_t& comm(commodity()); if (! comm.has_flags(COMMODITY_STYLE_SUFFIXED)) { comm.print(out); if (comm.has_flags(COMMODITY_STYLE_SEPARATED)) out << " "; } stream_out_mpq(out, MP(quantity), display_precision(), ! comm, comm); if (comm.has_flags(COMMODITY_STYLE_SUFFIXED)) { if (comm.has_flags(COMMODITY_STYLE_SEPARATED)) out << " "; comm.print(out); } // If there are any annotations associated with this commodity, output them // now. comm.write_annotations(out); // Things are output to a string first, so that if anyone has specified a // width or fill for _out, it will be applied to the entire amount string, // and not just the first part. _out << out.str(); } bool amount_t::valid() const { if (quantity) { if (! quantity->valid()) return false; if (quantity->ref == 0) { DEBUG("ledger.validate", "amount_t: quantity->ref == 0"); return false; } } else if (commodity_) { DEBUG("ledger.validate", "amount_t: commodity_ != NULL"); return false; } return true; } } // namespace ledger