/* * Copyright (c) 2003-2009, John Wiegley. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * - Neither the name of New Artisans LLC nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include "pyinterp.h" #include "account.h" #include "xact.h" #include "post.h" namespace ledger { using namespace python; shared_ptr python_session; char * argv0; void export_account(); void export_amount(); void export_balance(); void export_commodity(); void export_expr(); void export_format(); void export_item(); void export_journal(); void export_post(); void export_times(); void export_utils(); void export_value(); void export_xact(); void initialize_for_python() { export_account(); export_amount(); export_balance(); export_commodity(); export_expr(); export_format(); export_item(); export_journal(); export_post(); export_times(); export_utils(); export_value(); export_xact(); } struct python_run { object result; python_run(python_interpreter_t * intepreter, const string& str, int input_mode) : result(handle<>(borrowed(PyRun_String(str.c_str(), input_mode, intepreter->main_nspace.ptr(), intepreter->main_nspace.ptr())))) {} operator object() { return result; } }; void python_interpreter_t::initialize() { TRACE_START(python_init, 1, "Initialized Python"); try { DEBUG("python.interp", "Initializing Python"); Py_Initialize(); assert(Py_IsInitialized()); object main_module = python::import("__main__"); if (! main_module) throw_(std::logic_error, _("Python failed to initialize (couldn't find __main__)")); main_nspace = extract(main_module.attr("__dict__")); if (! main_nspace) throw_(std::logic_error, _("Python failed to initialize (couldn't find __dict__)")); python::detail::init_module("ledger", &initialize_for_python); is_initialized = true; // Hack ledger.__path__ so it points to a real location python::object module_sys = import("sys"); python::object sys_dict = module_sys.attr("__dict__"); python::list paths(sys_dict["path"]); bool path_initialized = false; int n = python::extract(paths.attr("__len__")()); for (int i = 0; i < n; i++) { python::extract str(paths[i]); path pathname(str); DEBUG("python.interp", "sys.path = " << pathname); if (exists(pathname / "ledger" / "__init__.py")) { if (python::object module_ledger = import("ledger")) { DEBUG("python.interp", "Setting ledger.__path__ = " << (pathname / "ledger")); python::object ledger_dict = module_ledger.attr("__dict__"); python::list temp_list; temp_list.append((pathname / "ledger").string()); ledger_dict["__path__"] = temp_list; } else { throw_(std::logic_error, _("Python failed to initialize (couldn't find ledger)")); } path_initialized = true; break; } } #if defined(DEBUG_ON) if (! path_initialized) DEBUG("python.init", "Ledger failed to find 'ledger/__init__.py' on the PYTHONPATH"); #endif } catch (const error_already_set&) { PyErr_Print(); throw_(std::logic_error, _("Python failed to initialize")); } TRACE_FINISH(python_init, 1); } object python_interpreter_t::import(const string& str) { if (! is_initialized) initialize(); try { object mod = python::import(str.c_str()); if (! mod) throw_(std::logic_error, _("Failed to import Python module %1") << str); // Import all top-level entries directly into the main namespace main_nspace.update(mod.attr("__dict__")); return mod; } catch (const error_already_set&) { PyErr_Print(); } return object(); } object python_interpreter_t::eval(std::istream& in, py_eval_mode_t mode) { bool first = true; string buffer; buffer.reserve(4096); while (! in.eof()) { char buf[256]; in.getline(buf, 255); if (buf[0] == '!') break; if (first) first = false; else buffer += "\n"; buffer += buf; } if (! is_initialized) initialize(); try { int input_mode = -1; switch (mode) { case PY_EVAL_EXPR: input_mode = Py_eval_input; break; case PY_EVAL_STMT: input_mode = Py_single_input; break; case PY_EVAL_MULTI: input_mode = Py_file_input; break; } return python_run(this, buffer, input_mode); } catch (const error_already_set&) { PyErr_Print(); throw_(std::logic_error, _("Failed to evaluate Python code")); } return object(); } object python_interpreter_t::eval(const string& str, py_eval_mode_t mode) { if (! is_initialized) initialize(); try { int input_mode = -1; switch (mode) { case PY_EVAL_EXPR: input_mode = Py_eval_input; break; case PY_EVAL_STMT: input_mode = Py_single_input; break; case PY_EVAL_MULTI: input_mode = Py_file_input; break; } return python_run(this, str, input_mode); } catch (const error_already_set&) { PyErr_Print(); throw_(std::logic_error, _("Failed to evaluate Python code")); } return object(); } value_t python_interpreter_t::python_command(call_scope_t& args) { if (! is_initialized) initialize(); char ** argv(new char *[args.size() + 1]); argv[0] = new char[std::strlen(argv0) + 1]; std::strcpy(argv[0], argv0); for (std::size_t i = 0; i < args.size(); i++) { string arg = args[i].as_string(); argv[i + 1] = new char[arg.length() + 1]; std::strcpy(argv[i + 1], arg.c_str()); } int status = Py_Main(static_cast(args.size()) + 1, argv); for (std::size_t i = 0; i < args.size() + 1; i++) delete[] argv[i]; delete[] argv; if (status != 0) throw status; return NULL_VALUE; } option_t * python_interpreter_t::lookup_option(const char * p) { switch (*p) { case 'i': OPT(import_); break; } return NULL; } expr_t::ptr_op_t python_interpreter_t::lookup(const symbol_t::kind_t kind, const string& name) { // Give our superclass first dibs on symbol definitions if (expr_t::ptr_op_t op = session_t::lookup(kind, name)) return op; switch (kind) { case symbol_t::FUNCTION: if (is_initialized && main_nspace.has_key(name.c_str())) { DEBUG("python.interp", "Python lookup: " << name); if (python::object obj = main_nspace.get(name.c_str())) return WRAP_FUNCTOR(functor_t(name, obj)); } break; case symbol_t::OPTION: if (option_t * handler = lookup_option(name.c_str())) return MAKE_OPT_HANDLER(python_interpreter_t, handler); break; case symbol_t::PRECOMMAND: { const char * p = name.c_str(); switch (*p) { case 'p': if (is_eq(p, "python")) return MAKE_FUNCTOR(python_interpreter_t::python_command); break; } } default: break; } return NULL; } namespace { void append_value(list& lst, const value_t& value) { if (value.is_scope()) { const scope_t * scope = value.as_scope(); if (const post_t * post = dynamic_cast(scope)) lst.append(ptr(post)); else if (const xact_t * xact = dynamic_cast(scope)) lst.append(ptr(xact)); else if (const account_t * account = dynamic_cast(scope)) lst.append(ptr(account)); else if (const period_xact_t * period_xact = dynamic_cast(scope)) lst.append(ptr(period_xact)); else if (const auto_xact_t * auto_xact = dynamic_cast(scope)) lst.append(ptr(auto_xact)); else throw_(std::runtime_error, _("Cannot downcast scoped object to specific type")); } else { lst.append(value); } } } value_t python_interpreter_t::functor_t::operator()(call_scope_t& args) { try { std::signal(SIGINT, SIG_DFL); if (! PyCallable_Check(func.ptr())) { extract val(func); std::signal(SIGINT, sigint_handler); if (val.check()) return val(); return NULL_VALUE; } else if (args.size() > 0) { list arglist; // jww (2009-11-05): What about a single argument which is a sequence, // rather than a sequence of arguments? if (args.value().is_sequence()) foreach (const value_t& value, args.value().as_sequence()) append_value(arglist, value); else append_value(arglist, args.value()); if (PyObject * val = PyObject_CallObject(func.ptr(), python::tuple(arglist).ptr())) { extract xval(val); value_t result; if (xval.check()) { result = xval(); Py_DECREF(val); } else { Py_DECREF(val); throw_(calc_error, _("Could not evaluate Python variable '%1'") << name); } std::signal(SIGINT, sigint_handler); return result; } else if (PyErr_Occurred()) { PyErr_Print(); throw_(calc_error, _("Failed call to Python function '%1'") << name); } else { assert(false); } } else { std::signal(SIGINT, sigint_handler); return call(func.ptr()); } } catch (const error_already_set&) { std::signal(SIGINT, sigint_handler); PyErr_Print(); throw_(calc_error, _("Failed call to Python function '%1'") << name); } catch (...) { std::signal(SIGINT, sigint_handler); } std::signal(SIGINT, sigint_handler); return NULL_VALUE; } } // namespace ledger