#include "xpath.h" #include "parser.h" namespace ledger { namespace xml { #ifndef THREADSAFE xpath_t::token_t * xpath_t::lookahead = NULL; #endif void xpath_t::initialize() { lookahead = new xpath_t::token_t; } void xpath_t::shutdown() { checked_delete(lookahead); lookahead = NULL; } void xpath_t::token_t::parse_ident(std::istream& in) { if (in.eof()) { kind = TOK_EOF; return; } assert(in.good()); char c = peek_next_nonws(in); if (in.eof()) { kind = TOK_EOF; return; } assert(in.good()); kind = IDENT; length = 0; char buf[256]; READ_INTO_(in, buf, 255, c, length, std::isalnum(c) || c == '_' || c == '.'); switch (buf[0]) { case 'a': if (std::strcmp(buf, "and") == 0) kind = KW_AND; break; case 'd': if (std::strcmp(buf, "div") == 0) kind = KW_DIV; break; case 'e': if (std::strcmp(buf, "eq") == 0) kind = EQUAL; break; case 'f': if (std::strcmp(buf, "false") == 0) { kind = VALUE; value = false; } break; case 'g': if (std::strcmp(buf, "gt") == 0) kind = GREATER; else if (std::strcmp(buf, "ge") == 0) kind = GREATEREQ; break; case 'i': if (std::strcmp(buf, "is") == 0) kind = EQUAL; break; case 'l': if (std::strcmp(buf, "lt") == 0) kind = LESS; else if (std::strcmp(buf, "le") == 0) kind = LESSEQ; break; case 'm': if (std::strcmp(buf, "mod") == 0) kind = KW_MOD; break; case 'n': if (std::strcmp(buf, "ne") == 0) kind = NEQUAL; break; case 'o': if (std::strcmp(buf, "or") == 0) kind = KW_OR; break; case 't': if (std::strcmp(buf, "true") == 0) { kind = VALUE; value = true; } break; case 'u': if (std::strcmp(buf, "union") == 0) kind = KW_UNION; break; } if (kind == IDENT) value.set_string(buf); } void xpath_t::token_t::next(std::istream& in, unsigned short flags) { if (in.eof()) { kind = TOK_EOF; return; } assert(in.good()); char c = peek_next_nonws(in); if (in.eof()) { kind = TOK_EOF; return; } assert(in.good()); symbol[0] = c; symbol[1] = '\0'; length = 1; if (! (flags & XPATH_PARSE_RELAXED) && (std::isalpha(c) || c == '_')) { parse_ident(in); return; } switch (c) { case '@': in.get(c); kind = AT_SYM; break; #if 0 case '$': in.get(c); kind = DOLLAR; break; #endif case '(': in.get(c); kind = LPAREN; break; case ')': in.get(c); kind = RPAREN; break; case '[': { in.get(c); if (flags & XPATH_PARSE_ALLOW_DATE) { char buf[256]; READ_INTO_(in, buf, 255, c, length, c != ']'); if (c != ']') unexpected(c, ']'); in.get(c); length++; interval_t timespan(buf); kind = VALUE; value = timespan.next(); } else { kind = LBRACKET; } break; } case ']': { in.get(c); kind = RBRACKET; break; } case '"': { in.get(c); char buf[4096]; READ_INTO_(in, buf, 4095, c, length, c != '"'); if (c != '"') unexpected(c, '"'); in.get(c); length++; kind = VALUE; value.set_string(buf); break; } case '{': { in.get(c); amount_t temp; temp.parse(in, AMOUNT_PARSE_NO_MIGRATE); in.get(c); if (c != '}') unexpected(c, '}'); length++; kind = VALUE; value = temp; break; } case '!': in.get(c); c = in.peek(); if (c == '=') { in.get(c); symbol[1] = c; symbol[2] = '\0'; kind = NEQUAL; length = 2; break; } #if 0 else if (c == '~') { in.get(c); symbol[1] = c; symbol[2] = '\0'; kind = NMATCH; length = 2; break; } #endif kind = EXCLAM; break; case '-': in.get(c); kind = MINUS; break; case '+': in.get(c); kind = PLUS; break; case '*': in.get(c); if (in.peek() == '*') { in.get(c); symbol[1] = c; symbol[2] = '\0'; kind = POWER; length = 2; break; } kind = STAR; break; case '/': in.get(c); #if 0 if (flags & XPATH_PARSE_REGEXP) { char buf[1024]; READ_INTO_(in, buf, 1023, c, length, c != '/'); in.get(c); if (c != '/') unexpected(c, '/'); kind = REGEXP; value.set_string(buf); break; } #endif kind = SLASH; break; case '=': in.get(c); #if 0 if (in.peek() == '~') { in.get(c); symbol[1] = c; symbol[2] = '\0'; kind = MATCH; length = 2; break; } #endif kind = EQUAL; break; case '<': in.get(c); if (in.peek() == '=') { in.get(c); symbol[1] = c; symbol[2] = '\0'; kind = LESSEQ; length = 2; break; } kind = LESS; break; case '>': in.get(c); if (in.peek() == '=') { in.get(c); symbol[1] = c; symbol[2] = '\0'; kind = GREATEREQ; length = 2; break; } kind = GREATER; break; case '&': in.get(c); kind = AMPER; break; case '|': in.get(c); kind = PIPE; break; case '?': in.get(c); kind = QUESTION; break; case ':': in.get(c); if (in.peek() == '=') { in.get(c); symbol[1] = c; symbol[2] = '\0'; kind = ASSIGN; length = 2; break; } kind = COLON; break; case ',': in.get(c); kind = COMMA; break; #if 0 case '%': in.get(c); kind = PERCENT; break; #endif case '.': in.get(c); c = in.peek(); if (c == '.') { in.get(c); length++; kind = DOTDOT; break; } else if (! std::isdigit(c)) { kind = DOT; break; } in.unget(); // put the first '.' back // fall through... default: if (! (flags & XPATH_PARSE_RELAXED)) { kind = UNKNOWN; } else { amount_t temp; unsigned long pos = 0; // When in relaxed parsing mode, we want to migrate commodity // flags so that any precision specified by the user updates the // current maximum displayed precision. try { pos = (long)in.tellg(); unsigned char parse_flags = 0; if (flags & XPATH_PARSE_NO_MIGRATE) parse_flags |= AMOUNT_PARSE_NO_MIGRATE; if (flags & XPATH_PARSE_NO_REDUCE) parse_flags |= AMOUNT_PARSE_NO_REDUCE; temp.parse(in, parse_flags); kind = VALUE; value = temp; } catch (amount_error& err) { // If the amount had no commodity, it must be an unambiguous // variable reference // jww (2007-04-19): There must be a more efficient way to do this! if (std::strcmp(err.what(), "No quantity specified for amount") == 0) { in.clear(); in.seekg(pos, std::ios::beg); c = in.peek(); assert(! (std::isdigit(c) || c == '.')); parse_ident(in); } else { throw; } } } break; } } void xpath_t::token_t::rewind(std::istream& in) { for (unsigned int i = 0; i < length; i++) in.unget(); } void xpath_t::token_t::unexpected() { switch (kind) { case TOK_EOF: throw_(parse_error, "Unexpected end of expression"); case IDENT: throw_(parse_error, "Unexpected symbol '" << value << "'"); case VALUE: throw_(parse_error, "Unexpected value '" << value << "'"); default: throw_(parse_error, "Unexpected operator '" << symbol << "'"); } } void xpath_t::token_t::unexpected(char c, char wanted) { if ((unsigned char) c == 0xff) { if (wanted) throw_(parse_error, "Missing '" << wanted << "'"); else throw_(parse_error, "Unexpected end"); } else { if (wanted) throw_(parse_error, "Invalid char '" << c << "' (wanted '" << wanted << "')"); else throw_(parse_error, "Invalid char '" << c << "'"); } } xpath_t::op_t * xpath_t::wrap_value(const value_t& val) { xpath_t::op_t * temp = new xpath_t::op_t(xpath_t::op_t::VALUE); temp->valuep = new value_t(val); return temp; } xpath_t::op_t * xpath_t::wrap_sequence(value_t::sequence_t * val) { if (val->size() == 0) return wrap_value(false); else if (val->size() == 1) return wrap_value(val->front()); else return wrap_value(val); } xpath_t::op_t * xpath_t::wrap_functor(functor_t * fobj) { xpath_t::op_t * temp = new xpath_t::op_t(xpath_t::op_t::FUNCTOR); temp->functor = fobj; return temp; } #if 0 xpath_t::op_t * xpath_t::wrap_mask(const string& pattern) { xpath_t::op_t * temp = new xpath_t::op_t(xpath_t::op_t::MASK); temp->mask = new mask_t(pattern); return temp; } #endif void xpath_t::scope_t::define(const string& name, op_t * def) { DEBUG("ledger.xpath.syms", "Defining '" << name << "' = " << def); std::pair result = symbols.insert(symbol_pair(name, def)); if (! result.second) { symbol_map::iterator i = symbols.find(name); assert(i != symbols.end()); (*i).second->release(); symbols.erase(i); std::pair result2 = symbols.insert(symbol_pair(name, def)); if (! result2.second) throw_(compile_error, "Redefinition of '" << name << "' in same scope"); } def->acquire(); } xpath_t::op_t * xpath_t::scope_t::lookup(const string& name) { symbol_map::const_iterator i = symbols.find(name); if (i != symbols.end()) return (*i).second; else if (parent) return parent->lookup(name); return NULL; } void xpath_t::scope_t::define(const string& name, functor_t * def) { define(name, wrap_functor(def)); } bool xpath_t::function_scope_t::resolve(const string& name, value_t& result, scope_t * locals) { switch (name[0]) { case 'l': if (name == "last") { if (sequence) result = (long)sequence->size(); else result = 1L; return true; } break; case 'p': if (name == "position") { result = (long)index + 1; return true; } break; case 't': if (name == "text") { if (value->type == value_t::XML_NODE) result.set_string(value->xml_node()->text()); else throw_(calc_error, "Attempt to call text() on a non-node value"); return true; } break; } return scope_t::resolve(name, result, locals); } xpath_t::op_t::~op_t() { TRACE_DTOR(xpath_t::op_t); DEBUG("ledger.xpath.memory", "Destroying " << this); assert(refc == 0); switch (kind) { case VALUE: assert(! left); assert(valuep); checked_delete(valuep); break; case NODE_NAME: case FUNC_NAME: case ATTR_NAME: case VAR_NAME: assert(! left); assert(name); checked_delete(name); break; case ARG_INDEX: break; case FUNCTOR: assert(! left); assert(functor); checked_delete(functor); break; #if 0 case MASK: assert(! left); assert(mask); checked_delete(mask); break; #endif default: assert(kind < LAST); if (left) left->release(); if (kind > TERMINALS && right) right->release(); break; } } void xpath_t::op_t::get_value(value_t& result) const { switch (kind) { case VALUE: result = *valuep; break; case ARG_INDEX: result = (long)arg_index; break; default: throw_(calc_error, "Cannot determine value of expression symbol '" << *this << "'"); } } xpath_t::op_t * xpath_t::parse_value_term(std::istream& in, unsigned short tflags) const { std::auto_ptr node; token_t& tok = next_token(in, tflags); switch (tok.kind) { case token_t::VALUE: node.reset(new op_t(op_t::VALUE)); node->valuep = new value_t(tok.value); break; case token_t::IDENT: { #if 0 #ifdef USE_BOOST_PYTHON if (tok.value->to_string() == "lambda") // special try { char c, buf[4096]; std::strcpy(buf, "lambda "); READ_INTO(in, &buf[7], 4000, c, true); op_t * eval = new op_t(op_t::O_EVAL); op_t * lambda = new op_t(op_t::FUNCTOR); lambda->functor = new python_functor_t(python_eval(buf)); eval->set_left(lambda); op_t * sym = new op_t(op_t::SYMBOL); sym->name = new string("__ptr"); eval->set_right(sym); node.reset(eval); goto done; } catch(const boost::python::error_already_set&) { throw_(parse_error, "Error parsing lambda expression"); } #endif /* USE_BOOST_PYTHON */ #endif string ident = tok.value.string_value(); int id = -1; if (std::isdigit(ident[0])) { node.reset(new op_t(op_t::ARG_INDEX)); node->arg_index = std::atol(ident.c_str()); } else if ((id = document_t::lookup_builtin_id(ident)) != -1) { node.reset(new op_t(op_t::NODE_ID)); node->name_id = id; } else { node.reset(new op_t(op_t::NODE_NAME)); node->name = new string(ident); } // An identifier followed by ( represents a function call tok = next_token(in, tflags); if (tok.kind == token_t::LPAREN) { node->kind = op_t::FUNC_NAME; std::auto_ptr call_node; call_node.reset(new op_t(op_t::O_EVAL)); call_node->set_left(node.release()); call_node->set_right(parse_value_expr(in, tflags | XPATH_PARSE_PARTIAL)); tok = next_token(in, tflags); if (tok.kind != token_t::RPAREN) tok.unexpected(); // jww (2006-09-09): wanted ) node.reset(call_node.release()); } else { push_token(tok); } break; } case token_t::AT_SYM: tok = next_token(in, tflags); if (tok.kind != token_t::IDENT) throw_(parse_error, "@ symbol must be followed by attribute name"); node.reset(new op_t(op_t::ATTR_NAME)); node->name = new string(tok.value.string_value()); break; #if 0 case token_t::DOLLAR: tok = next_token(in, tflags); if (tok.kind != token_t::IDENT) throw parse_error("$ symbol must be followed by variable name"); node.reset(new op_t(op_t::VAR_NAME)); node->name = new string(tok.value.to_string()); break; #endif case token_t::DOT: node.reset(new op_t(op_t::NODE_ID)); node->name_id = document_t::CURRENT; break; case token_t::DOTDOT: node.reset(new op_t(op_t::NODE_ID)); node->name_id = document_t::PARENT; break; case token_t::SLASH: node.reset(new op_t(op_t::NODE_ID)); node->name_id = document_t::ROOT; push_token(); break; case token_t::STAR: node.reset(new op_t(op_t::NODE_ID)); node->name_id = document_t::ALL; break; case token_t::LPAREN: node.reset(parse_value_expr(in, tflags | XPATH_PARSE_PARTIAL)); if (! node.get()) throw_(parse_error, tok.symbol << " operator not followed by argument"); tok = next_token(in, tflags); if (tok.kind != token_t::RPAREN) tok.unexpected(); // jww (2006-09-09): wanted ) break; #if 0 case token_t::REGEXP: node.reset(wrap_mask(tok.value.to_string())); break; #endif default: push_token(tok); break; } #if 0 #ifdef USE_BOOST_PYTHON done: #endif #endif return node.release(); } xpath_t::op_t * xpath_t::parse_predicate_expr(std::istream& in, unsigned short tflags) const { std::auto_ptr node(parse_value_term(in, tflags)); if (node.get()) { token_t& tok = next_token(in, tflags); while (tok.kind == token_t::LBRACKET) { std::auto_ptr prev(node.release()); node.reset(new op_t(op_t::O_PRED)); node->set_left(prev.release()); node->set_right(parse_value_expr(in, tflags | XPATH_PARSE_PARTIAL)); if (! node->right) throw_(parse_error, "[ operator not followed by valid expression"); tok = next_token(in, tflags); if (tok.kind != token_t::RBRACKET) tok.unexpected(); // jww (2006-09-09): wanted ] tok = next_token(in, tflags); } push_token(tok); } return node.release(); } xpath_t::op_t * xpath_t::parse_path_expr(std::istream& in, unsigned short tflags) const { std::auto_ptr node(parse_predicate_expr(in, tflags)); if (node.get()) { token_t& tok = next_token(in, tflags); while (tok.kind == token_t::SLASH) { std::auto_ptr prev(node.release()); tok = next_token(in, tflags); node.reset(new op_t(tok.kind == token_t::SLASH ? op_t::O_RFIND : op_t::O_FIND)); if (tok.kind != token_t::SLASH) push_token(tok); node->set_left(prev.release()); node->set_right(parse_predicate_expr(in, tflags)); if (! node->right) throw_(parse_error, "/ operator not followed by a valid term"); tok = next_token(in, tflags); } push_token(tok); } return node.release(); } xpath_t::op_t * xpath_t::parse_unary_expr(std::istream& in, unsigned short tflags) const { std::auto_ptr node; token_t& tok = next_token(in, tflags); switch (tok.kind) { case token_t::EXCLAM: { std::auto_ptr texpr(parse_path_expr(in, tflags)); if (! texpr.get()) throw_(parse_error, tok.symbol << " operator not followed by argument"); // A very quick optimization if (texpr->kind == op_t::VALUE) { *texpr->valuep = ! *texpr->valuep; node.reset(texpr.release()); } else { node.reset(new op_t(op_t::O_NOT)); node->set_left(texpr.release()); } break; } case token_t::MINUS: { std::auto_ptr texpr(parse_path_expr(in, tflags)); if (! texpr.get()) throw_(parse_error, tok.symbol << " operator not followed by argument"); // A very quick optimization if (texpr->kind == op_t::VALUE) { texpr->valuep->in_place_negate(); node.reset(texpr.release()); } else { node.reset(new op_t(op_t::O_NEG)); node->set_left(texpr.release()); } break; } #if 0 case token_t::PERCENT: { std::auto_ptr texpr(parse_path_expr(in, tflags)); if (! texpr.get()) throw_(parse_error, tok.symbol << " operator not followed by argument"); // A very quick optimization if (texpr->kind == op_t::VALUE) { static value_t perc("100.0%"); *texpr->valuep = perc * *texpr->valuep; node.reset(texpr.release()); } else { node.reset(new op_t(op_t::O_PERC)); node->set_left(texpr.release()); } break; } #endif default: push_token(tok); node.reset(parse_path_expr(in, tflags)); break; } return node.release(); } xpath_t::op_t * xpath_t::parse_union_expr(std::istream& in, unsigned short tflags) const { std::auto_ptr node(parse_unary_expr(in, tflags)); if (node.get()) { token_t& tok = next_token(in, tflags); if (tok.kind == token_t::PIPE || tok.kind == token_t::KW_UNION) { std::auto_ptr prev(node.release()); node.reset(new op_t(op_t::O_UNION)); node->set_left(prev.release()); node->set_right(parse_union_expr(in, tflags)); if (! node->right) throw_(parse_error, tok.symbol << " operator not followed by argument"); } else { push_token(tok); } } return node.release(); } xpath_t::op_t * xpath_t::parse_mul_expr(std::istream& in, unsigned short tflags) const { std::auto_ptr node(parse_union_expr(in, tflags)); if (node.get()) { token_t& tok = next_token(in, tflags); if (tok.kind == token_t::STAR || tok.kind == token_t::KW_DIV) { std::auto_ptr prev(node.release()); node.reset(new op_t(tok.kind == token_t::STAR ? op_t::O_MUL : op_t::O_DIV)); node->set_left(prev.release()); node->set_right(parse_mul_expr(in, tflags)); if (! node->right) throw_(parse_error, tok.symbol << " operator not followed by argument"); tok = next_token(in, tflags); } push_token(tok); } return node.release(); } xpath_t::op_t * xpath_t::parse_add_expr(std::istream& in, unsigned short tflags) const { std::auto_ptr node(parse_mul_expr(in, tflags)); if (node.get()) { token_t& tok = next_token(in, tflags); if (tok.kind == token_t::PLUS || tok.kind == token_t::MINUS) { std::auto_ptr prev(node.release()); node.reset(new op_t(tok.kind == token_t::PLUS ? op_t::O_ADD : op_t::O_SUB)); node->set_left(prev.release()); node->set_right(parse_add_expr(in, tflags)); if (! node->right) throw_(parse_error, tok.symbol << " operator not followed by argument"); tok = next_token(in, tflags); } push_token(tok); } return node.release(); } xpath_t::op_t * xpath_t::parse_logic_expr(std::istream& in, unsigned short tflags) const { std::auto_ptr node(parse_add_expr(in, tflags)); if (node.get()) { op_t::kind_t kind = op_t::LAST; unsigned short _flags = tflags; token_t& tok = next_token(in, tflags); switch (tok.kind) { case token_t::ASSIGN: kind = op_t::O_DEFINE; break; case token_t::EQUAL: kind = op_t::O_EQ; break; case token_t::NEQUAL: kind = op_t::O_NEQ; break; #if 0 case token_t::MATCH: kind = op_t::O_MATCH; _flags |= XPATH_PARSE_REGEXP; break; case token_t::NMATCH: kind = op_t::O_NMATCH; _flags |= XPATH_PARSE_REGEXP; break; #endif case token_t::LESS: kind = op_t::O_LT; break; case token_t::LESSEQ: kind = op_t::O_LTE; break; case token_t::GREATER: kind = op_t::O_GT; break; case token_t::GREATEREQ: kind = op_t::O_GTE; break; default: push_token(tok); break; } if (kind != op_t::LAST) { std::auto_ptr prev(node.release()); node.reset(new op_t(kind)); node->set_left(prev.release()); if (kind == op_t::O_DEFINE) node->set_right(parse_querycolon_expr(in, tflags)); else node->set_right(parse_add_expr(in, _flags)); if (! node->right) { if (tok.kind == token_t::PLUS) throw_(parse_error, tok.symbol << " operator not followed by argument"); else throw_(parse_error, tok.symbol << " operator not followed by argument"); } } } return node.release(); } xpath_t::op_t * xpath_t::parse_and_expr(std::istream& in, unsigned short tflags) const { std::auto_ptr node(parse_logic_expr(in, tflags)); if (node.get()) { token_t& tok = next_token(in, tflags); if (tok.kind == token_t::KW_AND) { std::auto_ptr prev(node.release()); node.reset(new op_t(op_t::O_AND)); node->set_left(prev.release()); node->set_right(parse_and_expr(in, tflags)); if (! node->right) throw_(parse_error, tok.symbol << " operator not followed by argument"); } else { push_token(tok); } } return node.release(); } xpath_t::op_t * xpath_t::parse_or_expr(std::istream& in, unsigned short tflags) const { std::auto_ptr node(parse_and_expr(in, tflags)); if (node.get()) { token_t& tok = next_token(in, tflags); if (tok.kind == token_t::KW_OR) { std::auto_ptr prev(node.release()); node.reset(new op_t(op_t::O_OR)); node->set_left(prev.release()); node->set_right(parse_or_expr(in, tflags)); if (! node->right) throw_(parse_error, tok.symbol << " operator not followed by argument"); } else { push_token(tok); } } return node.release(); } xpath_t::op_t * xpath_t::parse_querycolon_expr(std::istream& in, unsigned short tflags) const { std::auto_ptr node(parse_or_expr(in, tflags)); if (node.get()) { token_t& tok = next_token(in, tflags); if (tok.kind == token_t::QUESTION) { std::auto_ptr prev(node.release()); node.reset(new op_t(op_t::O_QUES)); node->set_left(prev.release()); node->set_right(new op_t(op_t::O_COLON)); node->right->set_left(parse_querycolon_expr(in, tflags)); if (! node->right) throw_(parse_error, tok.symbol << " operator not followed by argument"); tok = next_token(in, tflags); if (tok.kind != token_t::COLON) tok.unexpected(); // jww (2006-09-09): wanted : node->right->set_right(parse_querycolon_expr(in, tflags)); if (! node->right) throw_(parse_error, tok.symbol << " operator not followed by argument"); } else { push_token(tok); } } return node.release(); } xpath_t::op_t * xpath_t::parse_value_expr(std::istream& in, unsigned short tflags) const { std::auto_ptr node(parse_querycolon_expr(in, tflags)); if (node.get()) { token_t& tok = next_token(in, tflags); if (tok.kind == token_t::COMMA) { std::auto_ptr prev(node.release()); node.reset(new op_t(op_t::O_COMMA)); node->set_left(prev.release()); node->set_right(parse_value_expr(in, tflags)); if (! node->right) throw_(parse_error, tok.symbol << " operator not followed by argument"); tok = next_token(in, tflags); } if (tok.kind != token_t::TOK_EOF) { if (tflags & XPATH_PARSE_PARTIAL) push_token(tok); else tok.unexpected(); } } else if (! (tflags & XPATH_PARSE_PARTIAL)) { throw_(parse_error, "Failed to parse value expression"); } return node.release(); } xpath_t::op_t * xpath_t::parse_expr(std::istream& in, unsigned short tflags) const { std::auto_ptr node(parse_value_expr(in, tflags)); if (use_lookahead) { use_lookahead = false; #ifdef THREADSAFE lookahead.rewind(in); #else lookahead->rewind(in); #endif } #ifdef THREADSAFE lookahead.clear(); #else lookahead->clear(); #endif return node.release(); } xpath_t::op_t * xpath_t::op_t::new_node(kind_t kind, op_t * left, op_t * right) { std::auto_ptr node(new op_t(kind)); if (left) node->set_left(left); if (right) node->set_right(right); return node.release(); } xpath_t::op_t * xpath_t::op_t::copy(op_t * tleft, op_t * tright) const { std::auto_ptr node(new op_t(kind)); if (tleft) node->set_left(tleft); if (tright) node->set_right(tright); return node.release(); } void xpath_t::op_t::find_values(value_t * context, scope_t * scope, value_t::sequence_t& result_seq, bool recursive) { xpath_t expr(compile(context, scope, true)); if (expr->kind == VALUE) append_value(*expr->valuep, result_seq); if (recursive) { if (context->type == value_t::XML_NODE) { node_t * ptr = context->xml_node(); if (ptr->flags & XML_NODE_IS_PARENT) { parent_node_t * parent = static_cast(ptr); for (node_t * node = parent->children(); node; node = node->next) { value_t temp(node); find_values(&temp, scope, result_seq, recursive); } } } else { throw_(calc_error, "Recursive path selection on a non-node value"); } } } bool xpath_t::op_t::test_value(value_t * context, scope_t * scope, int index) { xpath_t expr(compile(context, scope, true)); if (expr->kind != VALUE) throw_(calc_error, "Predicate expression does not yield a constant value"); switch (expr->valuep->type) { case value_t::INTEGER: case value_t::AMOUNT: return *expr->valuep == value_t((long)index + 1); default: return expr->valuep->boolean(); } } xpath_t::op_t * xpath_t::op_t::defer_sequence(value_t::sequence_t& result_seq) { // If not all of the elements were constants, transform the result // into an expression sequence using O_COMMA. assert(! result_seq.empty()); if (result_seq.size() == 1) return wrap_value(result_seq.front())->acquire(); value_t::sequence_t::iterator i = result_seq.begin(); std::auto_ptr lit_seq(new op_t(O_COMMA)); lit_seq->set_left(wrap_value(*i++)); op_t ** opp = &lit_seq->right; for (; i != result_seq.end(); i++) { if (*opp) { op_t * val = *opp; *opp = new op_t(O_COMMA); (*opp)->set_left(val); opp = &(*opp)->right; } if ((*i).type != value_t::POINTER) *opp = wrap_value(*i)->acquire(); else *opp = static_cast((*i).pointer()); } return lit_seq.release(); } void xpath_t::op_t::append_value(value_t& val, value_t::sequence_t& result_seq) { if (val.type == value_t::SEQUENCE) { value_t::sequence_t * subseq = val.sequence(); for (value_t::sequence_t::iterator i = subseq->begin(); i != subseq->end(); i++) result_seq.push_back(*i); } else { result_seq.push_back(val); } } xpath_t::op_t * xpath_t::op_t::compile(value_t * context, scope_t * scope, bool resolve) { #if 0 try { #endif switch (kind) { case VALUE: return acquire(); case NODE_ID: switch (name_id) { case document_t::CURRENT: return wrap_value(context)->acquire(); case document_t::PARENT: if (context->type != value_t::XML_NODE) throw_(compile_error, "Referencing parent node from a non-node value"); else if (context->xml_node()->parent) return wrap_value(context->xml_node()->parent)->acquire(); else throw_(compile_error, "Referencing parent node from the root node"); case document_t::ROOT: if (context->type != value_t::XML_NODE) throw_(compile_error, "Referencing root node from a non-node value"); else return wrap_value(context->xml_node()->document->top)->acquire(); case document_t::ALL: { if (context->type != value_t::XML_NODE) throw_(compile_error, "Referencing child nodes from a non-node value"); node_t * ptr = context->xml_node(); if (! (ptr->flags & XML_NODE_IS_PARENT)) throw_(compile_error, "Request for child nodes of a leaf node"); parent_node_t * parent = static_cast(ptr); value_t::sequence_t * nodes = new value_t::sequence_t; for (node_t * node = parent->children(); node; node = node->next) nodes->push_back(node); return wrap_value(nodes)->acquire(); } default: break; // pass down to the NODE_NAME case } // fall through... case NODE_NAME: if (context->type == value_t::XML_NODE) { node_t * ptr = context->xml_node(); if (resolve) { // First, look up the symbol as a node name within the current // context. If any exist, then return the set of names. std::auto_ptr nodes(new value_t::sequence_t); if (ptr->flags & XML_NODE_IS_PARENT) { parent_node_t * parent = static_cast(ptr); for (node_t * node = parent->children(); node; node = node->next) { if ((kind == NODE_NAME && std::strcmp(name->c_str(), node->name()) == 0) || (kind == NODE_ID && name_id == node->name_id)) nodes->push_back(node); } } return wrap_value(nodes.release())->acquire(); } else { assert(ptr); int id = ptr->document->lookup_name_id(*name); if (id != -1) { op_t * node = new_node(NODE_ID); node->name_id = id; return node->acquire(); } } } return acquire(); case ATTR_NAME: { // jww (2006-09-29): Attrs should map strings to values, not strings const char * value = context->xml_node()->get_attr(name->c_str()); return wrap_value(value)->acquire(); } case VAR_NAME: case FUNC_NAME: if (scope) { if (resolve) { value_t temp; if (scope->resolve(*name, temp)) return wrap_value(temp)->acquire(); } if (op_t * def = scope->lookup(*name)) return def->compile(context, scope, resolve); } return acquire(); case ARG_INDEX: if (scope && scope->kind == scope_t::ARGUMENT) { assert(scope->args.type == value_t::SEQUENCE); if (arg_index < scope->args.sequence()->size()) return wrap_value((*scope->args.sequence())[arg_index])->acquire(); else throw_(compile_error, "Reference to non-existing argument"); } else { return acquire(); } case FUNCTOR: if (resolve) { value_t temp; (*functor)(temp, scope); return wrap_value(temp)->acquire(); } else { return acquire(); } break; #if 0 case MASK: return acquire(); #endif case O_NOT: { assert(left); xpath_t expr(left->compile(context, scope, resolve)); if (! expr->constant()) { if (left == expr) return acquire(); else return copy(expr)->acquire(); } if (left == expr) { if (expr->valuep->strip_annotations()) return wrap_value(false)->acquire(); else return wrap_value(true)->acquire(); } else { if (expr->valuep->strip_annotations()) *expr->valuep = false; else *expr->valuep = true; return expr->acquire(); } } case O_NEG: { assert(left); xpath_t expr(left->compile(context, scope, resolve)); if (! expr->constant()) { if (left == expr) return acquire(); else return copy(expr)->acquire(); } if (left == expr) { return wrap_value(expr->valuep->negate())->acquire(); } else { expr->valuep->in_place_negate(); return expr->acquire(); } } case O_UNION: { assert(left); assert(right); xpath_t lexpr(left->compile(context, scope, resolve)); xpath_t rexpr(right->compile(context, scope, resolve)); if (! lexpr->constant() || ! rexpr->constant()) { if (left == lexpr && right == rexpr) return acquire(); else return copy(lexpr, rexpr)->acquire(); } std::auto_ptr result_seq(new value_t::sequence_t); append_value(*lexpr->valuep, *result_seq); append_value(*rexpr->valuep, *result_seq); if (result_seq->size() == 1) return wrap_value(result_seq->front())->acquire(); else return wrap_sequence(result_seq.release())->acquire(); break; } case O_ADD: case O_SUB: case O_MUL: case O_DIV: { assert(left); assert(right); xpath_t lexpr(left->compile(context, scope, resolve)); xpath_t rexpr(right->compile(context, scope, resolve)); if (! lexpr->constant() || ! rexpr->constant()) { if (left == lexpr && right == rexpr) return acquire(); else return copy(lexpr, rexpr)->acquire(); } if (left == lexpr) { value_t temp(*lexpr->valuep); switch (kind) { case O_ADD: temp += *rexpr->valuep; break; case O_SUB: temp -= *rexpr->valuep; break; case O_MUL: temp *= *rexpr->valuep; break; case O_DIV: temp /= *rexpr->valuep; break; default: assert(0); break; } return wrap_value(temp)->acquire(); } else { switch (kind) { case O_ADD: *lexpr->valuep += *rexpr->valuep; break; case O_SUB: *lexpr->valuep -= *rexpr->valuep; break; case O_MUL: *lexpr->valuep *= *rexpr->valuep; break; case O_DIV: *lexpr->valuep /= *rexpr->valuep; break; default: assert(0); break; } return lexpr->acquire(); } } case O_NEQ: case O_EQ: case O_LT: case O_LTE: case O_GT: case O_GTE: { assert(left); assert(right); xpath_t lexpr(left->compile(context, scope, resolve)); xpath_t rexpr(right->compile(context, scope, resolve)); if (! lexpr->constant() || ! rexpr->constant()) { if (left == lexpr && right == rexpr) return acquire(); else return copy(lexpr, rexpr)->acquire(); } if (left == lexpr) { switch (kind) { case O_NEQ: return wrap_value(*lexpr->valuep != *rexpr->valuep)->acquire(); break; case O_EQ: return wrap_value(*lexpr->valuep == *rexpr->valuep)->acquire(); break; case O_LT: return wrap_value(*lexpr->valuep < *rexpr->valuep)->acquire(); break; case O_LTE: return wrap_value(*lexpr->valuep <= *rexpr->valuep)->acquire(); break; case O_GT: return wrap_value(*lexpr->valuep > *rexpr->valuep)->acquire(); break; case O_GTE: return wrap_value(*lexpr->valuep >= *rexpr->valuep)->acquire(); break; default: assert(0); break; } } else { switch (kind) { case O_NEQ: *lexpr->valuep = *lexpr->valuep != *rexpr->valuep; break; case O_EQ: *lexpr->valuep = *lexpr->valuep == *rexpr->valuep; break; case O_LT: *lexpr->valuep = *lexpr->valuep < *rexpr->valuep; break; case O_LTE: *lexpr->valuep = *lexpr->valuep <= *rexpr->valuep; break; case O_GT: *lexpr->valuep = *lexpr->valuep > *rexpr->valuep; break; case O_GTE: *lexpr->valuep = *lexpr->valuep >= *rexpr->valuep; break; default: assert(0); break; } return lexpr->acquire(); } } case O_AND: { assert(left); assert(right); xpath_t lexpr(left->compile(context, scope, resolve)); if (lexpr->constant() && ! lexpr->valuep->strip_annotations()) { *lexpr->valuep = false; return lexpr->acquire(); } xpath_t rexpr(right->compile(context, scope, resolve)); if (! lexpr->constant() || ! rexpr->constant()) { if (left == lexpr && right == rexpr) return acquire(); else return copy(lexpr, rexpr)->acquire(); } if (! rexpr->valuep->strip_annotations()) { if (left == lexpr) { return wrap_value(false)->acquire(); } else { *lexpr->valuep = false; return lexpr->acquire(); } } else { return rexpr->acquire(); } } case O_OR: { assert(left); assert(right); xpath_t lexpr(left->compile(context, scope, resolve)); if (lexpr->constant() && lexpr->valuep->strip_annotations()) return lexpr->acquire(); xpath_t rexpr(right->compile(context, scope, resolve)); if (! lexpr->constant() || ! rexpr->constant()) { if (left == lexpr && right == rexpr) return acquire(); else return copy(lexpr, rexpr)->acquire(); } if (rexpr->valuep->strip_annotations()) { return rexpr->acquire(); } else { if (left == lexpr) { return wrap_value(false)->acquire(); } else { *lexpr->valuep = false; return lexpr->acquire(); } } } case O_QUES: { assert(left); assert(right); assert(right->kind == O_COLON); xpath_t lexpr(left->compile(context, scope, resolve)); if (! lexpr->constant()) { xpath_t rexpr(right->compile(context, scope, resolve)); if (left == lexpr && right == rexpr) return acquire(); else return copy(lexpr, rexpr)->acquire(); } if (lexpr->valuep->strip_annotations()) return right->left->compile(context, scope, resolve); else return right->right->compile(context, scope, resolve); } case O_COLON: { xpath_t lexpr(left->compile(context, scope, resolve)); xpath_t rexpr(right->compile(context, scope, resolve)); if (left == lexpr && right == rexpr) return acquire(); else return copy(lexpr, rexpr)->acquire(); } case O_COMMA: { assert(left); assert(right); // jww (2006-09-29): This should act just like union xpath_t lexpr(left->compile(context, scope, resolve)); // for side-effects return right->compile(context, scope, resolve); } #if 0 case O_MATCH: case O_NMATCH: { assert(left); assert(right); xpath_t rexpr(right->compile(context, scope, resolve)); xpath_t lexpr(left->compile(context, scope, resolve)); if (! lexpr->constant() || rexpr->kind != MASK) { if (left == lexpr) return acquire(); else return copy(lexpr, rexpr)->acquire(); } if (lexpr->valuep->type != value_t::STRING) throw_(compile_error, "Left operand of mask operator is not a string"); assert(rexpr->mask); bool result = rexpr->mask->match(lexpr->valuep->to_string()); if (kind == O_NMATCH) result = ! result; if (left == lexpr) { return wrap_value(result)->acquire(); } else { *lexpr->valuep = result; return lexpr->acquire(); } } #endif case O_DEFINE: assert(left); assert(right); if (left->kind == VAR_NAME || left->kind == FUNC_NAME) { xpath_t rexpr(right->compile(context, scope, resolve)); if (scope) scope->define(*left->name, rexpr); return rexpr->acquire(); } else { assert(left->kind == O_EVAL); assert(left->left->kind == FUNC_NAME); std::auto_ptr arg_scope(new scope_t(scope)); int index = 0; op_t * args = left->right; while (args) { op_t * arg = args; if (args->kind == O_COMMA) { arg = args->left; args = args->right; } else { args = NULL; } // Define the parameter so that on lookup the parser will find // an ARG_INDEX value. std::auto_ptr ref(new op_t(ARG_INDEX)); ref->arg_index = index++; assert(arg->kind == NODE_NAME); arg_scope->define(*arg->name, ref.release()); } // jww (2006-09-16): If I compile the definition of a function, // I eliminate the possibility of future lookups //xpath_t rexpr(right->compile(arg_scope.get(), resolve)); if (scope) scope->define(*left->left->name, right); return right->acquire(); } case O_EVAL: { assert(left); std::auto_ptr call_args(new scope_t(scope)); call_args->kind = scope_t::ARGUMENT; std::auto_ptr call_seq; op_t * args = right; while (args) { op_t * arg = args; if (args->kind == O_COMMA) { arg = args->left; args = args->right; } else { args = NULL; } if (! call_seq.get()) call_seq.reset(new value_t::sequence_t); // jww (2006-09-15): Need to return a reference to these, if // there are undetermined arguments! call_seq->push_back(arg->compile(context, scope, resolve)->value()); } if (call_seq.get()) call_args->args = call_seq.release(); if (left->kind == FUNC_NAME) { if (resolve) { value_t temp; if (scope && scope->resolve(*left->name, temp, call_args.get())) return wrap_value(temp)->acquire(); } // Don't compile to the left, otherwise the function name may // get resolved before we have a chance to call it xpath_t func(left->compile(context, scope, false)); if (func->kind == FUNCTOR) { value_t temp; (*func->functor)(temp, call_args.get()); return wrap_value(temp)->acquire(); } else if (! resolve) { return func->compile(context, call_args.get(), resolve); } else { throw_(calc_error, "Unknown function name '" << *left->name << "'"); } } else if (left->kind == FUNCTOR) { value_t temp; (*left->functor)(temp, call_args.get()); return wrap_value(temp)->acquire(); } else { assert(0); } break; } case O_FIND: case O_RFIND: case O_PRED: { assert(left); assert(right); xpath_t lexpr(left->compile(context, scope, resolve)); xpath_t rexpr(resolve ? right->acquire() : right->compile(context, scope, false)); if (! lexpr->constant() || ! resolve) { if (left == lexpr) return acquire(); else return copy(lexpr, rexpr)->acquire(); } std::auto_ptr result_seq(new value_t::sequence_t); // jww (2006-09-24): What about when nothing is found? switch (lexpr->valuep->type) { case value_t::XML_NODE: { function_scope_t xpath_fscope(NULL, lexpr->valuep, 0, scope); if (kind == O_PRED) { if (rexpr->test_value(lexpr->valuep, &xpath_fscope)) result_seq->push_back(*lexpr->valuep); } else { rexpr->find_values(lexpr->valuep, &xpath_fscope, *result_seq.get(), kind == O_RFIND); } break; } case value_t::SEQUENCE: { value_t::sequence_t * seq = lexpr->valuep->sequence(); int index = 0; for (value_t::sequence_t::iterator i = seq->begin(); i != seq->end(); i++, index++) { assert((*i).type != value_t::SEQUENCE); if ((*i).type != value_t::XML_NODE) throw_(compile_error, "Attempting to apply path selection " "to non-node(s)"); function_scope_t xpath_fscope(seq, &(*i), index, scope); if (kind == O_PRED) { if (rexpr->test_value(&(*i), &xpath_fscope, index)) result_seq->push_back(*i); } else { rexpr->find_values(&(*i), &xpath_fscope, *result_seq.get(), kind == O_RFIND); } } break; } default: throw_(compile_error, "Attempting to apply path selection " "to non-node(s)"); } if (result_seq->size() == 1) return wrap_value(result_seq->front())->acquire(); else return wrap_sequence(result_seq.release())->acquire(); } #if 0 case O_PERC: { assert(left); xpath_t expr(left->compile(context, scope, resolve)); if (! expr->constant()) { if (left == expr) return acquire(); else return copy(expr)->acquire(); } static value_t perc("100.0%"); *expr->valuep = perc * *expr->valuep; return expr->acquire(); } #endif case LAST: default: assert(0); break; } #if 0 } catch (error * err) { #if 0 // jww (2006-09-09): I need a reference to the parent xpath_t if (err->context.empty() || ! dynamic_cast(err->context.back())) err->context.push_back(new context(this)); #endif throw err; } #endif assert(0); return NULL; } void xpath_t::calc(value_t& result, node_t * node, scope_t * scope) const { #if 0 try { #endif if (node) { value_t context_node(node); xpath_t final(ptr->compile(&context_node, scope, true)); // jww (2006-09-09): Give a better error here if this is not // actually a value final->get_value(result); } else { std::auto_ptr fake_node(new terminal_node_t(NULL)); value_t context_node(fake_node.get()); xpath_t final(ptr->compile(&context_node, scope, true)); final->get_value(result); } #if 0 } catch (error * err) { if (err->context.empty() || ! dynamic_cast(err->context.back())) err->context.push_back (new context(*this, ptr, "While calculating value expression:")); #if 0 error_context * last = err->context.back(); if (context * ctxt = dynamic_cast(last)) { ctxt->xpath = *this; ctxt->desc = "While calculating value expression:"; } #endif throw err; } #endif } #if 0 xpath_t::context::context(const xpath_t& _xpath, const op_t * _err_node, const string& desc) throw() : error_context(desc), xpath(_xpath), err_node(_err_node) { _err_node->acquire(); } xpath_t::context::~context() throw() { if (err_node) err_node->release(); } void xpath_t::context::describe(std::ostream& out) const throw() { if (! xpath) { out << "xpath_t::context expr not set!" << std::endl; return; } if (! desc.empty()) out << desc << std::endl; out << " "; unsigned long start = (long)out.tellp() - 1; unsigned long begin; unsigned long end; bool found = false; if (xpath) xpath.write(out, true, err_node, &begin, &end); out << std::endl; if (found) { out << " "; for (unsigned int i = 0; i < end - start; i++) { if (i >= begin - start) out << "^"; else out << " "; } out << std::endl; } } #endif bool xpath_t::op_t::write(std::ostream& out, const bool relaxed, const op_t * op_to_find, unsigned long * start_pos, unsigned long * end_pos) const { int arg_index = 0; bool found = false; if (start_pos && this == op_to_find) { *start_pos = (long)out.tellp() - 1; found = true; } string symbol; switch (kind) { case VALUE: switch (valuep->type) { case value_t::BOOLEAN: if (*(valuep)) out << "1"; else out << "0"; break; case value_t::INTEGER: case value_t::AMOUNT: if (! relaxed) out << '{'; out << *(valuep); if (! relaxed) out << '}'; break; case value_t::BALANCE: case value_t::BALANCE_PAIR: assert(0); break; case value_t::DATETIME: out << '[' << *valuep << ']'; break; case value_t::STRING: out << '"' << *valuep << '"'; break; case value_t::XML_NODE: out << '<' << valuep << '>'; break; case value_t::POINTER: out << '&' << valuep; break; case value_t::SEQUENCE: out << '~' << valuep << '~'; break; } break; case NODE_ID: #ifdef THREADSAFE out << '%' << name_id; #else out << node_t::document->lookup_name(name_id); #endif break; case NODE_NAME: case FUNC_NAME: out << *name; break; case ATTR_NAME: out << '@' << *name; break; case VAR_NAME: out << '$' << *name; break; case FUNCTOR: out << functor->name(); break; #if 0 case MASK: out << '/' << mask->pattern << '/'; break; #endif case ARG_INDEX: out << '@' << arg_index; break; case O_NOT: out << "!"; if (left && left->write(out, relaxed, op_to_find, start_pos, end_pos)) found = true; break; case O_NEG: out << "-"; if (left && left->write(out, relaxed, op_to_find, start_pos, end_pos)) found = true; break; case O_UNION: if (left && left->write(out, relaxed, op_to_find, start_pos, end_pos)) found = true; out << " | "; if (right && right->write(out, relaxed, op_to_find, start_pos, end_pos)) found = true; break; case O_ADD: out << "("; if (left && left->write(out, relaxed, op_to_find, start_pos, end_pos)) found = true; out << " + "; if (right && right->write(out, relaxed, op_to_find, start_pos, end_pos)) found = true; out << ")"; break; case O_SUB: out << "("; if (left && left->write(out, relaxed, op_to_find, start_pos, end_pos)) found = true; out << " - "; if (right && right->write(out, relaxed, op_to_find, start_pos, end_pos)) found = true; out << ")"; break; case O_MUL: out << "("; if (left && left->write(out, relaxed, op_to_find, start_pos, end_pos)) found = true; out << " * "; if (right && right->write(out, relaxed, op_to_find, start_pos, end_pos)) found = true; out << ")"; break; case O_DIV: out << "("; if (left && left->write(out, relaxed, op_to_find, start_pos, end_pos)) found = true; out << " / "; if (right && right->write(out, relaxed, op_to_find, start_pos, end_pos)) found = true; out << ")"; break; case O_NEQ: out << "("; if (left && left->write(out, relaxed, op_to_find, start_pos, end_pos)) found = true; out << " != "; if (right && right->write(out, relaxed, op_to_find, start_pos, end_pos)) found = true; out << ")"; break; case O_EQ: out << "("; if (left && left->write(out, relaxed, op_to_find, start_pos, end_pos)) found = true; out << " == "; if (right && right->write(out, relaxed, op_to_find, start_pos, end_pos)) found = true; out << ")"; break; case O_LT: out << "("; if (left && left->write(out, relaxed, op_to_find, start_pos, end_pos)) found = true; out << " < "; if (right && right->write(out, relaxed, op_to_find, start_pos, end_pos)) found = true; out << ")"; break; case O_LTE: out << "("; if (left && left->write(out, relaxed, op_to_find, start_pos, end_pos)) found = true; out << " <= "; if (right && right->write(out, relaxed, op_to_find, start_pos, end_pos)) found = true; out << ")"; break; case O_GT: out << "("; if (left && left->write(out, relaxed, op_to_find, start_pos, end_pos)) found = true; out << " > "; if (right && right->write(out, relaxed, op_to_find, start_pos, end_pos)) found = true; out << ")"; break; case O_GTE: out << "("; if (left && left->write(out, relaxed, op_to_find, start_pos, end_pos)) found = true; out << " >= "; if (right && right->write(out, relaxed, op_to_find, start_pos, end_pos)) found = true; out << ")"; break; case O_AND: out << "("; if (left && left->write(out, relaxed, op_to_find, start_pos, end_pos)) found = true; out << " & "; if (right && right->write(out, relaxed, op_to_find, start_pos, end_pos)) found = true; out << ")"; break; case O_OR: out << "("; if (left && left->write(out, relaxed, op_to_find, start_pos, end_pos)) found = true; out << " | "; if (right && right->write(out, relaxed, op_to_find, start_pos, end_pos)) found = true; out << ")"; break; case O_QUES: out << "("; if (left && left->write(out, relaxed, op_to_find, start_pos, end_pos)) found = true; out << " ? "; if (right && right->write(out, relaxed, op_to_find, start_pos, end_pos)) found = true; out << ")"; break; case O_COLON: if (left && left->write(out, relaxed, op_to_find, start_pos, end_pos)) found = true; out << " : "; if (right && right->write(out, relaxed, op_to_find, start_pos, end_pos)) found = true; break; case O_COMMA: if (left && left->write(out, relaxed, op_to_find, start_pos, end_pos)) found = true; out << ", "; if (right && right->write(out, relaxed, op_to_find, start_pos, end_pos)) found = true; break; #if 0 case O_MATCH: if (left && left->write(out, relaxed, op_to_find, start_pos, end_pos)) found = true; out << " =~ "; if (right && right->write(out, relaxed, op_to_find, start_pos, end_pos)) found = true; break; case O_NMATCH: if (left && left->write(out, relaxed, op_to_find, start_pos, end_pos)) found = true; out << " !~ "; if (right && right->write(out, relaxed, op_to_find, start_pos, end_pos)) found = true; break; #endif case O_DEFINE: if (left && left->write(out, relaxed, op_to_find, start_pos, end_pos)) found = true; out << '='; if (right && right->write(out, relaxed, op_to_find, start_pos, end_pos)) found = true; break; case O_EVAL: if (left && left->write(out, relaxed, op_to_find, start_pos, end_pos)) found = true; out << "("; if (right && right->write(out, relaxed, op_to_find, start_pos, end_pos)) found = true; out << ")"; break; case O_FIND: if (left && left->write(out, relaxed, op_to_find, start_pos, end_pos)) found = true; out << "/"; if (right && right->write(out, relaxed, op_to_find, start_pos, end_pos)) found = true; break; case O_RFIND: if (left && left->write(out, relaxed, op_to_find, start_pos, end_pos)) found = true; out << "//"; if (right && right->write(out, relaxed, op_to_find, start_pos, end_pos)) found = true; break; case O_PRED: if (left && left->write(out, relaxed, op_to_find, start_pos, end_pos)) found = true; out << "["; if (right && right->write(out, relaxed, op_to_find, start_pos, end_pos)) found = true; out << "]"; break; #if 0 case O_PERC: out << "%"; if (left && left->write(out, relaxed, op_to_find, start_pos, end_pos)) found = true; break; #endif case LAST: default: assert(0); break; } if (! symbol.empty()) { if (commodity_t::find(symbol)) out << '@'; out << symbol; } if (end_pos && this == op_to_find) *end_pos = (long)out.tellp() - 1; return found; } void xpath_t::op_t::dump(std::ostream& out, const int depth) const { out.setf(std::ios::left); out.width(10); out << this << " "; for (int i = 0; i < depth; i++) out << " "; switch (kind) { case VALUE: out << "VALUE - " << *valuep; break; case NODE_NAME: out << "NODE_NAME - " << *name; break; case NODE_ID: #ifdef THREADSAFE out << "NODE_ID - " << name_id; #else out << "NODE_ID - " << node_t::document->lookup_name(name_id); #endif break; case ATTR_NAME: out << "ATTR_NAME - " << *name; break; case FUNC_NAME: out << "FUNC_NAME - " << *name; break; case VAR_NAME: out << "VAR_NAME - " << *name; break; case ARG_INDEX: out << "ARG_INDEX - " << arg_index; break; case FUNCTOR: out << "FUNCTOR - " << functor->name(); break; #if 0 case MASK: out << "MASK - " << mask->pattern; break; #endif case O_NOT: out << "O_NOT"; break; case O_NEG: out << "O_NEG"; break; case O_UNION: out << "O_UNION"; break; case O_ADD: out << "O_ADD"; break; case O_SUB: out << "O_SUB"; break; case O_MUL: out << "O_MUL"; break; case O_DIV: out << "O_DIV"; break; case O_NEQ: out << "O_NEQ"; break; case O_EQ: out << "O_EQ"; break; case O_LT: out << "O_LT"; break; case O_LTE: out << "O_LTE"; break; case O_GT: out << "O_GT"; break; case O_GTE: out << "O_GTE"; break; case O_AND: out << "O_AND"; break; case O_OR: out << "O_OR"; break; case O_QUES: out << "O_QUES"; break; case O_COLON: out << "O_COLON"; break; case O_COMMA: out << "O_COMMA"; break; #if 0 case O_MATCH: out << "O_MATCH"; break; case O_NMATCH: out << "O_NMATCH"; break; #endif case O_DEFINE: out << "O_DEFINE"; break; case O_EVAL: out << "O_EVAL"; break; case O_FIND: out << "O_FIND"; break; case O_RFIND: out << "O_RFIND"; break; case O_PRED: out << "O_PRED"; break; #if 0 case O_PERC: out << "O_PERC"; break; #endif case LAST: default: assert(0); break; } out << " (" << refc << ')' << std::endl; if (kind > TERMINALS) { if (left) { left->dump(out, depth + 1); if (right) right->dump(out, depth + 1); } else { assert(! right); } } else { assert(! left); } } } // namespace xml } // namespace ledger