summaryrefslogtreecommitdiff
path: root/src/tools/translate-to-fuzz.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/tools/translate-to-fuzz.h')
-rw-r--r--src/tools/translate-to-fuzz.h1115
1 files changed, 1115 insertions, 0 deletions
diff --git a/src/tools/translate-to-fuzz.h b/src/tools/translate-to-fuzz.h
new file mode 100644
index 000000000..a7f86af13
--- /dev/null
+++ b/src/tools/translate-to-fuzz.h
@@ -0,0 +1,1115 @@
+/*
+ * Copyright 2017 WebAssembly Community Group participants
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+//
+// Translate a binary stream of bytes into a valid wasm module, *somehow*.
+// This is helpful for fuzzing.
+//
+
+#include <wasm-builder.h>
+
+namespace wasm {
+
+// helper structs, since list initialization has a fixed order of
+// evaluation, avoiding UB
+
+struct ThreeArgs {
+ Expression *a;
+ Expression *b;
+ Expression *c;
+};
+
+struct UnaryArgs {
+ UnaryOp a;
+ Expression *b;
+};
+
+struct BinaryArgs {
+ BinaryOp a;
+ Expression *b;
+ Expression *c;
+};
+
+// main reader
+
+class TranslateToFuzzReader {
+public:
+ TranslateToFuzzReader(Module& wasm) : wasm(wasm), builder(wasm) {}
+
+ void read(std::string& filename) {
+ auto input(read_file<std::vector<char>>(filename, Flags::Binary, Flags::Release));
+ bytes.swap(input);
+ pos = 0;
+ finishedInput = false;
+ // ensure *some* input to be read
+ if (bytes.size() == 0) {
+ bytes.push_back(0);
+ }
+ build();
+ }
+
+private:
+ Module& wasm;
+ Builder builder;
+ std::vector<char> bytes; // the input bytes
+ size_t pos; // the position in the input
+ bool finishedInput; // whether we already cycled through all the input (if so, we should try to finish things off)
+
+ // some things require luck, try them a few times
+ static const int TRIES = 10;
+
+ // beyond a nesting limit, greatly decrease the chance to continue to nest
+ static const int NESTING_LIMIT = 11;
+
+ // reduce the chance for a function to call itself by this factor
+ static const int RECURSION_FACTOR = 10;
+
+ // the maximum size of a block
+ static const int BLOCK_FACTOR = 5;
+
+ // the memory that we use, a small portion so that we have a good chance of
+ // looking at writes (we also look outside of this region with small probability)
+ static const int USABLE_MEMORY = 32;
+
+ // the number of runtime iterations (function calls, loop backbranches) we
+ // allow before we stop execution with a trap, to prevent hangs. 0 means
+ // no hang protection.
+ static const int HANG_LIMIT = 25;
+
+ // Optionally remove NaNs, which are a source of nondeterminism (which makes
+ // cross-VM comparisons harder)
+ static const bool DE_NAN = true;
+
+ // after we finish the input, we start going through it again, but xoring
+ // so it's not identical
+ int xorFactor = 0;
+
+ int8_t get() {
+ if (pos == bytes.size()) {
+ // we ran out of input, go to the start for more stuff
+ finishedInput = true;
+ pos = 0;
+ xorFactor++;
+ }
+ return bytes[pos++] ^ xorFactor;
+ }
+
+ int16_t get16() {
+ auto temp = uint16_t(get()) << 8;
+ return temp | uint16_t(get());
+ }
+
+ int32_t get32() {
+ auto temp = uint32_t(get16()) << 16;
+ return temp | uint32_t(get16());
+ }
+
+ int64_t get64() {
+ auto temp = uint64_t(get32()) << 32;
+ return temp | uint64_t(get32());
+ }
+
+ float getFloat() {
+ return Literal(get32()).reinterpretf32();
+ }
+
+ double getDouble() {
+ return Literal(get64()).reinterpretf64();
+ }
+
+ void build() {
+ setupMemory();
+ // keep adding functions until we run out of input
+ while (!finishedInput) {
+ addFunction();
+ }
+ if (HANG_LIMIT > 0) {
+ addHangLimitSupport();
+ }
+ if (DE_NAN) {
+ addDeNanSupport();
+ }
+ }
+
+ void setupMemory() {
+ wasm.memory.exists = true;
+ // use one page
+ wasm.memory.initial = wasm.memory.max = 1;
+ }
+
+ const Name HANG_LIMIT_GLOBAL = "hangLimit";
+
+ void addHangLimitSupport() {
+ auto* glob = new Global;
+ glob->name = HANG_LIMIT_GLOBAL;
+ glob->type = i32;
+ glob->init = builder.makeConst(Literal(int32_t(HANG_LIMIT)));
+ glob->mutable_ = true;
+ wasm.addGlobal(glob);
+
+ auto* func = new Function;
+ func->name = "hangLimitInitializer";
+ func->result = none;
+ func->body = builder.makeSetGlobal(glob->name,
+ builder.makeConst(Literal(int32_t(HANG_LIMIT)))
+ );
+ wasm.addFunction(func);
+
+ auto* export_ = new Export;
+ export_->name = func->name;
+ export_->value = func->name;
+ export_->kind = ExternalKind::Function;
+ wasm.addExport(export_);
+ }
+
+ Expression* makeHangLimitCheck() {
+ return builder.makeSequence(
+ builder.makeIf(
+ builder.makeUnary(
+ UnaryOp::EqZInt32,
+ builder.makeGetGlobal(HANG_LIMIT_GLOBAL, i32)
+ ),
+ makeTrivial(unreachable)
+ ),
+ builder.makeSetGlobal(
+ HANG_LIMIT_GLOBAL,
+ builder.makeBinary(
+ BinaryOp::SubInt32,
+ builder.makeGetGlobal(HANG_LIMIT_GLOBAL, i32),
+ builder.makeConst(Literal(int32_t(1)))
+ )
+ )
+ );
+ }
+
+ void addDeNanSupport() {
+ auto add = [&](Name name, WasmType type, Literal literal, BinaryOp op) {
+ auto* func = new Function;
+ func->name = name;
+ func->params.push_back(type);
+ func->result = type;
+ func->body = builder.makeIf(
+ builder.makeBinary(
+ op,
+ builder.makeGetLocal(0, type),
+ builder.makeGetLocal(0, type)
+ ),
+ builder.makeGetLocal(0, type),
+ builder.makeConst(literal)
+ );
+ wasm.addFunction(func);
+ };
+ add("deNan32", f32, Literal(float(0)), EqFloat32);
+ add("deNan64", f64, Literal(double(0)), EqFloat64);
+ }
+
+ Expression* makeDeNanOp(Expression* expr) {
+ if (!DE_NAN) return expr;
+ if (expr->type == f32) {
+ return builder.makeCall("deNan32", { expr }, f32);
+ } else if (expr->type == f64) {
+ return builder.makeCall("deNan64", { expr }, f64);
+ }
+ return expr; // unreachable etc. is fine
+ }
+
+ // function generation state
+
+ Function* func;
+ std::vector<Expression*> breakableStack; // things we can break to
+ Index labelIndex;
+
+ // a list of things relevant to computing the odds of an infinite loop,
+ // which we try to minimize the risk of
+ std::vector<Expression*> hangStack;
+
+ std::map<WasmType, std::vector<Index>> typeLocals; // type => list of locals with that type
+
+ void addFunction() {
+ Index num = wasm.functions.size();
+ func = new Function;
+ func->name = std::string("func_") + std::to_string(num);
+ func->result = getReachableType();
+ assert(typeLocals.empty());
+ Index numParams = upToSquared(5);
+ for (Index i = 0; i < numParams; i++) {
+ auto type = getConcreteType();
+ typeLocals[type].push_back(func->params.size());
+ func->params.push_back(type);
+ }
+ Index numVars = upToSquared(10);
+ for (Index i = 0; i < numVars; i++) {
+ auto type = getConcreteType();
+ typeLocals[type].push_back(func->params.size() + func->vars.size());
+ func->vars.push_back(type);
+ }
+ labelIndex = 0;
+ assert(breakableStack.empty());
+ assert(hangStack.empty());
+ // with reasonable chance make the body a block
+ if (oneIn(2)) {
+ func->body = makeBlock(func->result);
+ } else {
+ // with very small chance, make the body unreachable
+ if (oneIn(20)) {
+ func->body = make(unreachable);
+ } else {
+ func->body = make(func->result);
+ }
+ }
+ if (HANG_LIMIT > 0) {
+ func->body = builder.makeSequence(
+ makeHangLimitCheck(),
+ func->body
+ );
+ }
+ assert(breakableStack.empty());
+ assert(hangStack.empty());
+ wasm.addFunction(func);
+ // export some, but not all (to allow inlining etc.). make sure to
+ // export at least one, though, to keep each testcase interesting
+ if (num == 0 || oneIn(2)) {
+ auto* export_ = new Export;
+ export_->name = func->name;
+ export_->value = func->name;
+ export_->kind = ExternalKind::Function;
+ wasm.addExport(export_);
+ }
+ // cleanup
+ typeLocals.clear();
+ }
+
+ Name makeLabel() {
+ return std::string("label$") + std::to_string(labelIndex++);
+ }
+
+ // always call the toplevel make(type) command, not the internal specific ones
+
+ int nesting = 0;
+
+ Expression* make(WasmType type) {
+ // when we should stop, emit something small (but not necessarily trivial)
+ if (finishedInput ||
+ nesting >= 5 * NESTING_LIMIT || // hard limit
+ (nesting >= NESTING_LIMIT && !oneIn(3))) {
+ if (isConcreteWasmType(type)) {
+ if (oneIn(2)) {
+ return makeConst(type);
+ } else {
+ return makeGetLocal(type);
+ }
+ } else if (type == none) {
+ if (oneIn(2)) {
+ return makeNop(type);
+ } else {
+ return makeSetLocal(type);
+ }
+ }
+ assert(type == unreachable);
+ return makeTrivial(type);
+ }
+ nesting++;
+ Expression* ret;
+ switch (type) {
+ case i32: ret = _makei32(); break;
+ case i64: ret = _makei64(); break;
+ case f32: ret = _makef32(); break;
+ case f64: ret = _makef64(); break;
+ case none: ret = _makenone(); break;
+ case unreachable: ret = _makeunreachable(); break;
+ default: WASM_UNREACHABLE();
+ }
+ nesting--;
+ return ret;
+ }
+
+ Expression* _makei32() {
+ switch (upTo(13)) {
+ case 0: return makeBlock(i32);
+ case 1: return makeIf(i32);
+ case 2: return makeLoop(i32);
+ case 3: return makeBreak(i32);
+ case 4: return makeCall(i32);
+ case 5: return makeCallIndirect(i32);
+ case 6: return makeGetLocal(i32);
+ case 7: return makeSetLocal(i32);
+ case 8: return makeLoad(i32);
+ case 9: return makeConst(i32);
+ case 10: return makeUnary(i32);
+ case 11: return makeBinary(i32);
+ case 12: return makeSelect(i32);
+ }
+ WASM_UNREACHABLE();
+ }
+
+ Expression* _makei64() {
+ switch (upTo(13)) {
+ case 0: return makeBlock(i64);
+ case 1: return makeIf(i64);
+ case 2: return makeLoop(i64);
+ case 3: return makeBreak(i64);
+ case 4: return makeCall(i64);
+ case 5: return makeCallIndirect(i64);
+ case 6: return makeGetLocal(i64);
+ case 7: return makeSetLocal(i64);
+ case 8: return makeLoad(i64);
+ case 9: return makeConst(i64);
+ case 10: return makeUnary(i64);
+ case 11: return makeBinary(i64);
+ case 12: return makeSelect(i64);
+ }
+ WASM_UNREACHABLE();
+ }
+
+ Expression* _makef32() {
+ switch (upTo(13)) {
+ case 0: return makeBlock(f32);
+ case 1: return makeIf(f32);
+ case 2: return makeLoop(f32);
+ case 3: return makeBreak(f32);
+ case 4: return makeCall(f32);
+ case 5: return makeCallIndirect(f32);
+ case 6: return makeGetLocal(f32);
+ case 7: return makeSetLocal(f32);
+ case 8: return makeLoad(f32);
+ case 9: return makeConst(f32);
+ case 10: return makeUnary(f32);
+ case 11: return makeBinary(f32);
+ case 12: return makeSelect(f32);
+ }
+ WASM_UNREACHABLE();
+ }
+
+ Expression* _makef64() {
+ switch (upTo(13)) {
+ case 0: return makeBlock(f64);
+ case 1: return makeIf(f64);
+ case 2: return makeLoop(f64);
+ case 3: return makeBreak(f64);
+ case 4: return makeCall(f64);
+ case 5: return makeCallIndirect(f64);
+ case 6: return makeGetLocal(f64);
+ case 7: return makeSetLocal(f64);
+ case 8: return makeLoad(f64);
+ case 9: return makeConst(f64);
+ case 10: return makeUnary(f64);
+ case 11: return makeBinary(f64);
+ case 12: return makeSelect(f64);
+ }
+ WASM_UNREACHABLE();
+ }
+
+ Expression* _makenone() {
+ switch (upTo(10)) {
+ case 0: return makeBlock(none);
+ case 1: return makeIf(none);
+ case 2: return makeLoop(none);
+ case 3: return makeBreak(none);
+ case 4: return makeCall(none);
+ case 5: return makeCallIndirect(none);
+ case 6: return makeSetLocal(none);
+ case 7: return makeStore(none);
+ case 8: return makeDrop(none);
+ case 9: return makeNop(none);
+ }
+ WASM_UNREACHABLE();
+ }
+
+ Expression* _makeunreachable() {
+ switch (upTo(15)) {
+ case 0: return makeBlock(unreachable);
+ case 1: return makeIf(unreachable);
+ case 2: return makeLoop(unreachable);
+ case 3: return makeBreak(unreachable);
+ case 4: return makeCall(unreachable);
+ case 5: return makeCallIndirect(unreachable);
+ case 6: return makeSetLocal(unreachable);
+ case 7: return makeStore(unreachable);
+ case 8: return makeUnary(unreachable);
+ case 9: return makeBinary(unreachable);
+ case 10: return makeSelect(unreachable);
+ case 11: return makeSwitch(unreachable);
+ case 12: return makeDrop(unreachable);
+ case 13: return makeReturn(unreachable);
+ case 14: return makeUnreachable(unreachable);
+ }
+ WASM_UNREACHABLE();
+ }
+
+ // make something with no chance of infinite recursion
+ Expression* makeTrivial(WasmType type) {
+ if (isConcreteWasmType(type)) {
+ return makeConst(type);
+ } else if (type == none) {
+ return makeNop(type);
+ }
+ assert(type == unreachable);
+ return builder.makeReturn(
+ isConcreteWasmType(func->result) ? makeConst(func->result) : nullptr
+ );
+ }
+
+ // specific expression creators
+
+ Expression* makeBlock(WasmType type) {
+ auto* ret = builder.makeBlock();
+ ret->type = type; // so we have it during child creation
+ ret->name = makeLabel();
+ breakableStack.push_back(ret);
+ Index num = upToSquared(BLOCK_FACTOR - 1); // we add another later
+ if (nesting >= NESTING_LIMIT / 2) {
+ // smaller blocks past the limit
+ num /= 2;
+ if (nesting >= NESTING_LIMIT && oneIn(2)) {
+ // smaller blocks past the limit
+ num /= 2;
+ }
+ }
+ while (num > 0 && !finishedInput) {
+ ret->list.push_back(make(none));
+ num--;
+ }
+ // give a chance to make the final element an unreachable break, instead
+ // of concrete - a common pattern (branch to the top of a loop etc.)
+ if (!finishedInput && isConcreteWasmType(type) && oneIn(2)) {
+ ret->list.push_back(makeBreak(unreachable));
+ } else {
+ ret->list.push_back(make(type));
+ }
+ breakableStack.pop_back();
+ if (isConcreteWasmType(type)) {
+ ret->finalize(type);
+ } else {
+ ret->finalize();
+ }
+ if (ret->type != type) {
+ // e.g. we might want an unreachable block, but a child breaks to it
+ assert(type == unreachable && ret->type == none);
+ return builder.makeSequence(ret, make(unreachable));
+ }
+ return ret;
+ }
+
+ Expression* makeLoop(WasmType type) {
+ auto* ret = wasm.allocator.alloc<Loop>();
+ ret->type = type; // so we have it during child creation
+ ret->name = makeLabel();
+ breakableStack.push_back(ret);
+ hangStack.push_back(ret);
+ ret->body = makeMaybeBlock(type);
+ breakableStack.pop_back();
+ hangStack.pop_back();
+ if (HANG_LIMIT > 0) {
+ ret->body = builder.makeSequence(
+ makeHangLimitCheck(),
+ ret->body
+ );
+ }
+ ret->finalize();
+ return ret;
+ }
+
+ Expression* makeCondition() {
+ // we want a 50-50 chance for the condition to be taken, for interesting
+ // execution paths. by itself, there is bias (e.g. most consts are "yes")
+ // so even that out with noise
+ auto* ret = make(i32);
+ if (oneIn(2)) {
+ ret = builder.makeUnary(UnaryOp::EqZInt32, ret);
+ }
+ return ret;
+ }
+
+ // make something, with a good chance of it being a block
+ Expression* makeMaybeBlock(WasmType type) {
+ // if past the limit, prefer not to emit blocks
+ if (nesting >= NESTING_LIMIT || oneIn(3)) {
+ return make(type);
+ } else {
+ return makeBlock(type);
+ }
+ }
+
+ Expression* makeIf(WasmType type) {
+ auto* condition = makeCondition();
+ hangStack.push_back(nullptr);
+ auto* ret = makeIf({ condition, makeMaybeBlock(type), makeMaybeBlock(type) });
+ hangStack.pop_back();
+ return ret;
+ }
+
+ Expression* makeIf(const struct ThreeArgs& args) {
+ return builder.makeIf(args.a, args.b, args.c);
+ }
+
+ Expression* makeBreak(WasmType type) {
+ if (breakableStack.empty()) return makeTrivial(type);
+ Expression* condition = nullptr;
+ if (type != unreachable) {
+ hangStack.push_back(nullptr);
+ condition = makeCondition();
+ }
+ // we need to find a proper target to break to; try a few times
+ int tries = TRIES;
+ while (tries-- > 0) {
+ auto* target = vectorPick(breakableStack);
+ auto name = getTargetName(target);
+ auto valueType = getTargetType(target);
+ if (isConcreteWasmType(type)) {
+ // we are flowing out a value
+ if (valueType != type) {
+ // we need to break to a proper place
+ continue;
+ }
+ auto* ret = builder.makeBreak(name, make(type), condition);
+ hangStack.pop_back();
+ return ret;
+ } else if (type == none) {
+ if (valueType != none) {
+ // we need to break to a proper place
+ continue;
+ }
+ auto* ret = builder.makeBreak(name, nullptr, condition);
+ hangStack.pop_back();
+ return ret;
+ } else {
+ assert(type == unreachable);
+ if (valueType != none) {
+ // we need to break to a proper place
+ continue;
+ }
+ // we are about to make an *un*conditional break. if it is
+ // to a loop, we prefer there to be a condition along the
+ // way, to reduce the chance of infinite looping
+ size_t conditions = 0;
+ int i = hangStack.size();
+ while (--i >= 0) {
+ auto* item = hangStack[i];
+ if (item == nullptr) {
+ conditions++;
+ } else if (auto* loop = item->cast<Loop>()) {
+ if (loop->name == name) {
+ // we found the target, no more conditions matter
+ break;
+ }
+ }
+ }
+ switch (conditions) {
+ case 0: if (!oneIn(4)) continue;
+ case 1: if (!oneIn(2)) continue;
+ default: if (oneIn(conditions + 1)) continue;
+ }
+ return builder.makeBreak(name);
+ }
+ }
+ // we failed to find something
+ if (type != unreachable) {
+ hangStack.pop_back();
+ }
+ return makeTrivial(type);
+ }
+
+ Expression* makeCall(WasmType type) {
+ // seems ok, go on
+ int tries = TRIES;
+ while (tries-- > 0) {
+ Function* target = func;
+ if (!wasm.functions.empty() && !oneIn(wasm.functions.size())) {
+ target = vectorPick(wasm.functions).get();
+ }
+ if (target->result != type) continue;
+ // reduce the odds of recursion dramatically, to limit infinite loops
+ if (target == func && !oneIn(RECURSION_FACTOR * TRIES)) continue;
+ // we found one!
+ std::vector<Expression*> args;
+ for (auto argType : target->params) {
+ args.push_back(make(argType));
+ }
+ return builder.makeCall(target->name, args, type);
+ }
+ // we failed to find something
+ return make(type);
+ }
+
+ Expression* makeCallIndirect(WasmType type) {
+ return make(type); // TODO
+ }
+
+ Expression* makeGetLocal(WasmType type) {
+ auto& locals = typeLocals[type];
+ if (locals.empty()) return makeTrivial(type);
+ return builder.makeGetLocal(vectorPick(locals), type);
+ }
+
+ Expression* makeSetLocal(WasmType type) {
+ bool tee = type != none;
+ WasmType valueType;
+ if (tee) {
+ valueType = type;
+ } else {
+ valueType = getConcreteType();
+ }
+ auto& locals = typeLocals[valueType];
+ if (locals.empty()) return makeTrivial(type);
+ auto* value = make(valueType);
+ if (tee) {
+ return builder.makeTeeLocal(vectorPick(locals), value);
+ } else {
+ return builder.makeSetLocal(vectorPick(locals), value);
+ }
+ }
+
+ Expression* makePointer() {
+ auto* ret = make(i32);
+ // with high probability, mask the pointer so it's in a reasonable
+ // range. otherwise, most pointers are going to be out of range and
+ // most memory ops will just trap
+ if (!oneIn(10)) {
+ ret = builder.makeBinary(AndInt32,
+ ret,
+ builder.makeConst(Literal(int32_t(USABLE_MEMORY - 1)))
+ );
+ }
+ return ret;
+ }
+
+ Expression* makeLoad(WasmType type) {
+ auto offset = logify(get());
+ auto ptr = makePointer();
+ switch (type) {
+ case i32: {
+ bool signed_ = get() & 1;
+ switch (upTo(3)) {
+ case 0: return builder.makeLoad(1, signed_, offset, 1, ptr, type);
+ case 1: return builder.makeLoad(2, signed_, offset, pick(1, 2), ptr, type);
+ case 2: return builder.makeLoad(4, signed_, offset, pick(1, 2, 4), ptr, type);
+ }
+ WASM_UNREACHABLE();
+ }
+ case i64: {
+ bool signed_ = get() & 1;
+ switch (upTo(4)) {
+ case 0: return builder.makeLoad(1, signed_, offset, 1, ptr, type);
+ case 1: return builder.makeLoad(2, signed_, offset, pick(1, 2), ptr, type);
+ case 2: return builder.makeLoad(4, signed_, offset, pick(1, 2, 4), ptr, type);
+ case 3: return builder.makeLoad(8, signed_, offset, pick(1, 2, 4, 8), ptr, type);
+ }
+ WASM_UNREACHABLE();
+ }
+ case f32: {
+ return builder.makeLoad(4, false, offset, pick(1, 2, 4), ptr, type);
+ }
+ case f64: {
+ return builder.makeLoad(8, false, offset, pick(1, 2, 4, 8), ptr, type);
+ }
+ default: WASM_UNREACHABLE();
+ }
+ }
+
+ Store* makeStore(WasmType type) {
+ if (type == unreachable) {
+ // make a normal store, then make it unreachable
+ auto* ret = makeStore(getConcreteType());
+ switch (upTo(3)) {
+ case 0: ret->ptr = make(unreachable); break;
+ case 1: ret->value = make(unreachable); break;
+ case 2: ret->ptr = make(unreachable); ret->value = make(unreachable); break;
+ }
+ ret->finalize();
+ return ret;
+ }
+ // the type is none or unreachable. we also need to pick the value
+ // type.
+ if (type == none) {
+ type = getConcreteType();
+ }
+ auto offset = logify(get());
+ auto ptr = makePointer();
+ auto value = make(type);
+ switch (type) {
+ case i32: {
+ switch (upTo(3)) {
+ case 0: return builder.makeStore(1, offset, 1, ptr, value, type);
+ case 1: return builder.makeStore(2, offset, pick(1, 2), ptr, value, type);
+ case 2: return builder.makeStore(4, offset, pick(1, 2, 4), ptr, value, type);
+ }
+ WASM_UNREACHABLE();
+ }
+ case i64: {
+ switch (upTo(4)) {
+ case 0: return builder.makeStore(1, offset, 1, ptr, value, type);
+ case 1: return builder.makeStore(2, offset, pick(1, 2), ptr, value, type);
+ case 2: return builder.makeStore(4, offset, pick(1, 2, 4), ptr, value, type);
+ case 3: return builder.makeStore(8, offset, pick(1, 2, 4, 8), ptr, value, type);
+ }
+ WASM_UNREACHABLE();
+ }
+ case f32: {
+ return builder.makeStore(4, offset, pick(1, 2, 4), ptr, value, type);
+ }
+ case f64: {
+ return builder.makeStore(8, offset, pick(1, 2, 4, 8), ptr, value, type);
+ }
+ default: WASM_UNREACHABLE();
+ }
+ }
+
+ Expression* makeConst(WasmType type) {
+ Literal value;
+ switch (upTo(3)) {
+ case 0: {
+ // totally random, entire range
+ switch (type) {
+ case i32: value = Literal(get32()); break;
+ case i64: value = Literal(get64()); break;
+ case f32: value = Literal(getFloat()); break;
+ case f64: value = Literal(getDouble()); break;
+ default: WASM_UNREACHABLE();
+ }
+ break;
+ }
+ case 1: {
+ // small range
+ int32_t small;
+ switch (upTo(4)) {
+ case 0: small = int8_t(get()); break;
+ case 1: small = uint8_t(get()); break;
+ case 2: small = int16_t(get16()); break;
+ case 3: small = uint16_t(get16()); break;
+ default: WASM_UNREACHABLE();
+ }
+ switch (type) {
+ case i32: value = Literal(int32_t(small)); break;
+ case i64: value = Literal(int64_t(small)); break;
+ case f32: value = Literal(float(small)); break;
+ case f64: value = Literal(double(small)); break;
+ default: WASM_UNREACHABLE();
+ }
+ break;
+ }
+ case 2: {
+ // special values
+ switch (type) {
+ case i32: value = Literal(pick<int32_t>(0, -1, 1,
+ std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max(),
+ std::numeric_limits<int16_t>::min(), std::numeric_limits<int16_t>::max(),
+ std::numeric_limits<int32_t>::min(), std::numeric_limits<int32_t>::max(),
+ std::numeric_limits<uint8_t>::max(),
+ std::numeric_limits<uint16_t>::max(),
+ std::numeric_limits<uint32_t>::max())); break;
+ case i64: value = Literal(pick<int64_t>(0, -1, 1,
+ std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max(),
+ std::numeric_limits<int16_t>::min(), std::numeric_limits<int16_t>::max(),
+ std::numeric_limits<int32_t>::min(), std::numeric_limits<int32_t>::max(),
+ std::numeric_limits<int64_t>::min(), std::numeric_limits<int64_t>::max(),
+ std::numeric_limits<uint8_t>::max(),
+ std::numeric_limits<uint16_t>::max(),
+ std::numeric_limits<uint32_t>::max(),
+ std::numeric_limits<uint64_t>::max())); break;
+ case f32: value = Literal(pick<float>(0, -1, 1,
+ std::numeric_limits<float>::min(), std::numeric_limits<float>::max(),
+ std::numeric_limits<int32_t>::min(), std::numeric_limits<int32_t>::max(),
+ std::numeric_limits<int64_t>::min(), std::numeric_limits<int64_t>::max(),
+ std::numeric_limits<uint32_t>::max(),
+ std::numeric_limits<uint64_t>::max())); break;
+ case f64: value = Literal(pick<double>(0, -1, 1,
+ std::numeric_limits<float>::min(), std::numeric_limits<float>::max(),
+ std::numeric_limits<double>::min(), std::numeric_limits<double>::max(),
+ std::numeric_limits<int32_t>::min(), std::numeric_limits<int32_t>::max(),
+ std::numeric_limits<int64_t>::min(), std::numeric_limits<int64_t>::max(),
+ std::numeric_limits<uint32_t>::max(),
+ std::numeric_limits<uint64_t>::max())); break;
+ default: WASM_UNREACHABLE();
+ }
+ break;
+ }
+ }
+ auto* ret = wasm.allocator.alloc<Const>();
+ ret->value = value;
+ ret->type = value.type;
+ return ret;
+ }
+
+ Expression* makeUnary(const UnaryArgs& args) {
+ return builder.makeUnary(args.a, args.b);
+ }
+
+ Expression* makeUnary(WasmType type) {
+ if (type == unreachable) {
+ if (auto* unary = makeUnary(getConcreteType())->dynCast<Unary>()) {
+ return makeDeNanOp(builder.makeUnary(unary->op, make(unreachable)));
+ }
+ // give up
+ return makeTrivial(type);
+ }
+ switch (type) {
+ case i32: {
+ switch (upTo(4)) {
+ case 0: return makeUnary({ pick(EqZInt32, ClzInt32, CtzInt32, PopcntInt32), make(i32) });
+ case 1: return makeUnary({ pick(EqZInt64, WrapInt64), make(i64) });
+ case 2: return makeUnary({ pick(TruncSFloat32ToInt32, TruncUFloat32ToInt32, ReinterpretFloat32), make(f32) });
+ case 3: return makeUnary({ pick(TruncSFloat64ToInt32, TruncUFloat64ToInt32), make(f64) });
+ }
+ WASM_UNREACHABLE();
+ }
+ case i64: {
+ switch (upTo(4)) {
+ case 0: return makeUnary({ pick(ClzInt64, CtzInt64, PopcntInt64), make(i64) });
+ case 1: return makeUnary({ pick(ExtendSInt32, ExtendUInt32), make(i32) });
+ case 2: return makeUnary({ pick(TruncSFloat32ToInt64, TruncUFloat32ToInt64), make(f32) });
+ case 3: return makeUnary({ pick(TruncSFloat64ToInt64, TruncUFloat64ToInt64, ReinterpretFloat64), make(f64) });
+ }
+ WASM_UNREACHABLE();
+ }
+ case f32: {
+ switch (upTo(4)) {
+ case 0: return makeDeNanOp(makeUnary({ pick(NegFloat32, AbsFloat32, CeilFloat32, FloorFloat32, TruncFloat32, NearestFloat32, SqrtFloat32), make(f32) }));
+ case 1: return makeDeNanOp(makeUnary({ pick(ConvertUInt32ToFloat32, ConvertSInt32ToFloat32, ReinterpretInt32), make(i32) }));
+ case 2: return makeDeNanOp(makeUnary({ pick(ConvertUInt64ToFloat32, ConvertSInt64ToFloat32), make(i64) }));
+ case 3: return makeDeNanOp(makeUnary({ DemoteFloat64, make(f64) }));
+ }
+ WASM_UNREACHABLE();
+ }
+ case f64: {
+ switch (upTo(4)) {
+ case 0: return makeDeNanOp(makeUnary({ pick(NegFloat64, AbsFloat64, CeilFloat64, FloorFloat64, TruncFloat64, NearestFloat64, SqrtFloat64), make(f64) }));
+ case 1: return makeDeNanOp(makeUnary({ pick(ConvertUInt32ToFloat64, ConvertSInt32ToFloat64), make(i32) }));
+ case 2: return makeDeNanOp(makeUnary({ pick(ConvertUInt64ToFloat64, ConvertSInt64ToFloat64, ReinterpretInt64), make(i64) }));
+ case 3: return makeDeNanOp(makeUnary({ PromoteFloat32, make(f32) }));
+ }
+ WASM_UNREACHABLE();
+ }
+ default: WASM_UNREACHABLE();
+ }
+ WASM_UNREACHABLE();
+ }
+
+ Expression* makeBinary(const BinaryArgs& args) {
+ return builder.makeBinary(args.a, args.b, args.c);
+ }
+
+ Expression* makeBinary(WasmType type) {
+ if (type == unreachable) {
+ if (auto* binary = makeBinary(getConcreteType())->dynCast<Binary>()) {
+ return makeDeNanOp(makeBinary({ binary->op, make(unreachable), make(unreachable) }));
+ }
+ // give up
+ return makeTrivial(type);
+ }
+ switch (type) {
+ case i32: {
+ switch (upTo(4)) {
+ case 0: return makeBinary({ pick(AddInt32, SubInt32, MulInt32, DivSInt32, DivUInt32, RemSInt32, RemUInt32, AndInt32, OrInt32, XorInt32, ShlInt32, ShrUInt32, ShrSInt32, RotLInt32, RotRInt32, EqInt32, NeInt32, LtSInt32, LtUInt32, LeSInt32, LeUInt32, GtSInt32, GtUInt32, GeSInt32, GeUInt32), make(i32), make(i32) });
+ case 1: return makeBinary({ pick(EqInt64, NeInt64, LtSInt64, LtUInt64, LeSInt64, LeUInt64, GtSInt64, GtUInt64, GeSInt64, GeUInt64), make(i64), make(i64) });
+ case 2: return makeBinary({ pick(EqFloat32, NeFloat32, LtFloat32, LeFloat32, GtFloat32, GeFloat32), make(f32), make(f32) });
+ case 3: return makeBinary({ pick(EqFloat64, NeFloat64, LtFloat64, LeFloat64, GtFloat64, GeFloat64), make(f64), make(f64) });
+ }
+ WASM_UNREACHABLE();
+ }
+ case i64: {
+ return makeBinary({ pick(AddInt64, SubInt64, MulInt64, DivSInt64, DivUInt64, RemSInt64, RemUInt64, AndInt64, OrInt64, XorInt64, ShlInt64, ShrUInt64, ShrSInt64, RotLInt64, RotRInt64), make(i64), make(i64) });
+ }
+ case f32: {
+ return makeDeNanOp(makeBinary({ pick(AddFloat32, SubFloat32, MulFloat32, DivFloat32, CopySignFloat32, MinFloat32, MaxFloat32), make(f32), make(f32) }));
+ }
+ case f64: {
+ return makeDeNanOp(makeBinary({ pick(AddFloat64, SubFloat64, MulFloat64, DivFloat64, CopySignFloat64, MinFloat64, MaxFloat64), make(f64), make(f64) }));
+ }
+ default: WASM_UNREACHABLE();
+ }
+ WASM_UNREACHABLE();
+ }
+
+ Expression* makeSelect(const ThreeArgs& args) {
+ return builder.makeSelect(args.a, args.b, args.c);
+ }
+
+ Expression* makeSelect(WasmType type) {
+ return makeDeNanOp(makeSelect({ make(i32), make(type), make(type) }));
+ }
+
+ Expression* makeSwitch(WasmType type) {
+ assert(type == unreachable);
+ if (breakableStack.empty()) return make(type);
+ // we need to find proper targets to break to; try a bunch
+ int tries = TRIES;
+ std::vector<Name> names;
+ WasmType valueType = unreachable;
+ while (tries-- > 0) {
+ auto* target = vectorPick(breakableStack);
+ auto name = getTargetName(target);
+ auto currValueType = getTargetType(target);
+ if (names.empty()) {
+ valueType = currValueType;
+ } else {
+ if (valueType != currValueType) {
+ continue; // all values must be the same
+ }
+ }
+ names.push_back(name);
+ }
+ if (names.size() < 2) {
+ // we failed to find enough
+ return make(type);
+ }
+ auto default_ = names.back();
+ names.pop_back();
+ auto temp1 = make(i32), temp2 = isConcreteWasmType(valueType) ? make(valueType) : nullptr;
+ return builder.makeSwitch(names, default_, temp1, temp2);
+ }
+
+ Expression* makeDrop(WasmType type) {
+ return builder.makeDrop(make(type == unreachable ? type : getConcreteType()));
+ }
+
+ Expression* makeReturn(WasmType type) {
+ return builder.makeReturn(isConcreteWasmType(func->result) ? make(func->result) : nullptr);
+ }
+
+ Expression* makeNop(WasmType type) {
+ assert(type == none);
+ return builder.makeNop();
+ }
+
+ Expression* makeUnreachable(WasmType type) {
+ assert(type == unreachable);
+ return builder.makeUnreachable();
+ }
+
+ // special getters
+
+ WasmType getType() {
+ switch (upTo(6)) {
+ case 0: return i32;
+ case 1: return i64;
+ case 2: return f32;
+ case 3: return f64;
+ case 4: return none;
+ case 5: return unreachable;
+ }
+ WASM_UNREACHABLE();
+ }
+
+ WasmType getReachableType() {
+ switch (upTo(5)) {
+ case 0: return i32;
+ case 1: return i64;
+ case 2: return f32;
+ case 3: return f64;
+ case 4: return none;
+ }
+ WASM_UNREACHABLE();
+ }
+
+ WasmType getConcreteType() {
+ switch (upTo(4)) {
+ case 0: return i32;
+ case 1: return i64;
+ case 2: return f32;
+ case 3: return f64;
+ }
+ WASM_UNREACHABLE();
+ }
+
+ // statistical distributions
+
+ // 0 to the limit, logarithmic scale
+ Index logify(Index x) {
+ return std::floor(std::log(std::max(Index(1) + x, Index(1))));
+ }
+
+ // one of the integer values in [0, x)
+ // this isn't a perfectly uniform distribution, but it's fast
+ // and reasonable
+ Index upTo(Index x) {
+ if (x == 0) return 0;
+ Index raw;
+ if (x <= 255) {
+ raw = get();
+ } else if (x <= 65535) {
+ raw = get16();
+ } else {
+ raw = get32();
+ }
+ auto ret = raw % x;
+ // use extra bits as "noise" for later
+ xorFactor += raw / x;
+ return ret;
+ }
+
+ bool oneIn(Index x) {
+ return upTo(x) == 0;
+ }
+
+ // apply upTo twice, generating a skewed distribution towards
+ // low values
+ Index upToSquared(Index x) {
+ return upTo(upTo(x));
+ }
+
+ // pick from a vector
+ template<typename T>
+ const T& vectorPick(const std::vector<T>& vec) {
+ // TODO: get32?
+ assert(!vec.empty());
+ auto index = upTo(vec.size());
+ return vec[index];
+ }
+
+ // pick from a fixed list
+ template<typename T, typename... Args>
+ T pick(T first, Args... args) {
+ auto num = sizeof...(Args) + 1;
+ auto temp = upTo(num);
+ return pickGivenNum<T>(temp, first, args...);
+ }
+
+ template<typename T>
+ T pickGivenNum(size_t num, T first) {
+ assert(num == 0);
+ return first;
+ }
+
+ template<typename T, typename... Args>
+ T pickGivenNum(size_t num, T first, Args... args) {
+ if (num == 0) return first;
+ return pickGivenNum<T>(num - 1, args...);
+ }
+
+ // utilities
+
+ Name getTargetName(Expression* target) {
+ if (auto* block = target->dynCast<Block>()) {
+ return block->name;
+ } else if (auto* loop = target->dynCast<Loop>()) {
+ return loop->name;
+ }
+ WASM_UNREACHABLE();
+ }
+
+ WasmType getTargetType(Expression* target) {
+ if (auto* block = target->dynCast<Block>()) {
+ return block->type;
+ } else if (target->is<Loop>()) {
+ return none;
+ }
+ WASM_UNREACHABLE();
+ }
+};
+
+} // namespace wasm
+
+// XXX Switch class has a condition?! is it real? should the node type be the value type if it exists?!