summaryrefslogtreecommitdiff
path: root/third_party/FP16/include/fp16/fp16.h
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/FP16/include/fp16/fp16.h')
-rw-r--r--third_party/FP16/include/fp16/fp16.h515
1 files changed, 515 insertions, 0 deletions
diff --git a/third_party/FP16/include/fp16/fp16.h b/third_party/FP16/include/fp16/fp16.h
new file mode 100644
index 000000000..95fa0c2de
--- /dev/null
+++ b/third_party/FP16/include/fp16/fp16.h
@@ -0,0 +1,515 @@
+#pragma once
+#ifndef FP16_FP16_H
+#define FP16_FP16_H
+
+#if defined(__cplusplus) && (__cplusplus >= 201103L)
+ #include <cstdint>
+ #include <cmath>
+#elif !defined(__OPENCL_VERSION__)
+ #include <stdint.h>
+ #include <math.h>
+#endif
+
+#include <fp16/bitcasts.h>
+#include <fp16/macros.h>
+
+#if defined(_MSC_VER)
+ #include <intrin.h>
+#endif
+#if defined(__F16C__) && FP16_USE_NATIVE_CONVERSION && !FP16_USE_FLOAT16_TYPE && !FP16_USE_FP16_TYPE
+ #include <immintrin.h>
+#endif
+#if (defined(__aarch64__) || defined(_M_ARM64)) && FP16_USE_NATIVE_CONVERSION && !FP16_USE_FLOAT16_TYPE && !FP16_USE_FP16_TYPE
+ #include <arm_neon.h>
+#endif
+
+
+/*
+ * Convert a 16-bit floating-point number in IEEE half-precision format, in bit representation, to
+ * a 32-bit floating-point number in IEEE single-precision format, in bit representation.
+ *
+ * @note The implementation doesn't use any floating-point operations.
+ */
+static inline uint32_t fp16_ieee_to_fp32_bits(uint16_t h) {
+ /*
+ * Extend the half-precision floating-point number to 32 bits and shift to the upper part of the 32-bit word:
+ * +---+-----+------------+-------------------+
+ * | S |EEEEE|MM MMMM MMMM|0000 0000 0000 0000|
+ * +---+-----+------------+-------------------+
+ * Bits 31 26-30 16-25 0-15
+ *
+ * S - sign bit, E - bits of the biased exponent, M - bits of the mantissa, 0 - zero bits.
+ */
+ const uint32_t w = (uint32_t) h << 16;
+ /*
+ * Extract the sign of the input number into the high bit of the 32-bit word:
+ *
+ * +---+----------------------------------+
+ * | S |0000000 00000000 00000000 00000000|
+ * +---+----------------------------------+
+ * Bits 31 0-31
+ */
+ const uint32_t sign = w & UINT32_C(0x80000000);
+ /*
+ * Extract mantissa and biased exponent of the input number into the bits 0-30 of the 32-bit word:
+ *
+ * +---+-----+------------+-------------------+
+ * | 0 |EEEEE|MM MMMM MMMM|0000 0000 0000 0000|
+ * +---+-----+------------+-------------------+
+ * Bits 30 27-31 17-26 0-16
+ */
+ const uint32_t nonsign = w & UINT32_C(0x7FFFFFFF);
+ /*
+ * Renorm shift is the number of bits to shift mantissa left to make the half-precision number normalized.
+ * If the initial number is normalized, some of its high 6 bits (sign == 0 and 5-bit exponent) equals one.
+ * In this case renorm_shift == 0. If the number is denormalize, renorm_shift > 0. Note that if we shift
+ * denormalized nonsign by renorm_shift, the unit bit of mantissa will shift into exponent, turning the
+ * biased exponent into 1, and making mantissa normalized (i.e. without leading 1).
+ */
+#ifdef _MSC_VER
+ unsigned long nonsign_bsr;
+ _BitScanReverse(&nonsign_bsr, (unsigned long) nonsign);
+ uint32_t renorm_shift = (uint32_t) nonsign_bsr ^ 31;
+#else
+ uint32_t renorm_shift = __builtin_clz(nonsign);
+#endif
+ renorm_shift = renorm_shift > 5 ? renorm_shift - 5 : 0;
+ /*
+ * Iff half-precision number has exponent of 15, the addition overflows it into bit 31,
+ * and the subsequent shift turns the high 9 bits into 1. Thus
+ * inf_nan_mask ==
+ * 0x7F800000 if the half-precision number had exponent of 15 (i.e. was NaN or infinity)
+ * 0x00000000 otherwise
+ */
+ const int32_t inf_nan_mask = ((int32_t) (nonsign + 0x04000000) >> 8) & INT32_C(0x7F800000);
+ /*
+ * Iff nonsign is 0, it overflows into 0xFFFFFFFF, turning bit 31 into 1. Otherwise, bit 31 remains 0.
+ * The signed shift right by 31 broadcasts bit 31 into all bits of the zero_mask. Thus
+ * zero_mask ==
+ * 0xFFFFFFFF if the half-precision number was zero (+0.0h or -0.0h)
+ * 0x00000000 otherwise
+ */
+ const int32_t zero_mask = (int32_t) (nonsign - 1) >> 31;
+ /*
+ * 1. Shift nonsign left by renorm_shift to normalize it (if the input was denormal)
+ * 2. Shift nonsign right by 3 so the exponent (5 bits originally) becomes an 8-bit field and 10-bit mantissa
+ * shifts into the 10 high bits of the 23-bit mantissa of IEEE single-precision number.
+ * 3. Add 0x70 to the exponent (starting at bit 23) to compensate the different in exponent bias
+ * (0x7F for single-precision number less 0xF for half-precision number).
+ * 4. Subtract renorm_shift from the exponent (starting at bit 23) to account for renormalization. As renorm_shift
+ * is less than 0x70, this can be combined with step 3.
+ * 5. Binary OR with inf_nan_mask to turn the exponent into 0xFF if the input was NaN or infinity.
+ * 6. Binary ANDNOT with zero_mask to turn the mantissa and exponent into zero if the input was zero.
+ * 7. Combine with the sign of the input number.
+ */
+ return sign | ((((nonsign << renorm_shift >> 3) + ((0x70 - renorm_shift) << 23)) | inf_nan_mask) & ~zero_mask);
+}
+
+/*
+ * Convert a 16-bit floating-point number in IEEE half-precision format, in bit representation, to
+ * a 32-bit floating-point number in IEEE single-precision format.
+ *
+ * @note The implementation relies on IEEE-like (no assumption about rounding mode and no operations on denormals)
+ * floating-point operations and bitcasts between integer and floating-point variables.
+ */
+static inline float fp16_ieee_to_fp32_value(uint16_t h) {
+#if FP16_USE_NATIVE_CONVERSION
+ #if FP16_USE_FLOAT16_TYPE
+ union {
+ uint16_t as_bits;
+ _Float16 as_value;
+ } fp16 = { h };
+ return (float) fp16.as_value;
+ #elif FP16_USE_FP16_TYPE
+ union {
+ uint16_t as_bits;
+ __fp16 as_value;
+ } fp16 = { h };
+ return (float) fp16.as_value;
+ #else
+ #if (defined(__INTEL_COMPILER) || defined(__GNUC__)) && defined(__F16C__)
+ return _cvtsh_ss((unsigned short) h);
+ #elif defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_X64)) && defined(__AVX2__)
+ return _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128((int) (unsigned int) h)));
+ #elif defined(_M_ARM64) || defined(__aarch64__)
+ return vgetq_lane_f32(vcvt_f32_f16(vreinterpret_f16_u16(vdup_n_u16(h))), 0);
+ #else
+ #error "Archtecture- or compiler-specific implementation required"
+ #endif
+ #endif
+#else
+ /*
+ * Extend the half-precision floating-point number to 32 bits and shift to the upper part of the 32-bit word:
+ * +---+-----+------------+-------------------+
+ * | S |EEEEE|MM MMMM MMMM|0000 0000 0000 0000|
+ * +---+-----+------------+-------------------+
+ * Bits 31 26-30 16-25 0-15
+ *
+ * S - sign bit, E - bits of the biased exponent, M - bits of the mantissa, 0 - zero bits.
+ */
+ const uint32_t w = (uint32_t) h << 16;
+ /*
+ * Extract the sign of the input number into the high bit of the 32-bit word:
+ *
+ * +---+----------------------------------+
+ * | S |0000000 00000000 00000000 00000000|
+ * +---+----------------------------------+
+ * Bits 31 0-31
+ */
+ const uint32_t sign = w & UINT32_C(0x80000000);
+ /*
+ * Extract mantissa and biased exponent of the input number into the high bits of the 32-bit word:
+ *
+ * +-----+------------+---------------------+
+ * |EEEEE|MM MMMM MMMM|0 0000 0000 0000 0000|
+ * +-----+------------+---------------------+
+ * Bits 27-31 17-26 0-16
+ */
+ const uint32_t two_w = w + w;
+
+ /*
+ * Shift mantissa and exponent into bits 23-28 and bits 13-22 so they become mantissa and exponent
+ * of a single-precision floating-point number:
+ *
+ * S|Exponent | Mantissa
+ * +-+---+-----+------------+----------------+
+ * |0|000|EEEEE|MM MMMM MMMM|0 0000 0000 0000|
+ * +-+---+-----+------------+----------------+
+ * Bits | 23-31 | 0-22
+ *
+ * Next, there are some adjustments to the exponent:
+ * - The exponent needs to be corrected by the difference in exponent bias between single-precision and half-precision
+ * formats (0x7F - 0xF = 0x70)
+ * - Inf and NaN values in the inputs should become Inf and NaN values after conversion to the single-precision number.
+ * Therefore, if the biased exponent of the half-precision input was 0x1F (max possible value), the biased exponent
+ * of the single-precision output must be 0xFF (max possible value). We do this correction in two steps:
+ * - First, we adjust the exponent by (0xFF - 0x1F) = 0xE0 (see exp_offset below) rather than by 0x70 suggested
+ * by the difference in the exponent bias (see above).
+ * - Then we multiply the single-precision result of exponent adjustment by 2**(-112) to reverse the effect of
+ * exponent adjustment by 0xE0 less the necessary exponent adjustment by 0x70 due to difference in exponent bias.
+ * The floating-point multiplication hardware would ensure than Inf and NaN would retain their value on at least
+ * partially IEEE754-compliant implementations.
+ *
+ * Note that the above operations do not handle denormal inputs (where biased exponent == 0). However, they also do not
+ * operate on denormal inputs, and do not produce denormal results.
+ */
+ const uint32_t exp_offset = UINT32_C(0xE0) << 23;
+#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
+ const float exp_scale = 0x1.0p-112f;
+#else
+ const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
+#endif
+ const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
+
+ /*
+ * Convert denormalized half-precision inputs into single-precision results (always normalized).
+ * Zero inputs are also handled here.
+ *
+ * In a denormalized number the biased exponent is zero, and mantissa has on-zero bits.
+ * First, we shift mantissa into bits 0-9 of the 32-bit word.
+ *
+ * zeros | mantissa
+ * +---------------------------+------------+
+ * |0000 0000 0000 0000 0000 00|MM MMMM MMMM|
+ * +---------------------------+------------+
+ * Bits 10-31 0-9
+ *
+ * Now, remember that denormalized half-precision numbers are represented as:
+ * FP16 = mantissa * 2**(-24).
+ * The trick is to construct a normalized single-precision number with the same mantissa and thehalf-precision input
+ * and with an exponent which would scale the corresponding mantissa bits to 2**(-24).
+ * A normalized single-precision floating-point number is represented as:
+ * FP32 = (1 + mantissa * 2**(-23)) * 2**(exponent - 127)
+ * Therefore, when the biased exponent is 126, a unit change in the mantissa of the input denormalized half-precision
+ * number causes a change of the constructud single-precision number by 2**(-24), i.e. the same ammount.
+ *
+ * The last step is to adjust the bias of the constructed single-precision number. When the input half-precision number
+ * is zero, the constructed single-precision number has the value of
+ * FP32 = 1 * 2**(126 - 127) = 2**(-1) = 0.5
+ * Therefore, we need to subtract 0.5 from the constructed single-precision number to get the numerical equivalent of
+ * the input half-precision number.
+ */
+ const uint32_t magic_mask = UINT32_C(126) << 23;
+ const float magic_bias = 0.5f;
+ const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
+
+ /*
+ * - Choose either results of conversion of input as a normalized number, or as a denormalized number, depending on the
+ * input exponent. The variable two_w contains input exponent in bits 27-31, therefore if its smaller than 2**27, the
+ * input is either a denormal number, or zero.
+ * - Combine the result of conversion of exponent and mantissa with the sign of the input number.
+ */
+ const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
+ const uint32_t result = sign |
+ (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
+ return fp32_from_bits(result);
+#endif
+}
+
+/*
+ * Convert a 32-bit floating-point number in IEEE single-precision format to a 16-bit floating-point number in
+ * IEEE half-precision format, in bit representation.
+ *
+ * @note The implementation relies on IEEE-like (no assumption about rounding mode and no operations on denormals)
+ * floating-point operations and bitcasts between integer and floating-point variables.
+ */
+static inline uint16_t fp16_ieee_from_fp32_value(float f) {
+#if FP16_USE_NATIVE_CONVERSION
+ #if FP16_USE_FLOAT16_TYPE
+ union {
+ _Float16 as_value;
+ uint16_t as_bits;
+ } fp16 = { (_Float16) f };
+ return fp16.as_bits;
+ #elif FP16_USE_FP16_TYPE
+ union {
+ __fp16 as_value;
+ uint16_t as_bits;
+ } fp16 = { (__fp16) f };
+ return fp16.as_bits;
+ #else
+ #if (defined(__INTEL_COMPILER) || defined(__GNUC__)) && defined(__F16C__)
+ return _cvtss_sh(f, _MM_FROUND_CUR_DIRECTION);
+ #elif defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_X64)) && defined(__AVX2__)
+ return (uint16_t) _mm_cvtsi128_si32(_mm_cvtps_ph(_mm_set_ss(f), _MM_FROUND_CUR_DIRECTION));
+ #elif defined(_M_ARM64) || defined(__aarch64__)
+ return vget_lane_u16(vcvt_f16_f32(vdupq_n_f32(f)), 0);
+ #else
+ #error "Archtecture- or compiler-specific implementation required"
+ #endif
+ #endif
+#else
+#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
+ const float scale_to_inf = 0x1.0p+112f;
+ const float scale_to_zero = 0x1.0p-110f;
+#else
+ const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
+ const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
+#endif
+#if defined(_MSC_VER) && defined(_M_IX86_FP) && (_M_IX86_FP == 0) || defined(__GNUC__) && defined(__FLT_EVAL_METHOD__) && (__FLT_EVAL_METHOD__ != 0)
+ const volatile float saturated_f = fabsf(f) * scale_to_inf;
+#else
+ const float saturated_f = fabsf(f) * scale_to_inf;
+#endif
+ float base = saturated_f * scale_to_zero;
+
+ const uint32_t w = fp32_to_bits(f);
+ const uint32_t shl1_w = w + w;
+ const uint32_t sign = w & UINT32_C(0x80000000);
+ uint32_t bias = shl1_w & UINT32_C(0xFF000000);
+ if (bias < UINT32_C(0x71000000)) {
+ bias = UINT32_C(0x71000000);
+ }
+
+ base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
+ const uint32_t bits = fp32_to_bits(base);
+ const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
+ const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
+ const uint32_t nonsign = exp_bits + mantissa_bits;
+ return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
+#endif
+}
+
+/*
+ * Convert a 16-bit floating-point number in ARM alternative half-precision format, in bit representation, to
+ * a 32-bit floating-point number in IEEE single-precision format, in bit representation.
+ *
+ * @note The implementation doesn't use any floating-point operations.
+ */
+static inline uint32_t fp16_alt_to_fp32_bits(uint16_t h) {
+ /*
+ * Extend the half-precision floating-point number to 32 bits and shift to the upper part of the 32-bit word:
+ * +---+-----+------------+-------------------+
+ * | S |EEEEE|MM MMMM MMMM|0000 0000 0000 0000|
+ * +---+-----+------------+-------------------+
+ * Bits 31 26-30 16-25 0-15
+ *
+ * S - sign bit, E - bits of the biased exponent, M - bits of the mantissa, 0 - zero bits.
+ */
+ const uint32_t w = (uint32_t) h << 16;
+ /*
+ * Extract the sign of the input number into the high bit of the 32-bit word:
+ *
+ * +---+----------------------------------+
+ * | S |0000000 00000000 00000000 00000000|
+ * +---+----------------------------------+
+ * Bits 31 0-31
+ */
+ const uint32_t sign = w & UINT32_C(0x80000000);
+ /*
+ * Extract mantissa and biased exponent of the input number into the bits 0-30 of the 32-bit word:
+ *
+ * +---+-----+------------+-------------------+
+ * | 0 |EEEEE|MM MMMM MMMM|0000 0000 0000 0000|
+ * +---+-----+------------+-------------------+
+ * Bits 30 27-31 17-26 0-16
+ */
+ const uint32_t nonsign = w & UINT32_C(0x7FFFFFFF);
+ /*
+ * Renorm shift is the number of bits to shift mantissa left to make the half-precision number normalized.
+ * If the initial number is normalized, some of its high 6 bits (sign == 0 and 5-bit exponent) equals one.
+ * In this case renorm_shift == 0. If the number is denormalize, renorm_shift > 0. Note that if we shift
+ * denormalized nonsign by renorm_shift, the unit bit of mantissa will shift into exponent, turning the
+ * biased exponent into 1, and making mantissa normalized (i.e. without leading 1).
+ */
+#ifdef _MSC_VER
+ unsigned long nonsign_bsr;
+ _BitScanReverse(&nonsign_bsr, (unsigned long) nonsign);
+ uint32_t renorm_shift = (uint32_t) nonsign_bsr ^ 31;
+#else
+ uint32_t renorm_shift = __builtin_clz(nonsign);
+#endif
+ renorm_shift = renorm_shift > 5 ? renorm_shift - 5 : 0;
+ /*
+ * Iff nonsign is 0, it overflows into 0xFFFFFFFF, turning bit 31 into 1. Otherwise, bit 31 remains 0.
+ * The signed shift right by 31 broadcasts bit 31 into all bits of the zero_mask. Thus
+ * zero_mask ==
+ * 0xFFFFFFFF if the half-precision number was zero (+0.0h or -0.0h)
+ * 0x00000000 otherwise
+ */
+ const int32_t zero_mask = (int32_t) (nonsign - 1) >> 31;
+ /*
+ * 1. Shift nonsign left by renorm_shift to normalize it (if the input was denormal)
+ * 2. Shift nonsign right by 3 so the exponent (5 bits originally) becomes an 8-bit field and 10-bit mantissa
+ * shifts into the 10 high bits of the 23-bit mantissa of IEEE single-precision number.
+ * 3. Add 0x70 to the exponent (starting at bit 23) to compensate the different in exponent bias
+ * (0x7F for single-precision number less 0xF for half-precision number).
+ * 4. Subtract renorm_shift from the exponent (starting at bit 23) to account for renormalization. As renorm_shift
+ * is less than 0x70, this can be combined with step 3.
+ * 5. Binary ANDNOT with zero_mask to turn the mantissa and exponent into zero if the input was zero.
+ * 6. Combine with the sign of the input number.
+ */
+ return sign | (((nonsign << renorm_shift >> 3) + ((0x70 - renorm_shift) << 23)) & ~zero_mask);
+}
+
+/*
+ * Convert a 16-bit floating-point number in ARM alternative half-precision format, in bit representation, to
+ * a 32-bit floating-point number in IEEE single-precision format.
+ *
+ * @note The implementation relies on IEEE-like (no assumption about rounding mode and no operations on denormals)
+ * floating-point operations and bitcasts between integer and floating-point variables.
+ */
+static inline float fp16_alt_to_fp32_value(uint16_t h) {
+ /*
+ * Extend the half-precision floating-point number to 32 bits and shift to the upper part of the 32-bit word:
+ * +---+-----+------------+-------------------+
+ * | S |EEEEE|MM MMMM MMMM|0000 0000 0000 0000|
+ * +---+-----+------------+-------------------+
+ * Bits 31 26-30 16-25 0-15
+ *
+ * S - sign bit, E - bits of the biased exponent, M - bits of the mantissa, 0 - zero bits.
+ */
+ const uint32_t w = (uint32_t) h << 16;
+ /*
+ * Extract the sign of the input number into the high bit of the 32-bit word:
+ *
+ * +---+----------------------------------+
+ * | S |0000000 00000000 00000000 00000000|
+ * +---+----------------------------------+
+ * Bits 31 0-31
+ */
+ const uint32_t sign = w & UINT32_C(0x80000000);
+ /*
+ * Extract mantissa and biased exponent of the input number into the high bits of the 32-bit word:
+ *
+ * +-----+------------+---------------------+
+ * |EEEEE|MM MMMM MMMM|0 0000 0000 0000 0000|
+ * +-----+------------+---------------------+
+ * Bits 27-31 17-26 0-16
+ */
+ const uint32_t two_w = w + w;
+
+ /*
+ * Shift mantissa and exponent into bits 23-28 and bits 13-22 so they become mantissa and exponent
+ * of a single-precision floating-point number:
+ *
+ * S|Exponent | Mantissa
+ * +-+---+-----+------------+----------------+
+ * |0|000|EEEEE|MM MMMM MMMM|0 0000 0000 0000|
+ * +-+---+-----+------------+----------------+
+ * Bits | 23-31 | 0-22
+ *
+ * Next, the exponent is adjusted for the difference in exponent bias between single-precision and half-precision
+ * formats (0x7F - 0xF = 0x70). This operation never overflows or generates non-finite values, as the largest
+ * half-precision exponent is 0x1F and after the adjustment is can not exceed 0x8F < 0xFE (largest single-precision
+ * exponent for non-finite values).
+ *
+ * Note that this operation does not handle denormal inputs (where biased exponent == 0). However, they also do not
+ * operate on denormal inputs, and do not produce denormal results.
+ */
+ const uint32_t exp_offset = UINT32_C(0x70) << 23;
+ const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset);
+
+ /*
+ * Convert denormalized half-precision inputs into single-precision results (always normalized).
+ * Zero inputs are also handled here.
+ *
+ * In a denormalized number the biased exponent is zero, and mantissa has on-zero bits.
+ * First, we shift mantissa into bits 0-9 of the 32-bit word.
+ *
+ * zeros | mantissa
+ * +---------------------------+------------+
+ * |0000 0000 0000 0000 0000 00|MM MMMM MMMM|
+ * +---------------------------+------------+
+ * Bits 10-31 0-9
+ *
+ * Now, remember that denormalized half-precision numbers are represented as:
+ * FP16 = mantissa * 2**(-24).
+ * The trick is to construct a normalized single-precision number with the same mantissa and thehalf-precision input
+ * and with an exponent which would scale the corresponding mantissa bits to 2**(-24).
+ * A normalized single-precision floating-point number is represented as:
+ * FP32 = (1 + mantissa * 2**(-23)) * 2**(exponent - 127)
+ * Therefore, when the biased exponent is 126, a unit change in the mantissa of the input denormalized half-precision
+ * number causes a change of the constructud single-precision number by 2**(-24), i.e. the same ammount.
+ *
+ * The last step is to adjust the bias of the constructed single-precision number. When the input half-precision number
+ * is zero, the constructed single-precision number has the value of
+ * FP32 = 1 * 2**(126 - 127) = 2**(-1) = 0.5
+ * Therefore, we need to subtract 0.5 from the constructed single-precision number to get the numerical equivalent of
+ * the input half-precision number.
+ */
+ const uint32_t magic_mask = UINT32_C(126) << 23;
+ const float magic_bias = 0.5f;
+ const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
+
+ /*
+ * - Choose either results of conversion of input as a normalized number, or as a denormalized number, depending on the
+ * input exponent. The variable two_w contains input exponent in bits 27-31, therefore if its smaller than 2**27, the
+ * input is either a denormal number, or zero.
+ * - Combine the result of conversion of exponent and mantissa with the sign of the input number.
+ */
+ const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
+ const uint32_t result = sign |
+ (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
+ return fp32_from_bits(result);
+}
+
+/*
+ * Convert a 32-bit floating-point number in IEEE single-precision format to a 16-bit floating-point number in
+ * ARM alternative half-precision format, in bit representation.
+ *
+ * @note The implementation relies on IEEE-like (no assumption about rounding mode and no operations on denormals)
+ * floating-point operations and bitcasts between integer and floating-point variables.
+ */
+static inline uint16_t fp16_alt_from_fp32_value(float f) {
+ const uint32_t w = fp32_to_bits(f);
+ const uint32_t sign = w & UINT32_C(0x80000000);
+ const uint32_t shl1_w = w + w;
+
+ const uint32_t shl1_max_fp16_fp32 = UINT32_C(0x8FFFC000);
+ const uint32_t shl1_base = shl1_w > shl1_max_fp16_fp32 ? shl1_max_fp16_fp32 : shl1_w;
+ uint32_t shl1_bias = shl1_base & UINT32_C(0xFF000000);
+ const uint32_t exp_difference = 23 - 10;
+ const uint32_t shl1_bias_min = (127 - 1 - exp_difference) << 24;
+ if (shl1_bias < shl1_bias_min) {
+ shl1_bias = shl1_bias_min;
+ }
+
+ const float bias = fp32_from_bits((shl1_bias >> 1) + ((exp_difference + 2) << 23));
+ const float base = fp32_from_bits((shl1_base >> 1) + (2 << 23)) + bias;
+
+ const uint32_t exp_f = fp32_to_bits(base) >> 13;
+ return (sign >> 16) | ((exp_f & UINT32_C(0x00007C00)) + (fp32_to_bits(base) & UINT32_C(0x00000FFF)));
+}
+
+#endif /* FP16_FP16_H */