| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
| |
The new wat parser parses block, if, loop, then, and else keywords directly
rather than depending on code generated from gen-s-parser.py. Filter these
keywords out in gen-s-parser.py when generating the new wat parser and delete
the stub functions that the removed generated code used to depend on.
|
|
|
| |
Helps #5951
|
|
|
|
|
|
|
|
|
|
|
| |
The new wat parser previously returned InstrT types when parsing individual
instructions and collected InstrsT types when parsing sequences of instructions.
However, instructions were always actually tracked in the internal state of the
parsing context, so these types never held any interesting or necessary data.
Simplify the parser by removing these types and leaning into the pattern that
the parser context will keep track of parsed instructions.
This allows for a much cleaner separation between the `instrs` and
`foldedinstrs` parser functions.
|
|
|
|
|
|
| |
Parse both the straight-line and folded versions of if, including the
abbreviations that allow omitting the else clause. In the IRBuilder, generalize
the scope stack to be able to track scopes other than blocks and add methods for
visiting the beginnings of ifs and elses.
|
|
|
|
|
|
|
|
| |
This instruction was standardized as part of the bulk memory proposal, but we
never implemented it until now. Leave similar instructions like table.copy as
future work.
Fixes #5939.
|
|
|
|
|
| |
Replace i31.new with ref.i31 in the printer, tests, and source code. Continue
parsing i31.new for the time being to allow a graceful transition. Also update
the JS API to reflect the new instruction name.
|
|
|
|
|
|
|
|
| |
Globally replace the source string "I31New" with "RefI31" in preparation for
renaming the instruction from "i31.new" to "ref.i31", as implemented in the spec
in https://github.com/WebAssembly/gc/pull/422. This would be NFC, except that it
also changes the string in the external-facing C APIs.
A follow-up PR will make the corresponding behavioral change.
|
|
|
|
| |
Remove the old forms of ref.test and ref.cast that took heap types instead of
ref types and remove the old array.init_static name for array.new_fixed.
|
|
|
|
|
|
|
|
|
|
|
| |
* Allow new syntax for some stringref opcodes
Fixes #5607
* Update stringref text output
* Update tests with new syntax for stringref opcodes
Except in test/lit/strings.wat, to check that the legacy syntax still works.
|
|
|
|
|
| |
Remove old, experimental instructions and type encodings that will not be
shipped as part of WasmGC. Updating the encodings and text format to match the
final spec is left as future work.
|
|
|
|
|
|
|
|
|
|
|
| |
Data/Elem (#5692)
ArrayNewSeg => ArrayNewSegData, ArrayNewSegElem
ArrayInit => ArrayInitData, ArrayInitElem
Basically we remove the opcode and use the class type to differentiate them.
This adds some code but it makes the representation simpler and more compact in
memory, and it will help with #5690
|
|
|
|
|
| |
These complement array.copy, which we already supported, as an initial complete
set of bulk array operations. Replace the WIP spec tests with the upstream spec
tests, lightly edited for compatibility with Binaryen.
|
|
|
|
|
|
|
|
|
| |
This is a (more) standard name for `array.init_static`. (The full upstream name
in the spec repo is `array.new_canon_fixed`, but I'm still hoping we can drop
`canon` from all the instruction names and it doesn't appear elsewhere in
Binaryen).
Update all the existing tests to use the new name and add a test specifically to
ensure the old name continues parsing.
|
|
|
|
|
|
|
|
| |
To match the standard instruction name, rename the expression class without
changing any parsing or printing behavior. A follow-on PR will take care of the
functional side of this change while keeping support for parsing the old name.
This change will allow `ArrayInit` to be used as the expression class for the
upcoming `array.init_data` and `array.init_elem` instructions.
|
|
|
| |
See WebAssembly/stringref#60
|
|
|
|
|
|
| |
string.from_code_point makes a string from an int code point.
string.new_utf8*_try makes a utf8 string and returns null on a UTF8 encoding
error rather than trap.
|
|
|
| |
See WebAssembly/stringref#58
|
|
|
|
|
|
| |
`struct` has replaced `data` in the upstream spec, so update Binaryen's types to
match. We had already supported `struct` as an alias for data, but now remove
support for `data` entirely. Also remove instructions like `ref.is_data` that
are deprecated and do not make sense without a `data` type.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
These operations are deprecated and directly representable as casts, so remove
their opcodes in the internal IR and parse them as casts instead. For now, add
logic to the printing and binary writing of RefCast to continue emitting the
legacy instructions to minimize test changes. The few test changes necessary are
because it is no longer valid to perform a ref.as_func on values outside the
func type hierarchy now that ref.as_func is subject to the ref.cast validation
rules.
RefAsExternInternalize, RefAsExternExternalize, and RefAsNonNull are left
unmodified. A future PR may remove RefAsNonNull as well, since it is also
expressible with casts.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* Replace `RefIs` with `RefIsNull`
The other `ref.is*` instructions are deprecated and expressible in terms of
`ref.test`. Update binary and text parsing to parse those instructions as
`RefTest` expressions. Also update the printing and emitting of `RefTest`
expressions to emit the legacy instructions for now to minimize test changes and
make this a mostly non-functional change. Since `ref.is_null` is the only
`RefIs` instruction left, remove the `RefIsOp` field and rename the expression
class to `RefIsNull`.
The few test changes are due to the fact that `ref.is*` instructions are now
subject to `ref.test` validation, and in particular it is no longer valid to
perform a `ref.is_func` on a value outside of the `func` type hierarchy.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The `br_on{_non}_{data,i31,func}` operations are deprecated and directly
representable in terms of the new `br_on_cast` and `br_on_cast_fail`
instructions, so remove their dedicated IR opcodes in favor of representing them
as casts. `br_on_null` and `br_on_non_null` cannot be consolidated the same way
because their behavior is not directly representable in terms of `br_on_cast`
and `br_on_cast_fail`; when the cast to null bottom type succeeds, the null
check instructions implicitly drop the null value whereas the cast instructions
would propagate it.
Add special logic to the binary writer and printer to continue emitting the
deprecated instructions for now. This will allow us to update the test suite in
a separate future PR with no additional functional changes.
Some tests are updated because the validator no longer allows passing non-func
data to `br_on_func`. Doing so has not made sense since we separated the three
reference type hierarchies.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Parse both the folded and unfolded forms of blocks and structure the code to
make supporting additional block instructions like if-else and try-catch
relatively simple.
Parsing block types is extra fun because they may implicitly define new
signature heap types via a typeuse, but only if their types are not given by a
single result type. To figuring out whether a new type may be introduced in all
the relevant parsing stages, always track at least the arity of parsed results.
The parser parses block labels, but more work will be required to support branch
instructions that use them.
|
|
|
|
|
|
|
|
|
| |
The `op` string_view was intentionally created to point into the `buf` buffer so
that reading past its end would still be safe, but some C++ standard library
implementations assert when reading past the end of a string_view. Change the
generated code to read out of `buf` instead to avoid those assertions.
Fixes #5322.
Fixes #5342.
|
|
|
|
|
|
|
| |
We previously supported only the non-standard cast instructions introduced when
we were experimenting with nominal types. Parse the names and opcodes of their
standard counterparts and switch to emitting the standard names and opcodes.
Port all of the tests to use the standard instructions, but add additional tests
showing that the non-standard versions are still parsed correctly.
|
|
|
|
|
|
|
|
|
| |
In order to test them, fix the binary and text parsers to accept passive data
segments even if a module has no memory. In addition to parsing and emitting the
new instructions, also implement their validation and interpretation. Test the
interpretation directly with wasm-shell tests adapted from the upstream spec
tests. Running the upstream spec tests directly would require fixing too many
bugs in the legacy text parser, so it will have to wait for the new text parser
to be ready.
|
|
|
|
|
|
|
|
|
|
| |
Add parsing functions for `memarg`s, the offset and align fields of load and
store instructions. These fields are interesting because they are lexically
reserved words that need to be further parsed to extract their actual values. On
top of that, add support for parsing all of the load and store instructions.
This required fixing a buffer overflow problem in the generated parser code and
adding more information to the signatures of the SIMD load and store
instructions. `SIMDLoadStoreLane` instructions are particularly interesting
because they may require backtracking to parse correctly.
|
|
|
|
|
|
|
|
|
| |
Since gen-s-parser.py is essentially a giant table mapping instruction names to
the information necessary to construct the corresponding IR nodes, there should
be no need to further parse instruction names after the code generated by
gen-s-parser.py runs. However, memory instruction parsing still parsed
instruction names to get information such as size and default alignment. The new
parser does not have the ability to parse that information out of instruction
names, so put it in the gen-s-parser.py table instead.
|
|
|
|
|
|
|
|
| |
The `makeXXX` functions that are responsible for individual instructions will
generally need the locations of those functions to emit useful errors. However,
since the instruction names are parsed before the `makeXXX` functions are
called, the functions have no good way of getting the location of the beginning
of the instruction. Fix this by explicitly passing them the location of the
beginning of the instruction.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Rather than passing both a `Ctx` and a `ParseInput` to every parsing function,
pass only a `Ctx` with a `ParseInput` inside of it. This significantly reduces
verbosity in the parser. To handle cases where parsing needs to happen at
specific locations, which used to be handled by constructing a new `ParseInput`
independent from the ctx, introduce a new RAII utility for temporarily changing
the location of the `ParseInput` inside a context.
Also add a utility for generating an error at a particular location to avoid
having to construct new `ParseInput` objects just for that purpose. This
resolves a few TODOs about correcting error locations, but since we don't test
those yet, I still consider this NFC.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
With the goal of supporting null characters (i.e. zero bytes) in strings.
Rewrite the underlying interned `IString` to store a `std::string_view` rather
than a `const char*`, reduce the number of map lookups necessary to intern a
string, and present a more immutable interface.
Most importantly, replace the `c_str()` method that returned a `const char*`
with a `toString()` method that returns a `std::string`. This new method can
correctly handle strings containing null characters. A `const char*` can still
be had by calling `data()` on the `std::string_view`, although this usage should
be discouraged.
This change is NFC in spirit, although not in practice. It does not intend to
support any particular new functionality, but it is probably now possible to use
strings containing null characters in at least some cases. At least one parser
bug is also incidentally fixed. Follow-on PRs will explicitly support and test
strings containing nulls for particular use cases.
The C API still uses `const char*` to represent strings. As strings containing
nulls become better supported by the rest of Binaryen, this will no longer be
sufficient. Updating the C and JS APIs to use pointer, length pairs is left as
future work.
|
|
|
|
| |
These new GC instructions infallibly convert between `extern` and `any`
references now that those types are not in the same hierarchy.
|
|
|
|
|
|
|
| |
RTTs were removed from the GC spec and if they are added back in in the future,
they will be heap types rather than value types as in our implementation.
Updating our implementation to have RTTs be heap types would have been more work
than deleting them for questionable benefit since we don't know how long it will
be before they are specced again.
|
| |
|
| |
|
|
|
|
| |
This measures the length of a view, so it seems simplest to make it a
sub-operation of the existing measure instruction.
|
|
|
|
|
|
|
| |
Unfortunately one slice is the same as python [start:end], using 2 params,
and the other slice is one param, [CURR:CURR+num] (where CURR is implied
by the current state in the iter). So we can't use a single class here. Perhaps
a different name would be good, like slice vs substring (like JS does), but
I picked names to match the current spec.
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Update gen-s-parser.py to produce a second version of its parsing code that
works with the new wat parser. The new version automatically replaces the `s`
element argument in the existing parser with the `ctx` and `in` arguments used
by the new parser, so adding new instructions will not require any additional
work in gen-s-parser.py after this change.
Also add stub `make***` functions to the new wat parser, with a few filled out,
namely `makeNop`, `makeUnreachable`, `makeConst`, and `makeRefNull`. Update the
`global` parser to parse global initializer instructions and update
wat-kitchen-sink.wast to demonstrate that the instructions are parsed correctly.
Adding new instruction classes will require adding a new `make***` function to
wat-parser.cpp in additional to wasm-s-parser.{h,cpp} after this change, but
adding a trivial failing implementation is good enough for the time being, so I
don't expect this to appreciably increase our maintenance burden in the near
term.
The infrastructure for parsing folded instructions, instructions with operands,
and control flow instructions will be implemented in future PRs.
|
|
|
|
|
|
|
| |
This implements it as a StringMeasure opcode. They do have the same number of
operands, same trapping behavior, and same return type. They both get a string and
do some inspection of it to return an i32. Perhaps the name could be StringInspect
or something like that, rather than StringMeasure..? But I think for now this might be
good enough, and the spec may change anyhow later.
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
| |
This is more work than a typical instruction because it also adds a new section:
all the (string.const "foo") strings are put in a new "strings" section in the binary, and
the instructions refer to them by index.
|
|
|
|
|
|
| |
This is the first instruction from the Strings proposal.
This includes everything but interpreter support.
|
|
|
|
|
| |
Update the opcodes for all relaxed SIMD instructions and remove the unsigned dot
product instructions that are no longer in the proposal.
|
|
|
|
|
|
| |
This unsafe experimental instruction is semantically equivalent to
ref.cast_static, but V8 will unsafely turn it into a nop. This is meant to help
us measure cast overhead more precisely than we can by globally turning all
casts into nops.
|
|
|
| |
As proposed in https://github.com/WebAssembly/relaxed-simd/issues/52.
|
|
|
|
| |
Other opcode ends with `Inxm` or `Fnxm` (where n and m are integers),
while `i8x16.swizzle`'s opcode name doesn't have an `I` in there.
|