| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
| |
Specified at
https://github.com/WebAssembly/half-precision/blob/main/proposals/half-precision/Overview.md
|
|
|
|
| |
Specified at
https://github.com/WebAssembly/half-precision/blob/main/proposals/half-precision/Overview.md
|
| |
|
|
|
|
| |
Specified at
https://github.com/WebAssembly/half-precision/blob/main/proposals/half-precision/Overview.md
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We marked various expressions as having cost "Unacceptable", fixed at 100, to
ensure we never moved them out from an If arm, etc. Giving them such a high
cost avoids that problem - the cost is higher than the limit we have for moving
code from conditional to unconditional execution - but it also means the total
cost is unrealistic. For example, a function with one such instruction + an add
(cost 1) would end up with cost 101, and removing the add would look
insignificant, which causes issues for things that want to compare costs
(like Monomorphization).
To fix this, adjust some costs. The main change here is to give casts a cost of 5.
I measured this in depth, see the attached benchmark scripts, and it looks
clear that in both V8 and SpiderMonkey the cost of a cast is high enough to
make it not worth turning an if with ref.test arm into a select (which would
always execute the test).
Other costs adjusted here matter a lot less, because they are on operations
that have side effects and so the optimizer will anyhow not move them from
conditional to unconditional execution, but I tried to make them a bit more
realistic while I was removing "Unacceptable":
* Give most atomic operations the 10 cost we've been using for atomic loads/
stores. Perhaps wait and notify should be slower, however, but it seems like
assuming fast switching might be more relevant.
* Give growth operations a cost of 20, and throw operations a cost of 10. These
numbers are entirely made up as I am not even sure how to measure them in
a useful way (but, again, this should not matter much as they have side
effects).
|
|
|
|
|
|
|
|
| |
Update the fuzzer to both handle shared types in initial contents and
create and use new shared types without crashing or producing invalid
modules. Since V8 does not have a complete implementation of
shared-everything-threads yet, disable fuzzing V8 when shared-everything
is enabled. To avoid losing too much coverage of V8, disable
shared-everything in the fuzzer more frequently than other features.
|
| |
|
|
|
|
| |
We previously special-cased things like GC types, but switch to a more
general solution of detecting what features a table's type requires.
|
| |
|
|
|
|
|
|
| |
Similar to #6765, but for types instead of heap types. Generalize the
logic for transforming written reference types to types that are
supported without GC so that it will automatically handle shared types
and other new types correctly.
|
|
|
|
|
|
|
|
|
|
| |
We represent `ref.null`s as having bottom heap types, even when GC is
not enabled. Bottom heap types are a feature of the GC proposal, so in
that case the binary writer needs to write the corresponding top type
instead. We previously had separate logic for this for each type
hierarchy in the binary writer, but that did not handle shared types and
would not have automatically handled other new types, either. Simplify
and generalize the implementation and test that we can write `ref.null`s
of shared types without GC enabled.
|
|
|
|
|
|
|
| |
Update the validator to reject mixed-shareability ref.eq, although this
is still under discussion in
https://github.com/WebAssembly/shared-everything-threads/issues/76. Fix
the implementation of `Literal::operator==` to work properly with shared
i31ref.
|
|
|
|
|
|
|
| |
`ref.null` of shared types should only be allowed when shared-everything
is enabled, but we were previously checking only that reference types
were enabled when validating `ref.null`. Update the code to check all
features required by the null type and factor out shared logic for
printing lists of missing feature options in error messages.
|
|
|
|
| |
The fuzzer does not yet properly handle initial contents containing
shared types.
|
|
|
|
| |
The standard name for the instruction is `ref.i31`. Remove support for
the non-standard name and update tests that were still using it.
|
|
|
|
|
|
|
| |
Implement `ref.i31_shared` the new instruction for creating references
to shared i31s. Implement binary and text parsing and emitting as well
as interpretation. Copy the upstream spec test for i31 and modify it so
that all the heap types are shared. Comment out some parts that we do
not yet support.
|
|
|
|
|
|
|
|
|
| |
Normally we use it when optimizing (above a certain level). This lets the user
prevent it from being used even then.
Also add optimization options to wasm-metadce so that this is possible
there as well and not just in wasm-opt (this also opens the door to running
more passes in metadce, which may be useful later).
|
|
|
|
|
|
|
|
|
| |
Rename instructions `extern.internalize` into `any.convert_extern` and
`extern.externalize` into `extern.convert_any` to follow more closely
the spec. This was changed in
https://github.com/WebAssembly/gc/issues/432.
The legacy name is still accepted in text inputs and in the C and JS
APIs.
|
| |
|
|
|
|
| |
Such as `ref.eq`, `i31.get_{s,u}`, and `array.len`. Also validate that
struct and array operations work on shared structs and arrays.
|
|
|
| |
And delete tests that no longer pass now that multivalue is standard.
|
|
|
|
|
| |
For 32-bit memories, the offset value must be in the u32 range. Update
the address.wast spec test to assert that a module with an overlarge
offset value is invalid rather than malformed.
|
|
|
|
|
|
| |
Add an `isUTF8` utility and use it in both the text and binary parsers.
Add missing checks for overlong encodings and overlarge code points in
our WTF8 reader, which the new utility uses. Re-enable the spec tests
that test UTF-8 validation.
|
|
|
|
|
| |
The unused bits must be a sign extension of the significant value, but we were
previously only validating that unsigned LEBs had their unused bytes set to
zero. Re-enable the spec test that checks for proper validation.
|
|
|
| |
And re-enable the globals.wast spec test, which checks this.
|
|
|
|
|
|
| |
Fix the wast parser to accept IDs on quoted modules, remove tests that are
invalidated by the multimemory proposal, and add validation that the total
number of variables in a function is less than 2^32 and that the code section is
present if there is a non-empty function section.
|
|
|
|
|
|
|
|
|
| |
When popping past an unreachable instruction would lead to popping from an empty
stack or popping an incorrect type, we need to avoid popping and produce new
Unreachable instructions instead to ensure we parse valid IR. The logic for
this was flawed and made the synthetic Unreachable come before the popped
unreachable child, which was not correct in the case that that popped
unreachable was a branch or other non-trapping instruction. Fix and simplify the
logic and re-enable the spec test that uncovered the bug.
|
|
|
|
|
|
| |
The stack buffer overflow is occurring because memcpy(buf, op.data(),
op.size()); can write up to op.size() bytes into buf, but buf is only 33
bytes long. If op.size() is greater than 33, this will result in a
buffer overflow.
|
|
|
|
|
|
| |
Rather than treating them as custom sections. Also fix UB where invalid
`Section` enum values could be used as keys in a map. Use the raw `uint8_t`
section IDs as keys instead. Re-enable a disabled spec test that was failing
because of this bug and UB.
|
|
|
|
|
| |
Re-triage all the disabled spec tests and re-enable many of them.
Improve the module splitting logic to correctly handle (by skipping)
quoted modules and their associated assertions.
|
|
|
|
| |
Also update the parser so that implicit type uses are not matched with shared
function types.
|
|
|
|
|
| |
Remove `SExpressionParser`, `SExpressionWasmBuilder`, and `cashew::Parser`.
Simplify gen-s-parser.py. Remove the --new-wat-parser and
--deprecated-wat-parser flags.
|
|
|
|
| |
faster (#6623)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This makes us compliant with the wasm spec by adding a cast: we use the refined
type for br_if fallthrough values, and the wasm spec uses the branch target. If the
two differ, we add a cast after the br_if to make things match.
Alternatively we could match the wasm spec's typing in our IR, but we hope the wasm
spec will improve here, and so this is will only be temporary in that case. Even if not,
this is useful because by using the most refined type in the IR we optimize in the best
way possible, and only suffer when we emit fixups in the binary, but in practice those
cases are very rare: br_if is almost always dropped rather than used, in real-world
code (except for fuzz cases and exploits).
We check carefully when a br_if value is actually used (and not dropped) and its type
actually differs, and it does not already have a cast. The last condition ensures that
we do not keep adding casts over repeated roundtripping.
|
|
|
|
|
|
| |
The stringref proposal has been superseded by the imported JS strings proposal,
but the former has many more operations than the latter. To reduce complexity,
remove all operations that are part of stringref but not part of imported
strings.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The stringview types from the stringref proposal have three irregularities that
break common invariants and require pervasive special casing to handle properly:
they are supertypes of `none` but not subtypes of `any`, they cannot be the
targets of casts, and they cannot be used to construct nullable references. At
the same time, the stringref proposal has been superseded by the imported
strings proposal, which does not have these irregularities. The cost of
maintaing and improving our support for stringview types is no longer worth the
benefit of supporting them.
Simplify the code base by entirely removing the stringview types and related
instructions that do not have analogues in the imported strings proposal and do
not make sense in the absense of stringviews.
Three remaining instructions, `stringview_wtf16.get_codeunit`,
`stringview_wtf16.slice`, and `stringview_wtf16.length` take stringview operands
in the stringref proposal but cannot be removed because they lower to operations
from the imported strings proposal. These instructions are changed to take
stringref operands in Binaryen IR, and to allow a graceful upgrade path for
users of these instructions, the text and binary parsers still accept but ignore
`string.as_wtf16`, which is the instruction used to convert stringrefs to
stringviews. The binary writer emits code sequences that use scratch locals and `string.as_wtf16` to keep the output valid.
Future PRs will further align binaryen with the imported strings proposal
instead of the stringref proposal, for example by making `string` a subtype of
`extern` instead of a subtype of `any` and by removing additional instructions
that do not have analogues in the imported strings proposal.
|
|
|
|
| |
NFC (#6580)
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As of
https://chromium-review.googlesource.com/c/v8/v8/+/5471674
V8 requires stringviews to be non-nullable. It might be possible to make that
change in our IR, or to remove views entirely, but for now this PR makes the
fuzzer stop emitting nullable stringviews as a workaround to allow us to fuzz
current V8.
There are still rare corner cases where this pattern is emitted, that we have
not tracked down, and so this also makes the fuzzer ignore the error for now.
|
|
|
| |
The bug that had been preventing this fuzzing no longer reproduces.
|
|
|
|
|
|
|
| |
With this we emit strings spontaneously (as opposed to just getting them from
initial contents).
The relevant -ttf test has been tweaked slightly to show the impact of this
change: now there are some string.new/const in the output.
|
|
|
|
|
|
|
|
|
| |
limitation (#6483)
The VM limitation might be an OOM (which can change due to opts) or an
atomic wait (which can hang on proper VMs with support). We already
avoided running VMs on the optimized wasm in this case, but we still
ran them on the original wasm, which this changes, mainly to avoid that
atomic wait situation.
|
|
|
|
|
|
| |
When the interpreter sees that most exports simply trap we mark the
iteration as ignored. But we run the interpreter on the before wasm
and also the after wasm, so we were incrementing that counter by 2
each time, which could be misleading.
|
|
|
|
|
|
|
|
|
|
|
| |
Previously we printed strings as WTF-8 in the output of fuzz-exec, but this
could produce invalid unicode output and did not make unprintable characters
visible. Fix both these problems by escaping the output, using the JSON string
escape procedure since the string to be escaped is WTF-16. Reimplement the same
escaping procedure in fuzz_shell.js so that the way we print strings when
running on a real JS engine matches the way we print them in our own fuzz-exec
interpreter.
Fixes #6435.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
WTF-16, i.e. arbitrary sequences of 16-bit values, is the encoding of Java and
JavaScript strings, and using the same encoding makes the interpretation of
string operations trivial, even when accounting for non-ascii characters.
Specifically, use little-endian WTF-16.
Re-encode string constants from WTF-8 to WTF-16 in the parsers, then back to
WTF-8 in the writers. Update the constructor for string `Literal`s to interpret
the string as WTF-16 and store a sequence of WTF-16 code units, i.e. 16-bit
integers. Update `Builder::makeConstantExpression` accordingly to convert from
the new `Literal` string representation back to a WTF-16 string.
Update the interpreter to remove the logic for detecting non-ascii characters
and bailing out. The naive implementations of all the string operations are
correct now that our string encoding matches the JS string encoding.
|
|
|
|
| |
The test file was renamed, but the fuzzer still used the old name in
INITIAL_CONTENTS_IGNORE.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This PR is part of a series that adds basic support for the [typed
continuations/wasmfx proposal](https://github.com/wasmfx/specfx).
This particular PR adds support for the `suspend` instruction for suspending
with a given tag, documented
[here](https://github.com/wasmfx/specfx/blob/main/proposals/continuations/Overview.md#instructions).
These instructions are of the form `(suspend $tag)`. Assuming that `$tag` is
defined with _n_ `param` types `t_1` to `t_n`, the instruction consumes _n_
arguments of types `t_1` to `t_n`. Its result type is the same as the `result`
type of the tag. Thus, the folded textual representation looks like
`(suspend $tag arg1 ... argn)`.
Support for the instruction is implemented in both the old and the new wat
parser.
Note that this PR does not implement validation of the new instruction.
This PR also fixes finalization of `cont.new`, `cont.bind` and `resume` nodes in
those cases where any of their children are unreachable.
|
|
|
|
|
|
|
|
| |
This is fallout from #6310 where we moved to use fuzz_shell.js for all fuzzing
purposes. That script doesn't know wasm types, all it has on the JS side is the
number of arguments to a function, and it passes in null for them all
regardless of their type. That normally works fine - null is cast to the right
type upon use - but in wasm2js optimized builds we can remove casts,
which can make that noticeable.
|
|
|
|
|
|
|
|
|
|
| |
As part of our running of spec tests, we split out each module in a test script
into a separate text file for processing with wasm-opt. We previously included
the test assertions corresponding to the module into that text file, where they
were ignored by the legacy text parser. The new parser errors out due to the
extra tokens after the module, though, so to avoid problems once we switch to
the new parser, stop including the assertions in those text files.
Also remove a nearby unused argument as a drive-by cleanup.
|