| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
| |
exists (#4991)
If it exists, just turn it into an import. If not, then as before we create it + turn it into
an import.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Those instructions need to know if the memory is 64-bit or not. We looked that
up on the module globally, which is convenient, but in the C API this was actually
a breaking change, it turns out. To keep things working, provide that information
when creating a MemoryGrow or MemorySize, as another parameter in the C
API. In the C++ API (wasm-builder), support both modes, and default to the
automatic lookup.
We already require a bunch of other explicit info when creating expressions, like
making a Call requires the return type (we don't look it up globally), and even a
LocalGet requires the local type (we don't look it up on the function), so this is
consistent with those.
Fixes #4946
|
|
|
|
|
|
| |
Resolving a couple of issues from the multi-memories PR landing:
Use memName as parameter label instead of name #4916
Add helper func for case of a single memory to binaryen-c #4917
|
|
|
|
|
|
|
| |
The GC proposal has split `any` and `extern` back into two separate types, so
reintroduce `HeapType::ext` to represent `extern`. Before it was originally
removed in #4633, externref was a subtype of anyref, but now it is not. Now that
we have separate heaptype type hierarchies, make `HeapType::getLeastUpperBound`
fallible as well.
|
|
|
|
|
|
|
| |
This PR removes the single memory restriction in IR, adding support for a single module to reference multiple memories. To support this change, a new memory name field was added to 13 memory instructions in order to identify the memory for the instruction.
It is a goal of this PR to maintain backwards compatibility with existing text and binary wasm modules, so memory indexes remain optional for memory instructions. Similarly, the JS API makes assumptions about which memory is intended when only one memory is present in the module. Another goal of this PR is that existing tests behavior be unaffected. That said, tests must now explicitly define a memory before invoking memory instructions or exporting a memory, and memory names are now printed for each memory instruction in the text format.
There remain quite a few places where a hardcoded reference to the first memory persist (memory flattening, for example, will return early if more than one memory is present in the module). Many of these call-sites, particularly within passes, will require us to rethink how the optimization works in a multi-memories world. Other call-sites may necessitate more invasive code restructuring to fully convert away from relying on a globally available, single memory pointer.
|
|
|
|
|
|
|
| |
RTTs were removed from the GC spec and if they are added back in in the future,
they will be heap types rather than value types as in our implementation.
Updating our implementation to have RTTs be heap types would have been more work
than deleting them for questionable benefit since we don't know how long it will
be before they are specced again.
|
|
|
| |
Introduces the necessary APIs to use the type builder from C. Enables construction of compound heap types (arrays, structs and signatures) that may be recursive, including assigning concrete names to the built types and, in case of structs, their fields.
|
|
|
| |
Avoids a "may fall through" warning.
|
|
|
|
|
|
| |
We already require non-null literals to have non-null types, but with this
change we can enforce that constraint by construction. Also remove the default
behavior of creating a function reference literal with heap type `func`, since
there is always a more specific function type to use.
|
|
|
| |
Make the C API match the JS API and fix an old bug where extra newlines were emitted.
|
| |
|
| |
|
|
|
|
|
|
|
|
|
| |
Basic reference types like `Type::funcref`, `Type::anyref`, etc. made it easy to
accidentally forget to handle reference types with the same basic HeapTypes but
the opposite nullability. In principle there is nothing special about the types
with shorthands except in the binary and text formats. Removing these shorthands
from the internal type representation by removing all basic reference types
makes some code more complicated locally, but simplifies code globally and
encourages properly handling both nullable and non-nullable reference types.
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
| |
This starts to implement the Wasm Strings proposal
https://github.com/WebAssembly/stringref/blob/main/proposals/stringref/Overview.md
This just adds the types.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* Updating wasm.h/cpp for DataSegments
* Updating wasm-binary.h/cpp for DataSegments
* Removed link from Memory to DataSegments and updated module-utils, Metrics and wasm-traversal
* checking isPassive when copying data segments to know whether to construct the data segment with an offset or not
* Removing memory member var from DataSegment class as there is only one memory rn. Updated wasm-validator.cpp
* Updated wasm-interpreter
* First look at updating Passes
* Updated wasm-s-parser
* Updated files in src/ir
* Updating tools files
* Last pass on src files before building
* added visitDataSegment
* Fixing build errors
* Data segments need a name
* fixing var name
* ran clang-format
* Ensuring a name on DataSegment
* Ensuring more datasegments have names
* Adding explicit name support
* Fix fuzzing name
* Outputting data name in wasm binary only if explicit
* Checking temp dataSegments vector to validateBinary because it's the one with the segments before we processNames
* Pass on when data segment names are explicitly set
* Ran auto_update_tests.py and check.py, success all around
* Removed an errant semi-colon and corrected a counter. Everything still passes
* Linting
* Fixing processing memory names after parsed from binary
* Updating the test from the last fix
* Correcting error comment
* Impl kripken@ comments
* Impl tlively@ comments
* Updated tests that remove data print when == 0
* Ran clang format
* Impl tlively@ comments
* Ran clang-format
|
|
|
|
|
|
|
|
| |
BinaryenModulePrintStackIR: similar to BinaryenModulePrint
BinaryenModuleWriteStackIR: similar to BinaryenModuleWriteText
BinaryenModuleAllocateAndWriteStackIR: similar to BinaryenModuleAllocateAndWriteText
|
|
|
| |
Based on #3573 plus minor fixes
|
|
|
|
|
|
|
|
| |
Taking a Type is redundant as we only care about the heap type -
the nullability must be Nullable.
This avoids needing an assertion in the function, that is, it makes
the API more type-safe.
|
|
|
|
|
|
| |
Remove `Type::externref` and `HeapType::ext` and replace them with uses of
anyref and any, respectively, now that we have unified these types in the GC
proposal. For backwards compatibility, continue to parse `extern` and
`externref` and maintain their relevant C API functions.
|
|
|
|
| |
Other opcode ends with `Inxm` or `Fnxm` (where n and m are integers),
while `i8x16.swizzle`'s opcode name doesn't have an `I` in there.
|
|
|
| |
See https://github.com/WebAssembly/extended-const
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
class (#4479)
As recently discussed, the interpreter code is way too complex. Trying to add
ctor-eval stuff I need, I got stuck and ended up spending some time to get rid
of some of the complexity.
We had a ModuleInstanceBase class which was basically an instance of a
module, that is, an execution of it. And internally we have RuntimeExpressionRunner
which is a runner that integrates with the ModuleInstanceBase - basically, it uses
the runtime info to execute code. For example, the MIB has globals info, and the
RER would read it from there.
But these two classes are really just one functionality - an execution of a module.
We get rid of some complexity by removing the separation between them, ending
up with a class that can run a module.
One set of problems we avoid is that we can now extend the single class in a
simple way. Before, we would need to extend both - and inform each other of
those changes. That gets "fun" with CRTP which we use everywhere. In other
words, each of the two classes depended on the other / would need to be
templated on the other. Specifically, MIB.callFunction would need to be given
the RER to run with, and so that would need to be templated on it. This ends up
leading to a bunch more templating all around - all complexity that we just
don't need. See the simplification to the wasm-ctor-eval for some of that (and
even worse complexity would have been needed without this PR in the next
steps for that tool to eval GC stuff).
The final single class is now called ModuleRunner.
Also fixes a pre-existing issue uncovered by this PR. We had the delegate
target on the runner, but it should be tied to a function scope. This happened
to not be a problem if one always created a new runner for each scope, but
this PR makes the runner longer-lived, so the stale data ended up mattering.
The PR moves that data to the proper place.
Note: Diff without whitespace is far, far smaller.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Since https://github.com/emscripten-core/emscripten/pull/15905 landed
emscripten now includes its own dummy atexit function when building with
EXIT_RUNTIME=0.
This dummy function conflicts with the emscripten-provided one:
```
wasm-ld: error: duplicate symbol: atexit
>>> defined in CMakeFiles/binaryen_wasm.dir/src/binaryen-c.cpp.o
>>> defined in ...wasm32-emscripten/lto/libnoexit.a(atexit_dummy.o)
```
Normally overriding symbols from libc does not causes issues but one
needs to be sure to override all the symbols in a given object file so
that the object in question (atexit_dummy.o) does not get linked in. In
this case some other symbol being defined in in atexit_dummy.o (e.g.
__cxa_atexit) is likely the cause of the conflict.
Overriding symbols from libc is likely to break in this way as the libc
evolves, and since emscripten is now providing a dummy, just as we want,
its better/safer to simply remove our dummy.
|
|
|
| |
All other numXxxs argument use BinaryenIndex type.
|
|
|
|
|
|
|
|
|
|
|
|
| |
With nominal function types, this change makes it so that we preserve the
identity of the function type used with call_indirect instructions rather than
recreating a function heap type, which may or may not be the same as the
originally parsed heap type, from the function signature during module writing.
This will simplify the type system implementation by removing the need to store
a "canonical" nominal heap type for each unique signature. We previously
depended on those canonical types to avoid creating multiple duplicate function
types during module writing, but now we aren't creating any new function types
at all.
|
| |
|
| |
|
|
|
|
|
| |
`BinaryenTableSizeSetTable` was being declared in the header correctly, but defined
as `BinaryenTableSetSizeTable`. Add test for `BinaryenTableSizeGetTable` and
`BinaryenTableSizeSetTable`.
|
| |
|
| |
|
| |
|
|
|
|
|
|
| |
Before this, the element segments would be printed as having type
funcref, and then if their table had a specialized type, the element
type would not be a subtype of the table and validation would fail.
|
|
|
|
|
|
|
|
|
|
|
| |
This finishes the refactoring started in #4115 by doing the
same change to pass a Module into EffectAnalyzer instead of
features. To do so this refactors the fallthrough API and a few
other small things. After those changes, this PR removes the
old feature constructor of EffectAnalyzer entirely.
This requires a small breaking change in the C API, changing
BinaryenExpressionGetSideEffects's feature param to a
module. That makes this change not NFC, but otherwise it is.
|
|
|
| |
In the JS API this is optional and it defaults to `funcref`.
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As suggested in
https://github.com/WebAssembly/binaryen/pull/3955#issuecomment-871016647
This applies commandline features first. If the features section is present, and
disallows some of them, then we warn. Otherwise, the features can combine
(for example, a wasm may enable feature X because it has to use it, and a user
can simply add the flag for feature Y if they want the optimizer to try to use it;
both flags will then be enabled).
This is important because in some cases we need to know the features before
parsing the wasm, in the case that the wasm does not use the features section.
In particular, non-nullable GC locals have an effect during parsing. (Typed
function references also does, but we found a way to apply its effect all the time,
that is, always use the refined type, and that happened to not break the case
where the feature is disabled - but such a workaround is not possible with
non-nullable locals.)
To make this less error-prone, add a FeatureSet input as a parameter to
WasmBinaryBuilder. That is, when building a module, we must give it the
features to use while doing so.
This will unblock #3955 . That PR will also add a test for the actual usage
of a feature during loading (the test can only be added there, after that PR
unbreaks things).
|
|
|
|
|
|
|
|
|
| |
When using nominal types, func.ref of two functions with identical signatures
but different HeapTypes will yield different types. To preserve these semantics,
Functions need to track their HeapTypes, not just their Signatures.
This PR replaces the Signature field in Function with a HeapType field and adds
new utility methods to make it almost as simple to update and query the function
HeapType as it was to update and query the Function Signature.
|
|
|
|
|
|
|
|
|
| |
This removes `attribute` field from `Tag` class, making the reserved and
unused field known only to binary encoder and decoder. This also removes
the `attribute` parameter from `makeTag` and `addTag` methods in
wasm-builder.h, C API, and Binaryen JS API.
Suggested in
https://github.com/WebAssembly/binaryen/pull/3946#pullrequestreview-687756523.
|
|
|
|
|
|
|
|
|
|
|
| |
We recently decided to change 'event' to 'tag', and to 'event section'
to 'tag section', out of the rationale that the section contains a
generalized tag that references a type, which may be used for something
other than exceptions, and the name 'event' can be confusing in the web
context.
See
- https://github.com/WebAssembly/exception-handling/issues/159#issuecomment-857910130
- https://github.com/WebAssembly/exception-handling/pull/161
|
|
|
|
|
|
|
|
|
|
|
| |
These files are special in that they use define symbols that are not
defined within those files or other files included in those files; they
are supposed to be defined in source files that include these headers.
This has caused clang-tidy to fail every time these files have changed
because they are not compilable per se.
This PR solves the problem by changing their extension to `def`, which
is also used in LLVM codebase. LLVM has dozens of files like this whose
extension is `def`, which makes these not checked by clang-tidy.
|
| |
|
|
|
| |
Via the C API.
|
|
|
| |
Becomes BinaryenElementSegmentIsPassive
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is a rewrite of the wasm-shell tool, with the goal of improved
compatibility with the reference interpreter and the spec test suite.
To facilitate that, module instances are provided with a list of linked
instances, and imported objects are looked up in the correct instance.
The new shell can:
- register and link modules using the (register ...) command.
- parse binary modules with the syntax (module binary ...).
- provide the "spectest" module defined in the reference interpreter
- assert instantiation traps with assert_trap
- better check linkability by looking up the linked instances in
- assert_unlinkable
It cannot call external function references that are not direct imports.
That would require bigger changes.
|
|
|
|
|
|
|
|
|
| |
Renames the SIMD instructions
* LoadExtSVec8x8ToVecI16x8 -> Load8x8SVec128
* LoadExtUVec8x8ToVecI16x8 -> Load8x8UVec128
* LoadExtSVec16x4ToVecI32x4 -> Load16x4SVec128
* LoadExtUVec16x4ToVecI32x4 -> Load16x4UVec128
* LoadExtSVec32x2ToVecI64x2 -> Load32x2SVec128
* LoadExtUVec32x2ToVecI64x2 -> Load32x2UVec128
|
|
|
|
|
|
|
|
|
| |
Renames the SIMD instructions
* LoadSplatVec8x16 -> Load8SplatVec128
* LoadSplatVec16x8 -> Load16SplatVec128
* LoadSplatVec32x4 -> Load32SplatVec128
* LoadSplatVec64x2 -> Load64SplatVec128
* Load32Zero -> Load32ZeroVec128
* Load64Zero -> Load64ZeroVec128
|