| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
| |
Each pass instance can now store an argument for it, which can be different.
This may be a breaking change for the corner case of running a pass multiple
times and setting the pass's argument multiple times as well (before, the last
pass argument affected them all; now, it affects the last instance only). This
only affects arguments with the name of a pass; others remain global, as
before (and multiple passes can read them, in fact). See the CHANGELOG for
details.
Fixes #6646
|
|
|
|
| |
This code predates our adoption of C++14 and can now be removed in favor of
`std::make_unique`, which should be more efficient.
|
|
|
|
| |
This makes it possible to get the JSPI'ed version of the function from the
function table.
|
|
|
|
|
|
|
|
|
|
| |
When using JSPI with wasm-split, any calls to secondary module functions
will now first check a global to see if the module is loaded. If not
loaded it will call a JSPI'ed function that will handle loading module.
The setup is split into the JSPI pass and wasm-split tool since the JSPI
pass is first run by emscripten and we need to JSPI'ify the load secondary
module function. wasm-split then injects all the checks and calls to the
load function.
|
|
|
|
|
|
|
|
|
|
| |
Instead of automatically determining which exports will be async they will
be explicitly set by the user. We'll rely on the runtime trapping if they
are incorrectly set.
Two new arguments that behave similar to asyncify-imports:
- jspi-imports
- jspi-exports
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
With the goal of supporting null characters (i.e. zero bytes) in strings.
Rewrite the underlying interned `IString` to store a `std::string_view` rather
than a `const char*`, reduce the number of map lookups necessary to intern a
string, and present a more immutable interface.
Most importantly, replace the `c_str()` method that returned a `const char*`
with a `toString()` method that returns a `std::string`. This new method can
correctly handle strings containing null characters. A `const char*` can still
be had by calling `data()` on the `std::string_view`, although this usage should
be discouraged.
This change is NFC in spirit, although not in practice. It does not intend to
support any particular new functionality, but it is probably now possible to use
strings containing null characters in at least some cases. At least one parser
bug is also incidentally fixed. Follow-on PRs will explicitly support and test
strings containing nulls for particular use cases.
The C API still uses `const char*` to represent strings. As strings containing
nulls become better supported by the rest of Binaryen, this will no longer be
sufficient. Updating the C and JS APIs to use pointer, length pairs is left as
future work.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
These types, `none`, `nofunc`, and `noextern` are uninhabited, so references to
them can only possibly be null. To simplify the IR and increase type precision,
introduce new invariants that all `ref.null` instructions must be typed with one
of these new bottom types and that `Literals` have a bottom type iff they
represent null values. These new invariants requires several additional changes.
First, it is now possible that the `ref` or `target` child of a `StructGet`,
`StructSet`, `ArrayGet`, `ArraySet`, or `CallRef` instruction has a bottom
reference type, so it is not possible to determine what heap type annotation to
emit in the binary or text formats. (The bottom types are not valid type
annotations since they do not have indices in the type section.)
To fix that problem, update the printer and binary emitter to emit unreachables
instead of the instruction with undetermined type annotation. This is a valid
transformation because the only possible value that could flow into those
instructions in that case is null, and all of those instructions trap on nulls.
That fix uncovered a latent bug in the binary parser in which new unreachables
within unreachable code were handled incorrectly. This bug was not previously
found by the fuzzer because we generally stop emitting code once we encounter an
instruction with type `unreachable`. Now, however, it is possible to emit an
`unreachable` for instructions that do not have type `unreachable` (but are
known to trap at runtime), so we will continue emitting code. See the new
test/lit/parse-double-unreachable.wast for details.
Update other miscellaneous code that creates `RefNull` expressions and null
`Literals` to maintain the new invariants as well.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously only WalkerPasses had access to the `getPassRunner` and
`getPassOptions` methods. Move those methods to `Pass` so all passes can use
them. As a result, the `PassRunner` passed to `Pass::run` and
`Pass::runOnFunction` is no longer necessary, so remove it.
Also update `Pass::create` to return a unique_ptr, which is more efficient than
having it return a raw pointer only to have the `PassRunner` wrap that raw
pointer in a `unique_ptr`.
Delete the unused template `PassRunner::getLast()`, which looks like it was
intended to enable retrieving previous analyses and has been in the code base
since 2015 but is not implemented anywhere.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Fixes: https://github.com/emscripten-core/emscripten/issues/17846
More detailed explanation of the issue from Thibaud:
- A promising export is entered, generating a suspender s1, which is stored in the global
- The wasm code calls a wrapped import, passing it the value in the global (s1) and suspends
- Another export is entered, generating suspender s2, which is stored in the global
- We call another wrapped import, which suspends s2 (so far so good)
- We return to the event loop and s1 is resumed
And now we are in an inconsistent state: the active suspender is "s1", but the object in the global is "s2".
So the next time we call a wrapped import, there is a mismatch, which is what this runtime error reports.
|
|
Add a pass that wraps all imports and exports with functions that handle
storing and passing along the suspender externref needed for JSPI.
https://github.com/WebAssembly/js-promise-integration/blob/main/proposals/js-promise-integration/Overview.md
|