summaryrefslogtreecommitdiff
path: root/src/passes/PrintCallGraph.cpp
Commit message (Collapse)AuthorAgeFilesLines
* Refactor interaction between Pass and PassRunner (#5093)Thomas Lively2022-09-301-1/+1
| | | | | | | | | | | | | | Previously only WalkerPasses had access to the `getPassRunner` and `getPassOptions` methods. Move those methods to `Pass` so all passes can use them. As a result, the `PassRunner` passed to `Pass::run` and `Pass::runOnFunction` is no longer necessary, so remove it. Also update `Pass::create` to return a unique_ptr, which is more efficient than having it return a raw pointer only to have the `PassRunner` wrap that raw pointer in a `unique_ptr`. Delete the unused template `PassRunner::getLast()`, which looks like it was intended to enable retrieving previous analyses and has been in the code base since 2015 but is not implemented anywhere.
* Modernize code to C++17 (#3104)Max Graey2021-11-221-2/+1
|
* [RT] Support expressions in element segments (#3666)Abbas Mashayekh2021-03-241-6/+5
| | | | | | This PR adds support for `ref.null t` as a valid element segment item. The abbreviated format of `(elem ... func $f $g...)` is kept in both printing and binary emitting if all items are `ref.func`s. Public APIs aren't updated in this PR.
* [reference-types] Support passive elem segments (#3572)Abbas Mashayekh2021-03-051-6/+4
| | | | | | | | | | | Passive element segments do not belong to any table, so the link between Table and elem needs to be weaker; i.e. an elem may have a table in case of active segments, or simply be a collection of function references in case of passive/declarative segments. This PR takes Table::Segment out and turns it into a first class module element just like tables and functions. It also implements early support for parsing, printing, encoding and decoding passive/declarative elem segments.
* [reference-types] remove single table restriction in IR (#3517)Abbas Mashayekh2021-02-091-4/+6
| | | Adds support for modules with multiple tables. Adds a field for the table name to `CallIndirect` and updates the C/JS APIs accordingly.
* clang-tidy braces changes (#2075)Alon Zakai2019-05-011-1/+2
| | | Applies the changes in #2065, and temprarily disables the hook since it's too slow to run on a change this large. We should re-enable it in a later commit.
* Apply format changes from #2048 (#2059)Alon Zakai2019-04-261-20/+25
| | | Mass change to apply clang-format to everything. We are applying this in a PR by me so the (git) blame is all mine ;) but @aheejin did all the work to get clang-format set up and all the manual work to tidy up some things to make the output nicer in #2048
* Unify imported and non-imported things (#1678)Alon Zakai2018-09-191-21/+14
| | | | | | | | | | | | | | Fixes #1649 This moves us to a single object for functions, which can be imported or nor, and likewise for globals (as a result, GetGlobals do not need to check if the global is imported or not, etc.). All imported things now inherit from Importable, which has the module and base of the import, and if they are set then it is an import. For convenient iteration, there are a few helpers like ModuleUtils::iterDefinedGlobals(wasm, [&](Global* global) { .. use global .. }); as often iteration only cares about imported or defined (non-imported) things.
* Stack IR (#1623)Alon Zakai2018-07-301-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | This adds a new IR, "Stack IR". This represents wasm at a very low level, as a simple stream of instructions, basically the same as wasm's binary format. This is unlike Binaryen IR which is structured and in a tree format. This gives some small wins on binary sizes, less than 1% in most cases, usually 0.25-0.50% or so. That's not much by itself, but looking forward this prepares us for multi-value, which we really need an IR like this to be able to optimize well. Also, it's possible there is more we can do already - currently there are just a few stack IR optimizations implemented, DCE local2stack - check if a set_local/get_local pair can be removed, which keeps the set's value on the stack, which if the stars align it can be popped instead of the get. Block removal - remove any blocks with no branches, as they are valid in wasm binary format. Implementation-wise, the IR is defined in wasm-stack.h. A new StackInst is defined, representing a single instruction. Most are simple reflections of Binaryen IR (an add, a load, etc.), and just pointers to them. Control flow constructs are expanded into multiple instructions, like a block turns into a block begin and end, and we may also emit extra unreachables to handle the fact Binaryen IR has unreachable blocks/ifs/loops but wasm does not. Overall, all the Binaryen IR differences with wasm vanish on the way to stack IR. Where this IR lives: Each Function now has a unique_ptr to stack IR, that is, a function may have stack IR alongside the main IR. If the stack IR is present, we write it out during binary writing; if not, we do the same binaryen IR => wasm binary process as before (this PR should not affect speed there). This design lets us use normal Passes on stack IR, in particular this PR defines 3 passes: Generate stack IR Optimize stack IR (might be worth splitting out into separate passes eventually) Print stack IR for debugging purposes Having these as normal passes is convenient as then they can run in parallel across functions and all the other conveniences of our current Pass system. However, a downside of keeping the second IR as an option on Functions, and using normal Passes to operate on it, means that we may get out of sync: if you generate stack IR, then modify binaryen IR, then the stack IR may no longer be valid (for example, maybe you removed locals or modified instructions in place etc.). To avoid that, Passes now define if they modify Binaryen IR or not; if they do, we throw away the stack IR. Miscellaneous notes: Just writing Stack IR, then writing to binary - no optimizations - is 20% slower than going directly to binary, which is one reason why we still support direct writing. This does lead to some "fun" C++ template code to make that convenient: there is a single StackWriter class, templated over the "mode", which is either Binaryen2Binary (direct writing), Binaryen2Stack, or Stack2Binary. This avoids a lot of boilerplate as the 3 modes share a lot of code in overlapping ways. Stack IR does not support source maps / debug info. We just don't use that IR if debug info is present. A tiny text format comment (if emitting non-minified text) indicates stack IR is present, if it is ((; has Stack IR ;)). This may help with debugging, just in case people forget. There is also a pass to print out the stack IR for debug purposes, as mentioned above. The sieve binaryen.js test was actually not validating all along - these new opts broke it in a more noticeable manner. Fixed. Added extra checks in pass-debug mode, to verify that if stack IR should have been thrown out, it was. This should help avoid any confusion with the IR being invalid. Added a comment about the possible future of stack IR as the main IR, depending on optimization results, following some discussion earlier today.
* notation change: AST => IR (#1245)Alon Zakai2017-10-241-1/+2
| | | The IR is indeed a tree, but not an "abstract syntax tree" since there is no language for which it is the syntax (except in the most trivial and meaningless sense).
* Default Walker subclasses to using Visitor<SubType> (#921)jgravelle-google2017-02-231-1/+1
| | | | Most module walkers use PostWalker<T, Visitor<T>>, let that pattern be expressed as simply PostWalker<T>
* Print long string in one call (#864)Loo Rong Jie2017-01-031-12/+12
|
* Work around dot quirks related to updating node styles. Remove indirect call ↵Michael Bebenita2016-11-011-26/+21
| | | | edges as they greatly increase the size of the graph. (#818)
* Adds a pass to print call graphs in .dot (graphviz) format. (#794)Michael Bebenita2016-10-201-0/+115