| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
That was needed for super-old wasm type system, where we allowed
(block $x
(br_if $x
(unreachable)
(nop)
)
)
That is, we differentiated "taken" branches from "named" ones (just
referred to by name, but not actually taken as it's in unreachable code).
We don't need to differentiate those any more. Remove the ReFinalize
code that considered it, and also remove the named/taken distinction in
other places.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Adds the ability to create multivalue types from vectors of concrete value
types. All types are transparently interned, so their representation is still a
single uint32_t. Types can be extracted into vectors of their component parts,
and all the single value types expand into vectors containing themselves.
Multivalue types are not yet used in the IR, but their creation and inspection
functionality is exposed and tested in the C and JS APIs.
Also makes common type predicates methods of Type and improves the ergonomics of
type printing.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously `StackWriter` and its subclasses had routines for all three
modes (`Binaryen2Binary`, `Binaryen2Stack`, and `Stack2Binary`) within a
single class. This splits routines for each in a separate class and
also factors out binary writing into a separate class
(`BinaryInstWriter`) so other classes can make use of it.
The new classes are:
- `BinaryInstWriter`:
Binary instruction writer. Only responsible for emitting binary
contents and no other logic
- `BinaryenIRWriter`: Converts binaryen IR into something else
- `BinaryenIRToBinaryWriter`: Writes binaryen IR to binary
- `StackIRGenerator`: Converts binaryen IR to stack IR
- `StackIRToBinaryWriter`: Writes stack IR to binary
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- Reflected new renamed instruction names in code and tests:
- `get_local` -> `local.get`
- `set_local` -> `local.set`
- `tee_local` -> `local.tee`
- `get_global` -> `global.get`
- `set_global` -> `global.set`
- `current_memory` -> `memory.size`
- `grow_memory` -> `memory.grow`
- Removed APIs related to old instruction names in Binaryen.js and added
APIs with new names if they are missing.
- Renamed `typedef SortedVector LocalSet` to `SetsOfLocals` to prevent
name clashes.
- Resolved several TODO renaming items in wasm-binary.h:
- `TableSwitch` -> `BrTable`
- `I32ConvertI64` -> `I32WrapI64`
- `I64STruncI32` -> `I64SExtendI32`
- `I64UTruncI32` -> `I64UExtendI32`
- `F32ConvertF64` -> `F32DemoteI64`
- `F64ConvertF32` -> `F64PromoteF32`
- Renamed `BinaryenGetFeatures` and `BinaryenSetFeatures` to
`BinaryenModuleGetFeatures` and `BinaryenModuleSetFeatures` for
consistency.
|
|
|
| |
Applies the changes in #2065, and temprarily disables the hook since it's too slow to run on a change this large. We should re-enable it in a later commit.
|
|
|
| |
Mass change to apply clang-format to everything. We are applying this in a PR by me so the (git) blame is all mine ;) but @aheejin did all the work to get clang-format set up and all the manual work to tidy up some things to make the output nicer in #2048
|
|
|
|
|
|
| |
Automated renaming according to
https://github.com/WebAssembly/spec/issues/884#issuecomment-426433329.
|
|
|
| |
This now makes --generate-stack-ir --print-stack-ir emit a fully valid .wat wasm file, in stacky format.
|
|
This adds a new IR, "Stack IR". This represents wasm at a very low level, as a simple stream of instructions, basically the same as wasm's binary format. This is unlike Binaryen IR which is structured and in a tree format.
This gives some small wins on binary sizes, less than 1% in most cases, usually 0.25-0.50% or so. That's not much by itself, but looking forward this prepares us for multi-value, which we really need an IR like this to be able to optimize well. Also, it's possible there is more we can do already - currently there are just a few stack IR optimizations implemented,
DCE
local2stack - check if a set_local/get_local pair can be removed, which keeps the set's value on the stack, which if the stars align it can be popped instead of the get.
Block removal - remove any blocks with no branches, as they are valid in wasm binary format.
Implementation-wise, the IR is defined in wasm-stack.h. A new StackInst is defined, representing a single instruction. Most are simple reflections of Binaryen IR (an add, a load, etc.), and just pointers to them. Control flow constructs are expanded into multiple instructions, like a block turns into a block begin and end, and we may also emit extra unreachables to handle the fact Binaryen IR has unreachable blocks/ifs/loops but wasm does not. Overall, all the Binaryen IR differences with wasm vanish on the way to stack IR.
Where this IR lives: Each Function now has a unique_ptr to stack IR, that is, a function may have stack IR alongside the main IR. If the stack IR is present, we write it out during binary writing; if not, we do the same binaryen IR => wasm binary process as before (this PR should not affect speed there). This design lets us use normal Passes on stack IR, in particular this PR defines 3 passes:
Generate stack IR
Optimize stack IR (might be worth splitting out into separate passes eventually)
Print stack IR for debugging purposes
Having these as normal passes is convenient as then they can run in parallel across functions and all the other conveniences of our current Pass system. However, a downside of keeping the second IR as an option on Functions, and using normal Passes to operate on it, means that we may get out of sync: if you generate stack IR, then modify binaryen IR, then the stack IR may no longer be valid (for example, maybe you removed locals or modified instructions in place etc.). To avoid that, Passes now define if they modify Binaryen IR or not; if they do, we throw away the stack IR.
Miscellaneous notes:
Just writing Stack IR, then writing to binary - no optimizations - is 20% slower than going directly to binary, which is one reason why we still support direct writing. This does lead to some "fun" C++ template code to make that convenient: there is a single StackWriter class, templated over the "mode", which is either Binaryen2Binary (direct writing), Binaryen2Stack, or Stack2Binary. This avoids a lot of boilerplate as the 3 modes share a lot of code in overlapping ways.
Stack IR does not support source maps / debug info. We just don't use that IR if debug info is present.
A tiny text format comment (if emitting non-minified text) indicates stack IR is present, if it is ((; has Stack IR ;)). This may help with debugging, just in case people forget. There is also a pass to print out the stack IR for debug purposes, as mentioned above.
The sieve binaryen.js test was actually not validating all along - these new opts broke it in a more noticeable manner. Fixed.
Added extra checks in pass-debug mode, to verify that if stack IR should have been thrown out, it was. This should help avoid any confusion with the IR being invalid.
Added a comment about the possible future of stack IR as the main IR, depending on optimization results, following some discussion earlier today.
|