| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
| |
We previously printed the size of the tuple operand as the arity, but that
printed `1` when the operand is unreachable. We don't allow our text input to
use `1` as the arity, so don't print it, either. Instead, print the smallest
valid arity, `2`, in this case.
|
|
|
|
|
|
| |
In #6480 I forgot that StructGet can be signed, which means we need to emit
a sign-extend.
Arrays already copied the field as part of Array2Struct.
|
|
|
|
|
| |
Use the previous implementation when no return_call is in a try block. This
avoids moving code around (as a sibling of the caller body or the inlined body),
so that should allow more local optimizations after inlining.
|
|
|
|
|
|
| |
Previously we did not optimize a struct or an array with a packed field. As a result a
single packed field in a struct prevented the entire struct from being localized,
which this fixes. This is also useful for arrays as packed arrays are common (e.g. for
string data).
|
|
|
|
|
|
|
|
|
|
|
|
| |
To keep things simple, this adds a Array2Struct component to the pass. When we
find a non-escaping array, we run that to turn it into a struct, and then run the
existing Struct2Local to convert that to locals. This avoids refactoring Struct2Local
to handle both structs and arrays (with the downside of making the optimization of
arrays a little less efficient, but they are rarer, I suspect - that is certainly the case
in Java output I've seen).
The core EscapeAnalyzer logic is generalized to handle both arrays and structs,
but the changes there are thankfully quite minor.
|
|
|
|
| |
#6457 added a test that exposed existing nondeterminism.
|
|
|
|
| |
Treat them the same as returns and test that they can be folded out of try-catch
blocks because they do not have throws effects.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is a combined commit covering multiple PRs fixing the handling of return
calls in different areas. The PRs are all landed as a single commit to ensure
internal consistency and avoid problems with bisection.
Original PR descriptions follow:
* Fix inlining of `return_call*` (#6448)
Previously we transformed return calls in inlined function bodies into normal
calls followed by branches out to the caller code. Similarly, when inlining a
`return_call` callsite, we simply added a `return` after the body inlined at the
callsite. These transformations would have been correct if the semantics of
return calls were to call and then return, but they are not correct for the
actual semantics of returning and then calling.
The previous implementation is observably incorrect for return calls inside try
blocks, where the previous implementation would run the inlined body within the
try block, but the proper semantics would be to run the inlined body outside the
try block.
Fix the problem by transforming inlined return calls to branches followed by
calls rather than as calls followed by branches. For the case of inlined return
call callsites, insert branches out of the original body of the caller and
inline the body of the callee as a sibling of the original caller body. For the
other case of return calls appearing in inlined bodies, translate the return
calls to branches out to calls inserted as siblings of the original inlined
body.
In both cases, it would have been convenient to use multivalue block return to
send call parameters along the branches to the calls, but unfortunately in our
IR that would have required tuple-typed scratch locals to unpack the tuple of
operands at the call sites. It is simpler to just use locals to propagate the
operands in the first place.
* Fix interpretation of `return_call*` (#6451)
We previously interpreted return calls as calls followed by returns, but that is
not correct both because it grows the size of the execution stack and because it
runs the called functions in the wrong context, which can be observable in the
case of exception handling.
Update the interpreter to handle return calls correctly by adding a new
`RETURN_CALL_FLOW` that behaves like a return, but carries the arguments and
reference to the return-callee rather than normal return values.
`callFunctionInternal` is updated to intercept this flow and call return-called
functions in a loop until a function returns with some other kind of flow.
Pull in the upstream spec tests return_call.wast, return_call_indirect.wast, and
return_call_ref.wast with light editing so that we parse and validate them
successfully.
* Handle return calls in wasm-ctor-eval (#6464)
When an evaluated export ends in a return call, continue evaluating the
return-called function. This requires propagating the parameters, handling the
case that the return-called function might be an import, and fixing up local
indices in case the final function has different parameters than the original
function.
* Update effects.h to handle return calls correctly (#6470)
As far as their surrounding code is concerned return calls are no different from
normal returns. It's only from a caller's perspective that a function containing
a return call also has the effects of the return-callee. To model this more
precisely in EffectAnalyzer, stash the throw effect of return-callees on the
side and only merge it in at the end when analyzing the effects of a full
function body.
|
|
|
|
| |
Helps emscripten-core/emscripten#17380 by logging all the reasons why we
instrument a function, and not just the first as we did before.
|
|
|
|
|
|
| |
Separate out an EscapeAnalyzer class that does the escape analysis,
and a Struct2Local one that does the optimization.
Also make a few things const here to be safer.
|
|
|
|
|
| |
The new asyncify flag --pass-arg=asyncify-propagate-addlist changes the
behavior of --pass-arg=asyncify-addlist : with it, callers of functions in the
asyncify-addlist will be also instrumented.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
This change removes the "minimal" mode from `LegalizeJSInterface`
which was added in #1883.
The idea behind this change was to avoid legalizing most function except
those we know that JS will be calling. The idea was that for dynamic
linking we always want the non-legalized version to be shared between
wasm module. These days we solve this problem in a different way with
the `legalize-js-interface-export-originals` which exports the original
functions alongside the legalized ones. Emscripten then always
prefers the `$orig` functions when doing dynamic linking.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
WTF-16, i.e. arbitrary sequences of 16-bit values, is the encoding of Java and
JavaScript strings, and using the same encoding makes the interpretation of
string operations trivial, even when accounting for non-ascii characters.
Specifically, use little-endian WTF-16.
Re-encode string constants from WTF-8 to WTF-16 in the parsers, then back to
WTF-8 in the writers. Update the constructor for string `Literal`s to interpret
the string as WTF-16 and store a sequence of WTF-16 code units, i.e. 16-bit
integers. Update `Builder::makeConstantExpression` accordingly to convert from
the new `Literal` string representation back to a WTF-16 string.
Update the interpreter to remove the logic for detecting non-ascii characters
and bailing out. The naive implementations of all the string operations are
correct now that our string encoding matches the JS string encoding.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The only StringEncode we support is the one that writes into an array, so it
has the same effects as ArrayCopy. Precompute needs to be made aware of
such side effects in a manual manner (as we already do for ArrayCopy etc.):
it simply tries to execute code in the interpreter, and if it succeeds it replaces;
it does not check for side effects (checking for side effects would prevent
optimizing cases where the side effects do not happen, as we check them
statically, e.g. dividing by a non-zero constant does not trap but a division
would be seen as having a potential trap effect).
I verified no other string operation is hit by this: all the others
emit or operate on immutable strings; it is just StringEncode that is basically
an Array operation that appears in the Strings proposal.)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The pass does (among other things) this:
(if
condition
X
X
)
=>
(block
(drop
condition
)
X ;; deduplicated
)
After that the condition is now nested in a block, so we may need EH fixups
if it contains a pop.
|
|
|
|
|
|
|
|
| |
This reverts commit 70ac213fce134840609190a5d3a18118a089ba8a.
Reverts #6412
On second thought we found a way to make fixing this less urgent, and the
code size downsides of this are worrying, so let's revert it.
|
|
|
|
| |
Our UTF implementation is still not fully stable it seems as we have reports of
issues. Disable it for now.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This PR is part of a series that adds basic support for the [typed
continuations/wasmfx proposal](https://github.com/wasmfx/specfx).
This particular PR adds support for the `suspend` instruction for suspending
with a given tag, documented
[here](https://github.com/wasmfx/specfx/blob/main/proposals/continuations/Overview.md#instructions).
These instructions are of the form `(suspend $tag)`. Assuming that `$tag` is
defined with _n_ `param` types `t_1` to `t_n`, the instruction consumes _n_
arguments of types `t_1` to `t_n`. Its result type is the same as the `result`
type of the tag. Thus, the folded textual representation looks like
`(suspend $tag arg1 ... argn)`.
Support for the instruction is implemented in both the old and the new wat
parser.
Note that this PR does not implement validation of the new instruction.
This PR also fixes finalization of `cont.new`, `cont.bind` and `resume` nodes in
those cases where any of their children are unreachable.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
effects (#6395)
Before this PR, when we saw a param was unused we sometimes could not remove it.
For example, if there was one call like this:
(call $target
(call $other)
)
That nested call has effects, so we can't just remove it from the outer call - we'd need to
move it first. That motion was hard to integrate which was why it was left out, but it
turns out that is sometimes very important. E.g. in Java it is common to have such calls
that send the this parameter as the result of another call; not being able to remove such
params meant we kept those nested calls alive, creating empty structs just to have
something to send there.
To fix this, this builds on top of #6394 which makes it easier to move all children out of
a parent, leaving only nested things that can be easily moved around and removed. In
more detail, DeadArgumentElimination/SignaturePruning track whether we run into effects that
prevent removing a field. If we do, then we queue an operation to move the children
out, which we do using a new utility ParamUtils::localizeCallsTo. The pass then does
another iteration after that operation.
Alternatively we could try to move things around immediately, but that is quite hard:
those passes already track a lot of state. It is simpler to do the fixup in an entirely
separate utility. That does come at the cost of the utility doing another pass on the
module and the pass itself running another iteration, but this situation is not the most
common.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is NFC in the current users, but is necessary functionality for a later
PR.
ChildLocalizer moves children into locals as needed. It used to stop when it
saw the first unreachable. After this change we move such unreachable
children out of the parent as well, making this more uniform: all interacting
effects are moved out, and all that is left nested in the parent can be
moved around and removed as desired.
Also add a getReplacement helper that makes using this easier.
This cannot be tested comprehensively with the current user as that user
will not call this code path on an unreachable parent at all, so this just
adds what can be tested. The later PR will have tests for all corner cases.
|
| |
|
|
|
|
|
|
|
| |
When instructions cannot be printed because the children from which they are
supposed to get their type immediates are unreachable or null, we print blocks
of their dropped children followed by unreachables. But the logic for making
this happen was more complicated than necessary and in fact included dead code.
Clean it up.
|
|
|
|
|
|
|
|
|
| |
When the bulk array ops had unreachable or null array types, they were replaced
with blocks, but not using the correct code that also prints all their children
as dropped followed by an unreachable. This meant that the text output in those
cases did not parse as a valid module.
Fix the bug. A follow-up PR will simplify the code to prevent similar bugs from
occurring in the future.
|
|
|
|
|
|
|
| |
Previously we just printed the offset instruction(s) directly, which is a valid
shorthand only when there is a single instruction. In the case of extended
constant instructions, there can potentially be multiple instructions, in which
case the explicit `offset` clause is required. Print the full clause when
necessary.
|
| |
|
|
|
| |
See #6373
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This PR is part of a series that adds basic support for the [typed
continuations/wasmfx proposal](https://github.com/wasmfx/specfx).
This particular PR adds support for the `cont.bind` instruction for partially
applying continuations, documented
[here](https://github.com/wasmfx/specfx/blob/main/proposals/continuations/Overview.md#instructions).
In short, these instructions are of the form `(cont.bind $ct_before $ct_after)`
where `$ct_before` and `$ct_after` are related continuation types. They must
only differ in the number of arguments, where `$ct_before` has _n_ additional
parameters as compared to `$ct_after`, for some _n_ ≥ 0. The idea is that
`(cont.bind $ct_before $ct_after)` then takes a reference to a continuation of
type `$ct_before` as well as _n_ operands and returns a (reference to a)
continuation of type `$ct_after`. Thus, the folded textual representation looks
like `(cont.bind $ct_before $ct_after arg1 ... argn c)`.
Support for the instruction is implemented in both the old and the new wat
parser.
Note that this PR does not implement validation of the new instruction.
|
| |
|
|
|
|
|
|
|
|
|
|
| |
In some cases we don't print an Expression in full if it is unreachable, so
we print something instead as a placeholder. This happens in unreachable
code when the children don't provide enough info to print the parent (e.g.
a StructGet with an unreachable reference doesn't know what struct type
to use).
This PR prints out the name of the Expression type of such things, which
can help debugging sometimes.
|
|
|
|
|
|
|
| |
(#6359)
I audited all of SubtypingDiscoverer for flow/non-flow constraints and added
some comments to clarify things for our future selves if we ever need to
generalize it.
|
|
|
| |
Adds new visitBreakWithType and visitSwitchWithType functions to the IRBuilder API. These functions work around an assumption in IRBuilder that the module is being traversed in the fully nested format, i.e., that the destination scope of a break or switch has been visited before visiting the break or switch. Instead, the type of the destination scope is passed to IRBuilder.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When we do a local.set of a value into a local then we have both a subtyping constraint - for
the value to be valid to put in that local - and also a flow of a value, which can then reach
more places. Such flow then interacts with casts in Unsubtyping, since it needs to know
what can flow where in order to know how casts force us to keep subtyping relations.
That regressed in the not-actually-NFC #6323 in which I added the innocuous lines
to add subtyping constraints in ref.eq. It seems fine to require that the arms of a
RefEq must be of type eqref, but Unsubtyping then assuming those arms flowed into
a location of type eqref... which means casts might force us to not optimize some
things.
To fix this, differentiate the rare case of non-flowing subtyping constraints, which is
basically only RefEq. There are perhaps a few more cases (like i31 operations) but they
do not matter in practice for Unsubtyping anyhow; I suggest we land this first to undo
the regression and then at our leisure investigate the other instructions.
|
|
|
|
| |
Previously we lowered this to `getCodePointAt`, which has different semantics
around surrogate pairs.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This PR is part of a series that adds basic support for the [typed
continuations/wasmfx proposal](https://github.com/wasmfx/specfx).
This particular PR adds support for the `cont.new` instruction for creating
continuations, documented [here(https://github.com/wasmfx/specfx/blob/main/proposals/continuations/Overview.md#instructions).
In short, these instructions are of the form `(cont.new $ct)` where `$ct` must
be a continuation type. The instruction takes a single (nullable) function
reference as its argument, which means that the folded representation of the
instruction is of the form `(cont.new $ct (foo ...))`.
Support for the instruction is implemented in both the old and the new wat
parser.
Note that this PR does not implement validation of the new instruction.
|
|
|
|
|
| |
A constant is either fixed up immediately, or does not need a call. This makes us
slightly faster in the fuzzer, but does not change behavior as before those calls all
ended up doing nothing (as the numbers were not nans).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We already have passes to legalize i64 imports and exports, which the fuzzer will
run so that we can run wasm files in JS VMs. SIMD and multivalue also pose a
problem as they trap on the boundary. In principle we could legalize them as well,
but that is substantial effort, so instead just prune them: given a wasm module,
remove any imports or exports that use SIMD or multivalue (or anything else that
is not legal for JS).
Running this in the fuzzer will allow us to not skip running v8 on any testcase we
enable SIMD and multivalue for.
(Multivalue is allowed in newer VMs, so that part of this PR could be removed
eventually.)
Also remove the limitation on running v8 with multimemory (v8 now supports
that).
|
| |
|
|
|
|
|
|
|
|
| |
This replaces horrible hacks to find which nulls need to switch (from none to
noext) with general code using SubtypingDiscoverer. That helper is aware of
where each expression is written, so we can find those nulls trivially.
This is NFC on existing usage but should fix any remaining bugs with null
constants.
|
|
|
|
| |
Also add an end-to-end test using node to verify we can parse the escaped
content properly using TextDecoder+JSON.parse.
|
| |
|
| |
|
|
|
| |
StringAs's output must be non-nullable, so add a cast.
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
The input module might use an array of 16-bit elements type that is somewhere in a
giant rec group, but that is not valid for imported strings: that array type is now on an
import and must match the expected ABI, which is to be in its own personal rec group.
The old array16 type remains in the module after this transformation, but all uses of it
are replaced with uses of the new array16 type.
Also move makeImports to after updateTypes: there are no types to update in the new
imports. That does not matter but it can make debugging less pleasant, so improve it.
|
|
|
|
|
| |
Replacing the string heap type with extern is dangerous as they do not share top/bottom
types. In practice this works out almost everywhere except for a few ifs, which we can fix
up as a hack for now.
|
|
|
|
| |
We want to actually remove all stringref appearances, in both public and
private types.
|
|
|
| |
Arrays have immutable length, so we can optimize them like immutable fields.
|
| |
|