| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
| |
The GC proposal has split `any` and `extern` back into two separate types, so
reintroduce `HeapType::ext` to represent `extern`. Before it was originally
removed in #4633, externref was a subtype of anyref, but now it is not. Now that
we have separate heaptype type hierarchies, make `HeapType::getLeastUpperBound`
fallible as well.
|
|
|
|
|
|
|
| |
This PR removes the single memory restriction in IR, adding support for a single module to reference multiple memories. To support this change, a new memory name field was added to 13 memory instructions in order to identify the memory for the instruction.
It is a goal of this PR to maintain backwards compatibility with existing text and binary wasm modules, so memory indexes remain optional for memory instructions. Similarly, the JS API makes assumptions about which memory is intended when only one memory is present in the module. Another goal of this PR is that existing tests behavior be unaffected. That said, tests must now explicitly define a memory before invoking memory instructions or exporting a memory, and memory names are now printed for each memory instruction in the text format.
There remain quite a few places where a hardcoded reference to the first memory persist (memory flattening, for example, will return early if more than one memory is present in the module). Many of these call-sites, particularly within passes, will require us to rethink how the optimization works in a multi-memories world. Other call-sites may necessitate more invasive code restructuring to fully convert away from relying on a globally available, single memory pointer.
|
|
|
|
|
|
|
| |
RTTs were removed from the GC spec and if they are added back in in the future,
they will be heap types rather than value types as in our implementation.
Updating our implementation to have RTTs be heap types would have been more work
than deleting them for questionable benefit since we don't know how long it will
be before they are specced again.
|
|
|
|
|
|
|
|
|
| |
Basic reference types like `Type::funcref`, `Type::anyref`, etc. made it easy to
accidentally forget to handle reference types with the same basic HeapTypes but
the opposite nullability. In principle there is nothing special about the types
with shorthands except in the binary and text formats. Removing these shorthands
from the internal type representation by removing all basic reference types
makes some code more complicated locally, but simplifies code globally and
encourages properly handling both nullable and non-nullable reference types.
|
|
|
|
|
|
|
|
| |
This starts to implement the Wasm Strings proposal
https://github.com/WebAssembly/stringref/blob/main/proposals/stringref/Overview.md
This just adds the types.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* Updating wasm.h/cpp for DataSegments
* Updating wasm-binary.h/cpp for DataSegments
* Removed link from Memory to DataSegments and updated module-utils, Metrics and wasm-traversal
* checking isPassive when copying data segments to know whether to construct the data segment with an offset or not
* Removing memory member var from DataSegment class as there is only one memory rn. Updated wasm-validator.cpp
* Updated wasm-interpreter
* First look at updating Passes
* Updated wasm-s-parser
* Updated files in src/ir
* Updating tools files
* Last pass on src files before building
* added visitDataSegment
* Fixing build errors
* Data segments need a name
* fixing var name
* ran clang-format
* Ensuring a name on DataSegment
* Ensuring more datasegments have names
* Adding explicit name support
* Fix fuzzing name
* Outputting data name in wasm binary only if explicit
* Checking temp dataSegments vector to validateBinary because it's the one with the segments before we processNames
* Pass on when data segment names are explicitly set
* Ran auto_update_tests.py and check.py, success all around
* Removed an errant semi-colon and corrected a counter. Everything still passes
* Linting
* Fixing processing memory names after parsed from binary
* Updating the test from the last fix
* Correcting error comment
* Impl kripken@ comments
* Impl tlively@ comments
* Updated tests that remove data print when == 0
* Ran clang format
* Impl tlively@ comments
* Ran clang-format
|
|
|
|
|
|
|
|
| |
#4659 adds a testcase with an import of (ref $struct). This could cause an error in
the fuzzer, since it wants to remove imports (because the various fuzzers cannot pass
in custom imports - they want to just run the wasm). When it tries to remove that
import it tries to create a constant for a struct reference, and fails. To fix that, add
enough support to create structs and arrays at least in the simple case where all their
fields are defaultable.
|
|
|
| |
This just moves code around + adds assertions.
|
| |
|
|
|
|
|
|
| |
With only reference types but not GC, we cannot easily create a constant
for eqref for example. Only GC adds i31.new etc. To avoid assertions in
the fuzzer, avoid randomly picking (ref eq) etc., that is, keep it nullable
so that we can emit a (ref.null eq) if we need a constant value of that type.
|
|
|
|
|
|
| |
Also improve comments.
As suggested in #4647
|
|
|
|
|
|
|
|
|
|
| |
Diff without whitespace is smaller.
We can't emit HeapType::data without GC. Fixing that by switching to func,
another problem was uncovered: makeRefFuncConst had a TODO to handle
the case where we need a function to refer to but have created none yet. In
fact that TODO was done at the end of the function. Fix up the logic in
between to actually get there.
|
|
|
|
|
|
| |
* Don't emit "i31" or "data" if GC is not enabled, as only the GC feature adds those.
* Don't emit "any" without GC either. While it is allowed, fuzzer limitations prevent
this atm (see details in comment - it's fixable).
|
|
|
|
|
|
| |
Remove `Type::externref` and `HeapType::ext` and replace them with uses of
anyref and any, respectively, now that we have unified these types in the GC
proposal. For backwards compatibility, continue to parse `extern` and
`externref` and maintain their relevant C API functions.
|
|
|
|
| |
Randomly selecting a depth is ok for structural typing, but in nominal it
must match the actual hierarchy of types.
|
|
|
|
| |
Other opcode ends with `Inxm` or `Fnxm` (where n and m are integers),
while `i8x16.swizzle`'s opcode name doesn't have an `I` in there.
|
|
|
|
|
|
|
|
|
| |
This enables fuzzing EH with initial contents. fuzzing.cpp/h does not
yet support generation of EH instructions, but with this we can still
fuzz EH based on initial contents.
The fuzzer ran successfully for more than 1,900,000 iterations, with my
local modification that always enables EH and lets the fuzzer select
only EH tests for its initial contents.
|
|
|
|
|
|
|
|
|
|
|
|
| |
With nominal function types, this change makes it so that we preserve the
identity of the function type used with call_indirect instructions rather than
recreating a function heap type, which may or may not be the same as the
originally parsed heap type, from the function signature during module writing.
This will simplify the type system implementation by removing the need to store
a "canonical" nominal heap type for each unique signature. We previously
depended on those canonical types to avoid creating multiple duplicate function
types during module writing, but now we aren't creating any new function types
at all.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add a new fuzzer binary that repeatedly generates random types to find bugs in
the type system implementation. Each iteration creates some number of root types
followed by some number of subtypes thereof. Each built type can contain
arbitrary references to other built types, regardless of their order of
construction.
Right now the fuzzer only finds fatal errors in type building (and in its own
implementation), but it is meant to be extended to check other properties in the
future, such as that LUB calculations work as expected.
The logic for creating types is also intended to be integrated into the main
fuzzer in a follow-on PR so that the main fuzzer can fuzz with arbitrarily more
interesting GC types.
|
|
|
|
|
| |
Generate both nullable and non-nullable references to basic HeapTypes and
introduce `i31` and `data` HeapTypes. Generate subtypes rather than exact types
for all concrete-typed children.
|
|
|
|
| |
In preparation for using it from a separate file specifically for generating
random HeapTypes that has no need to depend on all of fuzzing.h.
|
|
Having a monolithic header file containing all the implementation meant there
was no good way to split up the code or introduce new files. The new
implementation file and source directory will make it much easier to add new
fuzzing functionality in new files.
|