summaryrefslogtreecommitdiff
path: root/src/tools/spec-wrapper.h
Commit message (Collapse)AuthorAgeFilesLines
* [Fuzzer] Simplify the hang limit mechanism (#5513)Alon Zakai2023-02-231-2/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Previously the idea was that we started with HANG_LIMIT = 10 or so, and we'd decrement it by one in each potentially-recursive call and loop entry. When we reached 0 we'd start to unwind the stack. Then, after we unwound it all the way, we'd reset HANG_LIMIT before calling the next export. That approach adds complexity that each "execution wrapper", like for JS or for --fuzz-exec, had to manually reset HANG_LIMIT. That was done by calling an export. Calls to those exports had to appear in various places, which is sort of a hack. The new approach here does the following when the hang limit reaches zero: It resets HANG_LIMIT, and it traps. The trap unwinds the call stack all the way out. When the next export is called, it will have a fresh hang limit since we reset it before the trap. This does have downsides. Before, we did not always trap when we hit the hang limit but rather we'd emit something unreachable, like a return. The idea was that we'd leave the current function scope at least, so we don't hang forever. That let us still execute a small amount of code "on the way out" as we unwind the stack. I'm not sure it's worth the complexity for that. The advantages of this PR are to simplify the code, and also it makes more fuzzing approaches easy to implement. I'd like to add a wasm-ctor-eval fuzzer, and having to add hacks to call the hang limit init export in it would be tricky. With this PR, the execution model is simple in the fuzzer: The exports are called one by one, in order, and that's it - no extra magic execution needs to be done. Also bump the hang limit from 10 to 100, just to give some more chance for code to run.
* Make `Name` a pointer, length pair (#5122)Thomas Lively2022-10-111-1/+1
| | | | | | | | | | | | | | | | | | | | | | | With the goal of supporting null characters (i.e. zero bytes) in strings. Rewrite the underlying interned `IString` to store a `std::string_view` rather than a `const char*`, reduce the number of map lookups necessary to intern a string, and present a more immutable interface. Most importantly, replace the `c_str()` method that returned a `const char*` with a `toString()` method that returns a `std::string`. This new method can correctly handle strings containing null characters. A `const char*` can still be had by calling `data()` on the `std::string_view`, although this usage should be discouraged. This change is NFC in spirit, although not in practice. It does not intend to support any particular new functionality, but it is probably now possible to use strings containing null characters in at least some cases. At least one parser bug is also incidentally fixed. Follow-on PRs will explicitly support and test strings containing nulls for particular use cases. The C API still uses `const char*` to represent strings. As strings containing nulls become better supported by the rest of Binaryen, this will no longer be sufficient. Updating the C and JS APIs to use pointer, length pairs is left as future work.
* Remove basic reference types (#4802)Thomas Lively2022-07-201-12/+0
| | | | | | | | | Basic reference types like `Type::funcref`, `Type::anyref`, etc. made it easy to accidentally forget to handle reference types with the same basic HeapTypes but the opposite nullability. In principle there is nothing special about the types with shorthands except in the binary and text formats. Removing these shorthands from the internal type representation by removing all basic reference types makes some code more complicated locally, but simplifies code globally and encourages properly handling both nullable and non-nullable reference types.
* [Strings] Add string proposal types (#4755)Alon Zakai2022-06-291-2/+1
| | | | | | | | This starts to implement the Wasm Strings proposal https://github.com/WebAssembly/stringref/blob/main/proposals/stringref/Overview.md This just adds the types.
* Remove externref (#4633)Thomas Lively2022-05-041-3/+0
| | | | | | Remove `Type::externref` and `HeapType::ext` and replace them with uses of anyref and any, respectively, now that we have unified these types in the GC proposal. For backwards compatibility, continue to parse `extern` and `externref` and maintain their relevant C API functions.
* Preserve Function HeapTypes (#3952)Thomas Lively2021-06-301-2/+2
| | | | | | | | | When using nominal types, func.ref of two functions with identical signatures but different HeapTypes will yield different types. To preserve these semantics, Functions need to track their HeapTypes, not just their Signatures. This PR replaces the Signature field in Function with a HeapType field and adds new utility methods to make it almost as simple to update and query the function HeapType as it was to update and query the Function Signature.
* cleanup to allow binaryen to be built in more strict environments (#3566)walkingeyerobot2021-02-161-0/+3
|
* Remove exnref and br_on_exn (#3505)Heejin Ahn2021-01-221-3/+0
| | | This removes `exnref` type and `br_on_exn` instruction.
* [GC] Add dataref type (#3500)Alon Zakai2021-01-211-0/+2
| | | | | This is not 100% of everything, but is enough to get tests passing, which includes full binary and text format support, getting all switches to compile without error, and some additions to InstrumentLocals.
* GC: Integrate eqref and i31ref types (#3141)Daniel Wirtz2020-09-191-0/+5
| | | Adds the `eqref` and `i31ref` types to their respective code locations. Implements what can be implemented trivially and otherwise traps with a TODO for now. Integration of `eqref` is mostly complete due to it being nullable, just like `anyref`, but `i31ref` needs to remain disabled in the fuzzer because we are lacking the functionality to create trivial `i31ref` values, i.e. `(i31.new (i32.const 0))`, which is left for follow-ups to implement.
* Add anyref feature and type (#3109)Daniel Wirtz2020-09-101-0/+3
| | | Adds `anyref` type, which is enabled by a new feature `--enable-anyref`. This type is primarily used for testing that passes correctly handle subtype relationships so that the codebase will continue to be prepared for future subtyping. Since `--enable-anyref` is meaningless without also using `--enable-reference-types`, this PR also makes it a validation error to pass only the former (and similarly makes it a validation error to enable exception handling without enabling reference types).
* Update reference types (#3084)Daniel Wirtz2020-09-091-2/+5
| | | | | | | Align with the current state of the reference types proposal: * Remove `nullref` * Remove `externref` and `funcref` subtyping * A `Literal` of a nullable reference type can now represent `null` (previously was type `nullref`) * Update the tests and temporarily comment out those tests relying on subtyping
* Use const modifier when dealing with types (#3064)Daniel Wirtz2020-08-201-1/+1
| | | Since they make the code clearer and more self-documenting.
* Replace Type::expand() with an iterator-based approach (#3061)Daniel Wirtz2020-08-191-1/+1
| | | This leads to simpler code and is a prerequisite for #3012, which makes it so that not all `Type`s are backed by vectors that `expand` could return.
* Prepare for compound types that are single but not basic (#3046)Daniel Wirtz2020-08-171-1/+2
| | | | | | | | | | | | | | As a follow-up to https://github.com/WebAssembly/binaryen/pull/3012#pullrequestreview-459686171 this PR prepares for the new compound Signature, Struct and Array types that are single but not basic. This includes: * Renames `Type::getSingle` to `Type::getBasic` (NFC). Previously, its name was not representing its implementation (`isSingle` excluded `none` and `unreachable` while `getSingle` didn't, i.e. `getSingle` really was `getBasic`). Note that a hypothetical `Type::getSingle` cannot return `ValueType` anyway (new compound types are single but don't map to `ValueType`), so I figured it's best to skip implementing it until we actually need it. * Marks locations where we are (still) assuming that all single types are basic types, as suggested in https://github.com/WebAssembly/binaryen/pull/3012#discussion_r465356708, but using a macro, so we get useful errors once we start implementing the new types and can quickly traverse the affected locations. The macro is added where * there used to be a `switch (type.getSingle())` or similar that handled any basic type (NFC), but in the future will also have to handle single types that are not basic types. * we are not dealing with `Unary`, `Binary`, `Load`, `Store` or `AtomicXY` instructions, since these don't deal with compound types anyway.
* Rename anyref to externref to match proposal change (#2900)Jay Phelps2020-06-101-1/+1
| | | | | | | anyref future semantics were changed to only represent opaque host values, and thus renamed to externref. [Chromium](https://bugs.chromium.org/p/v8/issues/detail?id=7748#c360) was just updated to today (not yet released). I couldn't find a Mozilla bugzilla ticket mentioning externref so I don't immediately know if they've updated yet. https://github.com/WebAssembly/reference-types/pull/87
* Remove implicit conversion operators from Type (#2577)Thomas Lively2020-01-081-1/+1
| | | | | | | | | | * Remove implicit conversion operators from Type Now types must be explicitly converted to uint32_t with Type::getID or to ValueType with Type::getVT. This fixes #2572 for switches that use Type::getVT. * getVT => getSingle
* [NFC] Enforce use of `Type::` on type names (#2434)Thomas Lively2020-01-071-11/+11
|
* Add support for reference types proposal (#2451)Heejin Ahn2019-12-301-2/+6
| | | | | | | | | | | | This adds support for the reference type proposal. This includes support for all reference types (`anyref`, `funcref`(=`anyfunc`), and `nullref`) and four new instructions: `ref.null`, `ref.is_null`, `ref.func`, and new typed `select`. This also adds subtype relationship support between reference types. This does not include table instructions yet. This also does not include wasm2js support. Fixes #2444 and fixes #2447.
* Remove FunctionType (#2510)Thomas Lively2019-12-111-1/+1
| | | | | | | | | | | | | | | | | Function signatures were previously redundantly stored on Function objects as well as on FunctionType objects. These two signature representations had to always be kept in sync, which was error-prone and needlessly complex. This PR takes advantage of the new ability of Type to represent multiple value types by consolidating function signatures as a pair of Types (params and results) stored on the Function object. Since there are no longer module-global named function types, significant changes had to be made to the printing and emitting of function types, as well as their parsing and manipulation in various passes. The C and JS APIs and their tests also had to be updated to remove named function types.
* Add string parameter to WASM_UNREACHABLE (#2499)Sam Clegg2019-12-051-1/+1
| | | | | This works more like llvm's unreachable handler in that is preserves information even in release builds.
* Add initial support for anyref as an opaque type (#2294)Jay Phelps2019-08-201-0/+1
| | | | | | | | | | | | | Another round of trying to push upstream things from my fork. This PR only adds support for anyref itself as an opaque type. It does NOT implement the full [reference types proposal](https://github.com/WebAssembly/reference-types/blob/master/proposals/reference-types/Overview.md)--so no table.get/set/grow/etc or ref.null, ref.func, etc. Figured it was easier to review and merge as we go, especially if I did something fundamentally wrong. *** I did put it under the `--enable-reference-types` flag as I imagine that even though this PR doesn't complete the full feature set, it probably is the right home. Lmk if not. I'll also be adding a few github comments to places I want to point out/question.
* Rename except_ref type to exnref (#2224)Heejin Ahn2019-07-141-1/+1
| | | | In WebAssembly/exception-handling#79 we agreed to rename `except_ref` type to `exnref`.
* Add except_ref type (#2081)Heejin Ahn2019-05-071-0/+1
| | | | This adds except_ref type, which is a part of the exception handling proposal.
* clang-tidy braces changes (#2075)Alon Zakai2019-05-011-1/+2
| | | Applies the changes in #2065, and temprarily disables the hook since it's too slow to run on a change this large. We should re-enable it in a later commit.
* Apply format changes from #2048 (#2059)Alon Zakai2019-04-261-8/+21
| | | Mass change to apply clang-format to everything. We are applying this in a PR by me so the (git) blame is all mine ;) but @aheejin did all the work to get clang-format set up and all the manual work to tidy up some things to make the output nicer in #2048
* Update v128.const text formats (#1934)Thomas Lively2019-03-191-1/+1
| | | | | Parse the formats allowed by the spec proposal and emit the i32x4 canonical format.
* Fuzzing v128 and associated bug fixes (#1827)Thomas Lively2018-12-141-1/+1
| | | | * Fuzzing v128 and associated bug fixes
* Add v128 type (#1777)Thomas Lively2018-11-291-0/+1
|
* Remove default cases (#1757)Thomas Lively2018-11-271-2/+2
| | | | | | Where reasonable from a readability perspective, remove default cases in switches over types and instructions. This makes future feature additions easier by making the compiler complain about each location where new types and instructions are not yet handled.
* Rename WasmType => Type (#1398)Alon Zakai2018-02-021-1/+1
| | | | * rename WasmType to Type. it's in the wasm:: namespace anyhow, and without Wasm- it fits in better alongside Index, Address, Expression, Module, etc.
* New fuzzer (#1126)Alon Zakai2017-08-111-0/+47
This adds a new method of fuzzing, "translate to fuzz" which means we consider the input to be a stream of data that we translate into a valid wasm module. It's sort of like a random seed for a process that creates a random wasm module. By using the input that way, we can explore the space of valid wasm modules quickly, and it makes afl-fuzz integration easy. Also adds a "fuzz binary" option which is similar to "fuzz execution". It makes wasm-opt not only execute the code before and after opts, but also write to binary and read from it, helping to fuzz the binary format.