| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
| |
Adds support for modules with multiple tables. Adds a field for the table name to `CallIndirect` and updates the C/JS APIs accordingly.
|
|
|
|
|
|
|
|
| |
As proposed in https://github.com/WebAssembly/simd/pull/395. Note that the other
instructions in the proposal have not been implemented in LLVM or in V8, so
there is no need to implement them in Binaryen right now either. This PR
introduces a new expression class for the new instructions because they uniquely
take an immediate argument identifying which portion of the input vector to
widen.
|
|
|
|
|
|
|
|
| |
This expands the existing BrOnCast into BrOn that can also handle the
func/data/i31 variants. This is not as elegant as RefIs / RefAs in that BrOnCast
has an extra rtt field, but I think it is still the best option. We already have optional
fields on Break (the value and condition), so making rtt optional is not odd. And
it allows us to share all the behavior of br_on_* which aside from the cast or the
check itself, is identical - returning the value if the branch is not taken, etc.
|
|
|
|
|
|
|
|
| |
These are similar to is, but instead of returning an i32 answer, they trap on
an invalid value, and return it otherwise.
These could in theory be in a single RefDoThing, with opcodes for both As
and Is, but as the return values are different, that would be a little odd, and
the name would be less clear.
|
| |
|
|
|
|
|
|
|
|
| |
This internal refactoring prepares us for ref.is_func/data/i31, by renaming
the node and adding an "op" field. For now that field must always be "Null"
which means it is a ref.is_null.
This adjusts the C API to match the new IR shape. The high-level JS API
is unchanged.
|
|
|
| |
This removes `exnref` type and `br_on_exn` instruction.
|
|
|
|
| |
As proposed in https://github.com/WebAssembly/simd/pull/352, using the opcodes
used in the LLVM and V8 implementations.
|
|
|
|
|
| |
Also, avoid packing builtin llvm segments names so that
segments such as `__llvm_covfun` (use by llvm-cov) are
preserved in the final output.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
array.new/get/set/len - pretty straightforward after structs and all the
infrastructure for them.
Also fixes validation of the unnecessary heapType param in the
text and binary formats in structs as well as arrays.
Fixes printing of packed types in type names, which emitted i32
for them. That broke when we emitted the same name for an array
of i8 and i32 as in the new testing here.
Also fix a bug in Field::operator< which was wrong for packed
types; again, this was easy to notice with the new testing.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is the first instruction that uses a GC Struct or Array, so it's where
we start to actually need support in the interpreter for those values, which
is added here.
GC data is modeled as a gcData field on a Literal, which is just a
Literals. That is, both a struct and an array are represented as an
array of values. The type which is alongside would indicate if it's a
struct or an array. Note that the data is referred to using a shared_ptr
so it should "just work", but we'll only be able to really test that once we
add struct.new and so can verify that references are by reference and
not value, etc.
As the first instruction to care about i8/16 types (which are only possible
in a Struct or Array) this adds support for parsing and emitting them.
This PR includes fuzz fixes for some minor things the fuzzer found, including
some bad printing of not having ResultTypeName in necessary places
(found by the text format roundtripping fuzzer).
|
|
|
|
|
|
| |
This adds support in the text and binary format handling, which allows us
to have a full test of reading and writing the types.
This also adds a "name" field to struct fields, which the text format supports.
|
|
|
|
|
|
|
|
|
|
| |
Defined types in wasm are really one of the "heap types": a signature type, or
(with GC) a struct or an array type. This refactors the binary and text parsers
to load the defined types into an array of heap types, so that we can start to
parse GC types. This replaces the existing array of signature types (which
could not support a struct or an array).
Locally this PR can parse and print as text simple GC types. For that it was
necessary to also fix Type::getFeatures for GC.
|
|
|
|
|
|
|
|
| |
Includes minimal support in various passes. Also includes actual optimization
work in Directize, which was easy to add.
Almost has fuzzer support, but the actual makeCallRef is just a stub so far.
Includes s-parser support for parsing typed function references types.
|
|
|
|
|
| |
We will need this for typed function references support, as then we need
to know full function signatures for all functions when we reach a ref.func,
whose type is then that signature and not the generic funcref.
|
|
|
|
|
|
|
| |
These instructions are proposed in https://github.com/WebAssembly/simd/pull/350.
This PR implements them throughout Binaryen except in the C/JS APIs and in the
fuzzer, where it leaves TODOs instead. Right now these instructions are just
being implemented for prototyping so adding them to the APIs isn't critical and
they aren't generally available to be fuzzed in Wasm engines.
|
|
|
|
|
|
|
|
|
| |
The s-parser was assigning numbers names per-type where as
the binaryn reader was using the global import count as the
number to append.
This change switches to use per-element count which I think
it preferable as it increases the stability of the auto-generated
names. e.g. memory is now always named `$mimport0`.
|
|
|
| |
NFC, except adding most of the boilerplate for the remaining GC instructions. Each implementation site is marked with a respective `TODO (gc): theInstruction` in between the typical boilerplate code.
|
|
|
| |
Adds the `i31.new` and `i31.get_s/u` instructions for creating and working with `i31ref` typed values. Does not include fuzzer integration just yet because the fuzzer expects that trivial values it creates are suitable in global initializers, which is not the case for trivial `i31ref` expressions.
|
|
|
|
|
|
| |
Builders gained a `Module` field in #3130 because they now require extra context
to properly finalize some Expressions. Since modules contain allocators, the old
allocator field on the builder became redundant after that change. This PR
removes the redundant allocator field.
|
|
|
| |
With `eqref` now integrated, the `ref.eq` instruction can be implemented. The only valid LHS and RHS value is `(ref.null eq)` for now, but implementation and fuzzer integration is otherwise complete.
|
|
|
| |
Also includes a lot of new spec tests that eventually need to go into the spec repo
|
|
|
| |
Aligns the internal representations of `memory.size` and `memory.grow` with other more recent memory instructions by removing the legacy `Host` expression class and adding separate expression classes for `MemorySize` and `MemoryGrow`. Simplifies related APIs, but is also a breaking API change.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Adds support for the module and local subsections of the name section plus the respective C and JS APIs to populate and obtain local names.
C API:
* BinaryenFunctionGetNumLocals(func)
* BinaryenFunctionHasLocalName(func, index)
* BinaryenFunctionGetLocalName(func, index)
* BinaryenFunctionSetLocalName(func, index, name)
JS API:
* Function.getNumLocals(func)
* Function.hasLocalName(func, index)
* Function.getLocalName(func, index)
* Function.setLocalName(func, index, name)
|
|
|
|
|
|
|
|
|
|
|
| |
Previously Pops were printed as ({type}.pop), and if the popped type was a
tuple, something like ((i32, i64).pop) would get printed. However, the parser
didn't support pops of anything besides single basic types.
This PR changes the text format to be (pop <type>*) and adds support for parsing
pops of tuples of basic types. The text format change is designed to make
parsing simpler. This change is necessary for writing Poppy IR tests (see #3059)
that contain break or return instructions that consume multiple values, since in
Poppy IR that requires tuple-typed pops.
|
|
|
|
|
| |
Adds an IR profile to each function so the validator can determine
which validation rules to apply and adds a flag to have the wast
parser set the profile to Poppy for testing purposes.
|
|
|
|
|
|
|
| |
Align with the current state of the reference types proposal:
* Remove `nullref`
* Remove `externref` and `funcref` subtyping
* A `Literal` of a nullable reference type can now represent `null` (previously was type `nullref`)
* Update the tests and temporarily comment out those tests relying on subtyping
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In WebAssembly/exception-handling#52, We decided to put `try` bodies in
a `do` clause to be more consistent with `catch`.
- Before
```wast
(try
...
(catch
...
)
)
```
- After
```wast
(try
(do
...
)
(catch
...
)
)
```
Another upside of this change is when there are multiple instructions
within a `try` body, we no longer need to wrap them in a `block`.
|
|
|
|
|
|
|
| |
Since it wasn't easy to support tuples in Asyncify's call support
using temporary functions, we decided to allow tuple-typed globals
after all. This PR adds support for parsing, printing, lowering, and
interpreting tuple globals and also adds validation ensuring that
imported and exported globals do not have tuple types.
|
|
|
|
|
|
|
|
|
| |
Implements parsing and emitting of tuple creation and extraction and tuple-typed control flow for both the text and binary formats.
TODO:
- Extend Precompute/interpreter to handle tuple values
- C and JS API support/testing
- Figure out how to lower in stack IR
- Fuzzing
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds support for the reference type proposal. This includes support
for all reference types (`anyref`, `funcref`(=`anyfunc`), and `nullref`)
and four new instructions: `ref.null`, `ref.is_null`, `ref.func`, and
new typed `select`. This also adds subtype relationship support between
reference types.
This does not include table instructions yet. This also does not include
wasm2js support.
Fixes #2444 and fixes #2447.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Function signatures were previously redundantly stored on Function
objects as well as on FunctionType objects. These two signature
representations had to always be kept in sync, which was error-prone
and needlessly complex. This PR takes advantage of the new ability of
Type to represent multiple value types by consolidating function
signatures as a pair of Types (params and results) stored on the
Function object.
Since there are no longer module-global named function types,
significant changes had to be made to the printing and emitting of
function types, as well as their parsing and manipulation in various
passes.
The C and JS APIs and their tests also had to be updated to remove
named function types.
|
|
|
|
|
|
|
| |
- When a catch body is a block, call its `finalize` function with the
correct type
- Don't create a block when there's one instruction in a catch body
- Remove `makeCatch` from gen-s-parser.py; it's not necessary
- Fix a test case that has a `catch` without `try`
|
|
|
|
|
|
|
| |
Introduces a new instruction class, `SIMDLoad`. Implements encoding,
decoding, parsing, printing, and interpretation of the load and splat
instructions, including in the C and JS APIs. `v128.load` remains in
the `Load` instruction class for now because the interpreter code
expects a `Load` to be able to load any memory value type.
|
|
|
|
|
|
|
|
|
| |
Renames the SIMDBitselect class to SIMDTernary and adds the new
{f32x4,f64x2}.qfm{a,s} ternary instructions. Because the SIMDBitselect
class is no more, this is a backwards-incompatible change to the C
interface. The new instructions are not yet used in the fuzzer because
they are not yet implemented in V8.
The corresponding LLVM commit is https://reviews.llvm.org/rL370556.
|
|
|
|
|
|
|
| |
This adds `atomic.fence` instruction:
https://github.com/WebAssembly/threads/blob/master/proposals/threads/Overview.md#fence-operator
This also fix bugs in `atomic.wait` and `atomic.notify` instructions in
binaryen.js and adds tests for them.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds basic support for exception handling instructions, according
to the spec:
https://github.com/WebAssembly/exception-handling/blob/master/proposals/Exceptions.md
This PR includes support for:
- Binary reading/writing
- Wast reading/writing
- Stack IR
- Validation
- binaryen.js + C API
- Few IR routines: branch-utils, type-updating, etc
- Few passes: just enough to make `wasm-opt -O` pass
- Tests
This PR does not include support for many optimization passes, fuzzer,
or interpreter. They will be follow-up PRs.
Try-catch construct is modeled in Binaryen IR in a similar manner to
that of if-else: each of try body and catch body will contain a block,
which can be omitted if there is only a single instruction. This block
will not be emitted in wast or binary, as in if-else. As in if-else,
`class Try` contains two expressions each for try body and catch body,
and `catch` is not modeled as an instruction. `exnref` value pushed by
`catch` is get by `pop` instruction.
`br_on_exn` is special: it returns different types of values when taken
and not taken. We make `exnref`, the type `br_on_exn` pushes if not
taken, as `br_on_exn`'s type.
|
|
|
|
|
|
|
|
|
|
|
| |
Including parsing, printing, assembling, disassembling.
TODO:
- interpreting
- effects
- finalization and typing
- fuzzing
- JS/C API
|
|
|
|
|
|
|
| |
This is the first stage of adding support for stacky/multivaluey things. It adds new push/pop instructions, and so far just shows that they can be read and written, and that the optimizer doesn't do anything immediately wrong on them.
No fuzzer support, since there isn't a "correct" way to use these yet. The current test shows some "incorrect" usages of them, which is nice to see that we can parse/emit them, but we should replace them with proper usages of push/pop once we actually have those (see comments in the tests).
This should be enough to unblock exceptions (which needs a pop in try-catches). It is also a step towards multivalue (I added some docs about that), but most of multivalue is left to be done.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds support for the event and the event section, as specified in
https://github.com/WebAssembly/exception-handling/blob/master/proposals/Exceptions.md#changes-to-the-binary-model.
Wasm events are features that suspend the current execution and transfer
the control flow to a corresponding handler. Currently the only
supported event kind is exceptions.
For events, this includes support for
- Binary file reading/writing
- Wast file reading/writing
- Binaryen.js API
- Fuzzer
- Validation
- Metadce
- Passes: metrics, minify-imports-and-exports,
remove-unused-module-elements
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- Refactored & fixed typeuse parsing rules so now the rules more closely
follow the spec. There have been multiple parsing rules that were
different in subtle ways, which are supposed to be the same according
to the spec.
- Duplicate types, i.e., types with the same signature, in the type
section are allowed as long as they don't have the same given name.
If a name is given, we use it; if type name is not given, we
generate one in the form of `$FUNCSIG$` + signature string. If the
same generated name already exists in the type section, we append
`_` at the end. This causes most of the changes in the autogenerated
type names in test outputs.
- A typeuse has to be in the order of (type) -> (param) -> (result),
if more than one of them exist. In case of function definitions,
(local) has to be after all of these. Fixed some test cases that
violate this rule.
- When only (param)/(result) are given, its type will be the type with
the smallest existing type index whose parameter and result are the
same. If there's no such type, a new type will be created and
inserted.
- Added a test case `duplicate_types.wast` to test type namings for
duplicate types.
- Refactored `parseFunction` function.
- Add more overrides to helper functions: `getSig` and
`ensureFunctionType`.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- Reflected new renamed instruction names in code and tests:
- `get_local` -> `local.get`
- `set_local` -> `local.set`
- `tee_local` -> `local.tee`
- `get_global` -> `global.get`
- `set_global` -> `global.set`
- `current_memory` -> `memory.size`
- `grow_memory` -> `memory.grow`
- Removed APIs related to old instruction names in Binaryen.js and added
APIs with new names if they are missing.
- Renamed `typedef SortedVector LocalSet` to `SetsOfLocals` to prevent
name clashes.
- Resolved several TODO renaming items in wasm-binary.h:
- `TableSwitch` -> `BrTable`
- `I32ConvertI64` -> `I32WrapI64`
- `I64STruncI32` -> `I64SExtendI32`
- `I64UTruncI32` -> `I64UExtendI32`
- `F32ConvertF64` -> `F32DemoteI64`
- `F64ConvertF32` -> `F64PromoteF32`
- Renamed `BinaryenGetFeatures` and `BinaryenSetFeatures` to
`BinaryenModuleGetFeatures` and `BinaryenModuleSetFeatures` for
consistency.
|
|
|
|
|
| |
- Created `parseParamOrLocals`, `parseNamedParamOrLocals`,
`parseResult`, and `parseTypeRef` and make other methods use them
- Deleted some unnecessary member variables
|
|
|
| |
Mass change to apply clang-format to everything. We are applying this in a PR by me so the (git) blame is all mine ;) but @aheejin did all the work to get clang-format set up and all the manual work to tidy up some things to make the output nicer in #2048
|
|
|
|
|
| |
Adds support for the bulk memory proposal's passive segments. Uses a
new (data passive ...) s-expression syntax to mark sections as
passive.
|
|
|
|
|
|
|
|
| |
This renames the following:
- `i32.wait` -> `i32.atomic.wait`
- `i64.wait` -> `i64.atomic.wait`
- `wake` -> `atomic.notify`
to match the spec.
|
|
|
|
|
| |
Parse the formats allowed by the spec proposal and emit the i32x4
canonical format.
|
|
|
|
|
|
| |
Bulk memory operations
The only parts missing are the interpreter implementation
and spec tests.
|
|
|
|
| |
* Use modern T p = v; notation to initialize class fields
* Use modern X() = default; notation for empty class constructors
|