summaryrefslogtreecommitdiff
path: root/src/wasm.h
Commit message (Collapse)AuthorAgeFilesLines
* Module splitting (#3317)Thomas Lively2020-11-121-4/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Adds the capability to programatically split a module into a primary and secondary module such that the primary module can be compiled and run before the secondary module has been instantiated. All calls to secondary functions (i.e. functions that have been split out into the secondary module) in the primary module are rewritten to be indirect calls through the table. Initially, the table slots of all secondary functions contain references to imported placeholder functions. When the secondary module is instantiated, it will automatically patch the table to insert references to the original functions. The process of module splitting involves these steps: 1. Create the new secondary module. 2. Export globals, events, tables, and memories from the primary module and import them in the secondary module. 3. Move the deferred functions from the primary to the secondary module. 4. For any secondary function exported from the primary module, export in its place a trampoline function that makes an indirect call to its placeholder function (and eventually to the original secondary function), allocating a new table slot for the placeholder if necessary. 5. Rewrite direct calls from primary functions to secondary functions to be indirect calls to their placeholder functions (and eventually to their original secondary functions), allocating new table slots for the placeholders if necessary. 6. For each primary function directly called from a secondary function, export the primary function if it is not already exported and import it into the secondary module. 7. Replace all references to secondary functions in the primary module's table segments with references to imported placeholder functions. 8. Create new active table segments in the secondary module that will replace all the placeholder function references in the table with references to their corresponding secondary functions upon instantiation. Functions can be used or referenced three ways in a WebAssembly module: they can be exported, called, or placed in a table. The above procedure introduces a layer of indirection to each of those mechanisms that removes all references to secondary functions from the primary module but restores the original program's semantics once the secondary module is instantiated. As more mechanisms that reference functions are added in the future, such as ref.func instructions, they will have to be modified to use a similar layer of indirection. The code as currently written makes a few assumptions about the module that is being split: 1. It assumes that mutable-globals is allowed. This could be worked around by introducing wrapper functions for globals and rewriting secondary code that accesses them, but now that mutable-globals is shipped on all browsers, hopefully that extra complexity won't be necessary. 2. It assumes that all table segment offsets are constants. This simplifies the generation of segments to actively patch in the secondary functions without overwriting any other table slots. This assumption could be relaxed by 1) having secondary segments re-write primary function slots as well, 2) allowing addition in segment offsets, or 3) synthesizing a start function to modify the table instead of using segments. 3. It assumes that each function appears in the table at most once. This isn't necessarily true in general or even for LLVM output after function deduplication. Relaxing this assumption would just require slightly more complex code, so it is a good candidate for a follow up PR. Future Binaryen work for this feature includes providing a command line tool exposing this functionality as well as C API, JS API, and fuzzer support. We will also want to provide a simple instrumentation pass for finding dead or late-executing functions that would be good candidates for splitting out. It would also be good to integrate that instrumentation with future function outlining work so that dead or exceptional basic blocks could be split out into a separate module.
* MemoryPacking: Properly notice zeroFilledMemory (#3306)Alon Zakai2020-11-021-1/+1
| | | We can only pack memory if we know it is zero-filled before us.
* Prototype new SIMD multiplications (#3291)Thomas Lively2020-10-281-0/+13
| | | | | | | Including saturating, rounding Q15 multiplication as proposed in https://github.com/WebAssembly/simd/pull/365 and extending multiplications as proposed in https://github.com/WebAssembly/simd/pull/376. Since these are just prototypes, skips adding them to the C or JS APIs and the fuzzer, as well as implementing them in the interpreter.
* DWARF: Fix handling of the end of control flow instructions (#3288)Alon Zakai2020-10-271-12/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Previously when we processed a block for example, we'd do this: ;; start is here (block (result type) ;; end is here .. contents .. ) ;; end delimiter is here Not how this represents the block's start and end as the "header", and uses an extra delimiter to mark the end. I think this is wrong, and was an attempt to handle some offsets from LLVM that otherwise made no sense, ones at the end of the "header". But it turns out that this makes us completely incorrect on some things where there is a low/high pc pair, and we need to understand that the end of a block is at the end opcode at the very end, and not the end of the header. This PR changes us to do that, i.e. ;; start is here (block (result type) .. contents .. ) ;; end is here This fixes a testcase already in the test suite, test/passes/fib_nonzero-low-pc_dwarf.bin.txt where you can see that lexical block now has a valid value for the end, and not a 0 (the proper scope extends all the way to the end of the big block in that function, and is now the same in the DWARF before and after we process it). test/passes/fannkuch3_dwarf.bin.txt is also improved by this. To implement this, this removes the BinaryLocations::End delimeter. After this we just need one type of delimiter actually, but I didn't refactor that any more to keep this PR small (see TODO). This removes an assertion in writeDebugLocationEnd() that is no longer valid: the assert ensures that we wrote an end only if there was a 0 for the end, but for a control flow structure, we write the end of the "header" automatically like for any expression, and then overwrite it later when we finish writing the children and the end marker. We could in theory special-case control flow structures to avoid the first write, but it would add more complexity. This uncovered what appears to be a possible bug in our debug_line handling, see test/passes/fannkuch3_manyopts_dwarf.bin.txt. That needs to be looked into more, but I suspect that was invalid info from when we looked at the end of the "header" of control flow structures. Note that there was one definite bug uncovered here, fixed by the extra } else if (locationUpdater.hasOldExprEnd(oldAddr)) { that is added here, which was definitely a bug.
* Implement i8x16.popcnt (#3286)Thomas Lively2020-10-271-0/+1
| | | | | | As proposed in https://github.com/WebAssembly/simd/pull/379. Since this instruction is still being evaluated for inclusion in the SIMD proposal, this PR does not add support for it to the C/JS APIs or to the fuzzer. This PR also performs a drive-by fix for unrelated instructions in c-api-kitchen-sink.c
* [NFC] `using namespace Abstract` to make matchers more compact (#3284)Thomas Lively2020-10-261-1/+1
| | | | | | | | | This change makes matchers in OptimizeInstructions more compact and readable by removing the explicit `Abstract::` namespace from individual operations. In some cases, this makes multi-line matcher expressions fit on a single line. This change is only possible because it also adds an explicit "RMW" prefix to each element of the `AtomicRMWOp` enumeration. Without that, their names conflicted with the names of Abstract ops.
* Implement v128.{load,store}{8,16,32,64}_lane instructions (#3278)Thomas Lively2020-10-221-1/+32
| | | | | | | These instructions are proposed in https://github.com/WebAssembly/simd/pull/350. This PR implements them throughout Binaryen except in the C/JS APIs and in the fuzzer, where it leaves TODOs instead. Right now these instructions are just being implemented for prototyping so adding them to the APIs isn't critical and they aren't generally available to be fuzzed in Wasm engines.
* Only write explicit names to name section (#3241)Sam Clegg2020-10-151-5/+15
| | | | Fixes: #3226
* Refactor naming convention for functions handling tuples (#3196)Max Graey2020-10-091-1/+1
| | | When there are two versions of a function, one handling tuples and the other handling non-tuple values, the previous naming convention was to have "Single" in the name of the non-tuple handling function. This PR simplifies the convention and shortens function names by making the names plural for the tuple-handling version and singular for the non-tuple-handling version.
* Add static guards for cast and dynCast (#3201)Max Graey2020-10-081-1/+13
|
* GC: Add stubs for the remaining instructions (#3174)Daniel Wirtz2020-09-291-0/+96
| | | NFC, except adding most of the boilerplate for the remaining GC instructions. Each implementation site is marked with a respective `TODO (gc): theInstruction` in between the typical boilerplate code.
* Lower signed binops to unsigned binops when possible (#2988)Max Graey2020-09-281-2/+2
| | | This can unlock further instruction optimizations that do not apply to signed operations.
* GC: Add i31 instructions (#3154)Daniel Wirtz2020-09-241-0/+21
| | | Adds the `i31.new` and `i31.get_s/u` instructions for creating and working with `i31ref` typed values. Does not include fuzzer integration just yet because the fuzzer expects that trivial values it creates are suitable in global initializers, which is not the case for trivial `i31ref` expressions.
* GC: Add ref.eq instruction (#3145)Daniel Wirtz2020-09-211-0/+11
| | | With `eqref` now integrated, the `ref.eq` instruction can be implemented. The only valid LHS and RHS value is `(ref.null eq)` for now, but implementation and fuzzer integration is otherwise complete.
* Initial implementation of "Memory64" proposal (#3130)Wouter van Oortmerssen2020-09-181-18/+23
| | | Also includes a lot of new spec tests that eventually need to go into the spec repo
* Refactor Host expression to MemorySize and MemoryGrow (#3137)Daniel Wirtz2020-09-171-8/+14
| | | Aligns the internal representations of `memory.size` and `memory.grow` with other more recent memory instructions by removing the legacy `Host` expression class and adding separate expression classes for `MemorySize` and `MemoryGrow`. Simplifies related APIs, but is also a breaking API change.
* Implement module and local names in name section (#3115)Daniel Wirtz2020-09-141-1/+5
| | | | | | | | | | | | | | | Adds support for the module and local subsections of the name section plus the respective C and JS APIs to populate and obtain local names. C API: * BinaryenFunctionGetNumLocals(func) * BinaryenFunctionHasLocalName(func, index) * BinaryenFunctionGetLocalName(func, index) * BinaryenFunctionSetLocalName(func, index, name) JS API: * Function.getNumLocals(func) * Function.hasLocalName(func, index) * Function.getLocalName(func, index) * Function.setLocalName(func, index, name)
* Poppy IR wast parsing and validation (#3105)Thomas Lively2020-09-091-0/+3
| | | | | Adds an IR profile to each function so the validator can determine which validation rules to apply and adds a flag to have the wast parser set the profile to Poppy for testing purposes.
* Update reference types (#3084)Daniel Wirtz2020-09-091-0/+2
| | | | | | | Align with the current state of the reference types proposal: * Remove `nullref` * Remove `externref` and `funcref` subtyping * A `Literal` of a nullable reference type can now represent `null` (previously was type `nullref`) * Update the tests and temporarily comment out those tests relying on subtyping
* Implement prototype v128.load{32,64}_zero instructions (#3011)Thomas Lively2020-08-031-1/+3
| | | | | | | | Specified in https://github.com/WebAssembly/simd/pull/237. Since these are just prototypes necessary for benchmarking, this PR does not add support for these instructions to the fuzzer or the C or JS APIs. This PR also renumbers the QFMA instructions that previously used the opcodes for these new instructions. The renumbering matches the renumbering in V8 and LLVM.
* Extend the C- and JS-APIs (#2586)Daniel Wirtz2020-07-221-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Renames the following C-API functions BinaryenBlockGetChild to BinaryenBlockGetChildAt BinaryenSwitchGetName to BinaryenSwitchGetNameAt BinaryenCallGetOperand to BinaryenCallGetOperandAt BinaryenCallIndirectGetOperand to BinaryenCallIndirectGetOperandAt BinaryenHostGetOperand to BinaryenHostGetOperandAt BinaryenThrowGetOperand to BinaryenThrowGetOperandAt BinaryenTupleMakeGetOperand to BinaryenTupleMakeGetOperandAt Adds the following C-API functions BinaryenExpressionSetType BinaryenExpressionFinalize BinaryenBlockSetName BinaryenBlockSetChildAt BinaryenBlockAppendChild BinaryenBlockInsertChildAt BinaryenBlockRemoveChildAt BinaryenIfSetCondition BinaryenIfSetIfTrue BinaryenIfSetIfFalse BinaryenLoopSetName BinaryenLoopSetBody BinaryenBreakSetName BinaryenBreakSetCondition BinaryenBreakSetValue BinaryenSwitchSetNameAt BinaryenSwitchAppendName BinaryenSwitchInsertNameAt BinaryenSwitchRemoveNameAt BinaryenSwitchSetDefaultName BinaryenSwitchSetCondition BinaryenSwitchSetValue BinaryenCallSetTarget BinaryenCallSetOperandAt BinaryenCallAppendOperand BinaryenCallInsertOperandAt BinaryenCallRemoveOperandAt BinaryenCallSetReturn BinaryenCallIndirectSetTarget BinaryenCallIndirectSetOperandAt BinaryenCallIndirectAppendOperand BinaryenCallIndirectInsertOperandAt BinaryenCallIndirectRemoveOperandAt BinaryenCallIndirectSetReturn BinaryenCallIndirectGetParams BinaryenCallIndirectSetParams BinaryenCallIndirectGetResults BinaryenCallIndirectSetResults BinaryenLocalGetSetIndex BinaryenLocalSetSetIndex BinaryenLocalSetSetValue BinaryenGlobalGetSetName BinaryenGlobalSetSetName BinaryenGlobalSetSetValue BinaryenHostSetOp BinaryenHostSetNameOperand BinaryenHostSetOperandAt BinaryenHostAppendOperand BinaryenHostInsertOperandAt BinaryenHostRemoveOperandAt BinaryenLoadSetAtomic BinaryenLoadSetSigned BinaryenLoadSetOffset BinaryenLoadSetBytes BinaryenLoadSetAlign BinaryenLoadSetPtr BinaryenStoreSetAtomic BinaryenStoreSetBytes BinaryenStoreSetOffset BinaryenStoreSetAlign BinaryenStoreSetPtr BinaryenStoreSetValue BinaryenStoreGetValueType BinaryenStoreSetValueType BinaryenConstSetValueI32 BinaryenConstSetValueI64 BinaryenConstSetValueI64Low BinaryenConstSetValueI64High BinaryenConstSetValueF32 BinaryenConstSetValueF64 BinaryenConstSetValueV128 BinaryenUnarySetOp BinaryenUnarySetValue BinaryenBinarySetOp BinaryenBinarySetLeft BinaryenBinarySetRight BinaryenSelectSetIfTrue BinaryenSelectSetIfFalse BinaryenSelectSetCondition BinaryenDropSetValue BinaryenReturnSetValue BinaryenAtomicRMWSetOp BinaryenAtomicRMWSetBytes BinaryenAtomicRMWSetOffset BinaryenAtomicRMWSetPtr BinaryenAtomicRMWSetValue BinaryenAtomicCmpxchgSetBytes BinaryenAtomicCmpxchgSetOffset BinaryenAtomicCmpxchgSetPtr BinaryenAtomicCmpxchgSetExpected BinaryenAtomicCmpxchgSetReplacement BinaryenAtomicWaitSetPtr BinaryenAtomicWaitSetExpected BinaryenAtomicWaitSetTimeout BinaryenAtomicWaitSetExpectedType BinaryenAtomicNotifySetPtr BinaryenAtomicNotifySetNotifyCount BinaryenAtomicFenceSetOrder BinaryenSIMDExtractSetOp BinaryenSIMDExtractSetVec BinaryenSIMDExtractSetIndex BinaryenSIMDReplaceSetOp BinaryenSIMDReplaceSetVec BinaryenSIMDReplaceSetIndex BinaryenSIMDReplaceSetValue BinaryenSIMDShuffleSetLeft BinaryenSIMDShuffleSetRight BinaryenSIMDShuffleSetMask BinaryenSIMDTernarySetOp BinaryenSIMDTernarySetA BinaryenSIMDTernarySetB BinaryenSIMDTernarySetC BinaryenSIMDShiftSetOp BinaryenSIMDShiftSetVec BinaryenSIMDShiftSetShift BinaryenSIMDLoadSetOp BinaryenSIMDLoadSetOffset BinaryenSIMDLoadSetAlign BinaryenSIMDLoadSetPtr BinaryenMemoryInitSetSegment BinaryenMemoryInitSetDest BinaryenMemoryInitSetOffset BinaryenMemoryInitSetSize BinaryenDataDropSetSegment BinaryenMemoryCopySetDest BinaryenMemoryCopySetSource BinaryenMemoryCopySetSize BinaryenMemoryFillSetDest BinaryenMemoryFillSetValue BinaryenMemoryFillSetSize BinaryenRefIsNullSetValue BinaryenRefFuncSetFunc BinaryenTrySetBody BinaryenTrySetCatchBody BinaryenThrowSetEvent BinaryenThrowSetOperandAt BinaryenThrowAppendOperand BinaryenThrowInsertOperandAt BinaryenThrowRemoveOperandAt BinaryenRethrowSetExnref BinaryenBrOnExnSetEvent BinaryenBrOnExnSetName BinaryenBrOnExnSetExnref BinaryenTupleMakeSetOperandAt BinaryenTupleMakeAppendOperand BinaryenTupleMakeInsertOperandAt BinaryenTupleMakeRemoveOperandAt BinaryenTupleExtractSetTuple BinaryenTupleExtractSetIndex BinaryenFunctionSetBody Also introduces wrappers to the JS-API resembling the classes in C++ to perform the above operations on an expression. For example: var unary = binaryen.Unary(module.i32.eqz(1)); unary.getOp(...) / .op unary.setOp(...) / .op = ... unary.getValue(...) / .value unary.setValue(...) / .value = ... unary.getType(...) / .type unary.finalize() ... Usage of wrappers is optional, and one can also use plain functions: var unary = module.i32.eqz(1); binaryen.Unary.getOp(unary, ...) ... Also adds comments to all affected functions in case we'd like to generate API documentation at some point.
* Add Expression::dump for use while debugging (#2912)Thomas Lively2020-06-151-0/+3
| | | | | I have found that similar dump functions have been extremely helpful while debugging LLVM. Rather than re-implement this locally whenever I need it, it would be better have this utility upstream.
* Add prototype SIMD rounding instructions (#2895)Thomas Lively2020-06-051-0/+8
| | | As specified in https://github.com/WebAssembly/simd/pull/232.
* Remove `Push` (#2867)Thomas Lively2020-05-221-20/+2
| | | | | | Push and Pop have been superseded by tuples for their original intended purpose of supporting multivalue. Pop is still used to represent block arguments for exception handling, but there are no plans to use Push for anything now or in the future.
* Implement i64x2.mul (#2860)Thomas Lively2020-05-191-0/+1
| | | | This is the only instruction in the current spec proposal that had not yet been implemnented in the tools.
* Implement pseudo-min/max SIMD instructions (#2847)Thomas Lively2020-05-121-0/+4
| | | As specified in https://github.com/WebAssembly/simd/pull/122.
* Fix an old misleading comment (#2738) [ci skip]Alon Zakai2020-04-091-2/+2
|
* Avoid unnecessary fp$ in side modules (#2717)Alon Zakai2020-03-311-1/+1
| | | | | | | | | | | | | | | | Now that we update the dylink section properly, we can do the same optimization in side modules as in main ones: if the module provides a function, don't call an $fp method during startup, instead add it to the table ourselves and use the relative offset to the table base. Fix an issue when the table has no segments initially: the code just added an offset of 0, but that's not right. Instead, an a __table_base import and use that as the offset. As this is ABI-specific I did it on wasm-emscripten-finalize, leaving TableUtils to just assert on having a singleton segment. Add a test of a wasm file with a dylink section to the lld tests.
* Represent dylink section in IR, so we can update it. (#2715)Alon Zakai2020-03-301-0/+10
| | | | Update it from wasm-emscripten-finalize when we append to the table.
* SIMD integer abs and bitmask instructions (#2703)Thomas Lively2020-03-201-0/+6
| | | | | | Adds full support for the {i8x16,i16x8,i32x4}.abs instructions merged to the SIMD proposal in https://github.com/WebAssembly/simd/pull/128 as well as the {i8x16,i16x8,i32x4}.bitmask instructions proposed in https://github.com/WebAssembly/simd/pull/201.
* Handle multivalue returns in the interpreter (#2684)Thomas Lively2020-03-101-1/+2
| | | | Updates the interpreter to properly flow vectors of values, including at function boundaries. Adds a small spec test for multivalue return.
* Initial multivalue support (#2675)Thomas Lively2020-03-051-0/+21
| | | | | | | | | Implements parsing and emitting of tuple creation and extraction and tuple-typed control flow for both the text and binary formats. TODO: - Extend Precompute/interpreter to handle tuple values - C and JS API support/testing - Figure out how to lower in stack IR - Fuzzing
* DWARF: Track more function locations (#2604)Alon Zakai2020-01-221-2/+12
| | | | | | | | | | | | | | DWARF from LLVM can refer to the first byte belonging to the function, where the size LEB is, or to the first byte after that, where the local declarations are, or the end opcode, or to one byte past that which is one byte past the bytes that belong to the function. We aren't sure why LLVM does this, but track it all for now. After this all debug line positions are identified. However, in some cases a debug line refers to one past the end of the function, which may be an LLVM bug. That location is ambiguous as it could also be the first byte of the next function (what made this discovery possible was when this happened to the last function, after which there is another section).
* DWARF: Track the positions of 'end', 'else', 'catch' binary locations (#2603)Alon Zakai2020-01-211-0/+34
| | | | | | | | | | | | | | | | | Control flow structures have those in addition to the normal span of (start, end), and we need to track them too. Tracking them during reading requires us to track control flow structures while parsing, so that we can know to which structure an end/else/catch refers to. We track these locations using a map on the side of instruction to its "extra" locations. That avoids increasing the size of the tracking info for the much more common non-control flow instructions. Note that there is one more 'end' location, that of the function (not referring to any instruction). I left that to a later PR to not increase this one too much.
* Handle an invalid AbbrCode in DWARF handling (#2607)Alon Zakai2020-01-211-1/+1
| | | | | | | | | | | | | Fixes the testcase in #2343 (comment) Looks like that's from Rust. Not sure why it would have an invalid abbreviation code, but perhaps the LLVM there emits dwarf differently than we've tested on so far. May be worth investigating further, but for now emit a warning, skip that element, and don't crash. Also fix valgrind warnings about Span values not being initialized, which was invalid and bad as well (wasted memory in our maps, and might have overlapped with real values), and interfered with figuring this out.
* Use BinaryLocation instead of hardcoding uint32_t (#2598)Alon Zakai2020-01-161-2/+7
| | | | This will make it easier to switch to something else for offsets in wasm binaries if we get >4GB files.
* DWARF: high_pc computation (#2595)Alon Zakai2020-01-161-2/+2
| | | | | | | Update high_pc values. These are interesting as they may be a relative offset compared to the low_pc. For functions we already had both a start and an end. Add such tracking for instructions as well.
* DWARF: Function location tracking (#2592)Alon Zakai2020-01-161-5/+16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Track the beginning and end of each function, both when reading and writing. We track expressions and functions separately, instead of having a single big map of (oldAddr) => (newAddr) because of the potentially ambiguous case of the final expression in a function: it's end might be identical in offset to the end of the function. So we have two different things that map to the same offset. However, if the context is "the end of the function" then the updated address is the new end of the function, even if the function ends with a different instruction now, as the old last instruction might have moved or been optimized out. Concretely, we have getNewExprAddr and getNewFuncAddr, so we can ask to update the location of either an expression or a function, and use that contextual information. This checks for the DIE tag in order to know what we are looking for. To be safe, if we hit an unknown tag, we halt, so that we don't silently miss things. As the test updates show, the new things we can do thanks to this PR are to update compile unit and subprogram low_pc locations. Note btw that in the first test (dwarfdump_roundtrip_dwarfdump.bin.txt) we change 5 to 0: that is correct since that test does not write out DWARF (it intentionally has no -g), so we do not track binary locations while writing, and so we have nothing to update to (the other tests show actual updating). Also fix the order in the python test runner code to show a diff of expected to encountered, and not the reverse, which confused me.
* [NFC] Enforce use of `Type::` on type names (#2434)Thomas Lively2020-01-071-6/+8
|
* Add support for reference types proposal (#2451)Heejin Ahn2019-12-301-0/+32
| | | | | | | | | | | | This adds support for the reference type proposal. This includes support for all reference types (`anyref`, `funcref`(=`anyfunc`), and `nullref`) and four new instructions: `ref.null`, `ref.is_null`, `ref.func`, and new typed `select`. This also adds subtype relationship support between reference types. This does not include table instructions yet. This also does not include wasm2js support. Fixes #2444 and fixes #2447.
* Refactor module element related functions (NFC) (#2550)Heejin Ahn2019-12-231-1/+5
| | | | This does something similar to #2489 for more functions, removing boilerplate code for each module element using template functions.
* DWARF debug line updating (#2545)Alon Zakai2019-12-201-2/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | With this, we can update DWARF debug line info properly as we write a new binary. To do that we track binary locations as we write. Each instruction is mapped to the location it is written to. We must also adjust them as we move code around because of LEB optimization (we emit a function or a section with a 5-byte LEB placeholder, the maximal size; later we shrink it which is almost always possible). writeDWARFSections() now takes a second param, the new locations of instructions. It then maps debug line info from the original offsets in the binary to the new offsets in the binary being written. The core logic for updating the debug line section is in wasm-debug.cpp. It basically tracks state machine logic both to read the existing debug lines and to emit the new ones. I couldn't find a way to reuse LLVM code for this, but reading LLVM's code was very useful here. A final tricky thing we need to do is to update the DWARF section's internal size annotation. The LLVM YAML writing code doesn't do that for us. Luckily it's pretty easy, in fixEmittedSection we just update the first 4 bytes in place to have the section size, after we've emitted it and know the size. This ignores debug lines with a 0 in the line, col, or addr, see WebAssembly/debugging#9 (comment) This ignores debug line offsets into the middle of instructions, which LLVM sometimes emits for some reason, see WebAssembly/debugging#9 (comment) Handling that would likely at least double our memory usage, which is unfortunate - we are run in an LTO manner, where the entire app's DWARF is present, and it may be massive. I think we should see if such odd offsets are a bug in LLVM, and if we can fix or prevent that. This does not emit "special" opcodes for debug lines. Those are purely an optimization, which I wanted to leave for later. (Even without them we decrease the size quite a lot, btw, as many lines have 0s in them...) This adds some testing that shows we can load and save fib2.c and fannkuch.cpp properly. The latter includes more than one function and has nontrivial code. To actually emit correct offsets a few minor fixes are done here: * Fix the code section location tracking during reading - the correct offset we care about is the body of the code section, not including the section declaration and size. * Fix wasm-stack debug line emitting. We need to update in BinaryInstWriter::visit(), that is, right before writing bytes for the instruction. That differs from * BinaryenIRWriter::visit which is a recursive function that also calls the children - so the offset there would be of the first child. For some reason that is correct with source maps, I don't understand why, but it's wrong for DWARF... * Print code section offsets in hex, to match other tools. Remove DWARFUpdate pass, which was useful for testing temporarily, but doesn't make sense now (it just updates without writing a binary). cc @yurydelendik
* Binary format code section offset tracking (#2515)Alon Zakai2019-12-191-0/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Optionally track the binary format code section offsets, that is, when loading a binary, remember where each IR node was read from. This is necessary for DWARF debug info, as these are the offsets DWARF refers to. (Note that eventually we may want to do something else, like first read the DWARF and only then add debug info annotations into the IR in a more LLVM-like manner, but this is more straightforward and should be enough to update debug lines and ranges). This tracking adds noticeable overhead - every single IR node adds an entry in a map - so avoid it unless actually necessary. Specifically, if the user passes in -g and there are actually DWARF sections in the binary, and we are not about to remove those sections, then we need it. Print binary format code section offsets in text, when printing with -g. This will help debug and test dwarf support. It looks like ;; code offset: 0x7 as an annotation right before each node. Also add support for -g in wasm-opt tests (unlike a pass, it has just one - as a prefix). Helps #2400
* SIMD {i8x16,i16x8}.avgr_u instructions (#2539)Thomas Lively2019-12-181-0/+2
| | | As specified in https://github.com/WebAssembly/simd/pull/126.
* Correctly clear memory / table info in clearModule (#2536)Heejin Ahn2019-12-171-0/+15
| | | | | | Currently `ModuleUtils::clearModule` does not clear `exists` flags in the memory and table, and running RoundTrip pass on any module that has a memory or a table fails as a result. This creates `clear` function in `Memory` and `Table` and makes `clearModule` call them.
* Make local.tee's type its local's type (#2511)Heejin Ahn2019-12-121-2/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | According to the current spec, `local.tee`'s return type should be the same as its local's type. (Discussions on whether we should change this rule is going on in WebAssembly/reference-types#55, but here I will assume this spec does not change. If this changes, we should change many parts of Binaryen transformation anyway...) But currently in Binaryen `local.tee`'s type is computed from its value's type. This didn't make any difference in the MVP, but after we have subtype relationship in #2451, this can become a problem. For example: ``` (func $test (result funcref) (local $0 anyref) (local.tee $0 (ref.func $test) ) ) ``` This shouldn't validate in the spec, but this will pass Binaryen validation with the current `local.tee` implementation. This makes `local.tee`'s type computed from the local's type, and makes `LocalSet::makeTee` get a type parameter, to which we should pass the its corresponding local's type. We don't embed the local type in the class `LocalSet` because it may increase memory size. This also fixes the type of `local.get` to be the local type where `local.get` and `local.set` pair is created from `local.tee`.
* Remove FunctionType (#2510)Thomas Lively2019-12-111-27/+2
| | | | | | | | | | | | | | | | | Function signatures were previously redundantly stored on Function objects as well as on FunctionType objects. These two signature representations had to always be kept in sync, which was error-prone and needlessly complex. This PR takes advantage of the new ability of Type to represent multiple value types by consolidating function signatures as a pair of Types (params and results) stored on the Function object. Since there are no longer module-global named function types, significant changes had to be made to the printing and emitting of function types, as well as their parsing and manipulation in various passes. The C and JS APIs and their tests also had to be updated to remove named function types.
* Refactor removing module elements (#2489)Heejin Ahn2019-12-021-0/+6
| | | | | | | | | | | This creates utility functions for removing module elements: removing one element by name, and removing multiple elements using a predicate function. And makes other parts of code use it. I think this is a light-handed approach than calling `Module::updateMaps` after removing only a part of module elements. This also fixes a bug in the inlining pass: it didn't call `Module::updateMaps` after removing functions. After this patch callers don't need to additionally call it anyway.
* Remove FunctionType from Event (#2466)Thomas Lively2019-11-251-10/+2
| | | | | | | | | This is the start of a larger refactoring to remove FunctionType entirely and store types and signatures directly on the entities that use them. This PR updates BrOnExn and Events to remove their use of FunctionType and makes the BinaryWriter traverse the module and collect types rather than using the global FunctionType list. While we are collecting types, we also sort them by frequency as an optimization. Remaining uses of FunctionType in Function, CallIndirect, and parsing will be removed in a future PR.
* Add i32x4.dot_i16x8_s (#2420)Thomas Lively2019-11-041-0/+1
| | | | | This experimental instruction is specified in https://github.com/WebAssembly/simd/pull/127 and is being implemented to enable further investigation of its performance impact.