| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds support for the reference type proposal. This includes support
for all reference types (`anyref`, `funcref`(=`anyfunc`), and `nullref`)
and four new instructions: `ref.null`, `ref.is_null`, `ref.func`, and
new typed `select`. This also adds subtype relationship support between
reference types.
This does not include table instructions yet. This also does not include
wasm2js support.
Fixes #2444 and fixes #2447.
|
|
|
|
|
|
|
|
|
|
|
| |
Several type-related functions currently exist outside of `Type`
class and thus in the `wasm`, effectively global, namespace. This moves
these functions into `Type` class, making them either member functions
or static functions.
Also this renames `getSize` to `getByteSize` to make it not to be
confused with `size`, which returns the number of types in multiple
types. This also reorders the order of functions in `wasm-type.cpp` to
match that of `wasm-type.h`.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
With this, we can update DWARF debug line info properly as
we write a new binary.
To do that we track binary locations as we write. Each
instruction is mapped to the location it is written to. We
must also adjust them as we move code around because
of LEB optimization (we emit a function or a section
with a 5-byte LEB placeholder, the maximal size; later
we shrink it which is almost always possible).
writeDWARFSections() now takes a second param, the new
locations of instructions. It then maps debug line info from the
original offsets in the binary to the new offsets in the binary
being written.
The core logic for updating the debug line section is in
wasm-debug.cpp. It basically tracks state machine logic
both to read the existing debug lines and to emit the new
ones. I couldn't find a way to reuse LLVM code for this, but
reading LLVM's code was very useful here.
A final tricky thing we need to do is to update the DWARF
section's internal size annotation. The LLVM YAML writing
code doesn't do that for us. Luckily it's pretty easy, in
fixEmittedSection we just update the first 4 bytes in place
to have the section size, after we've emitted it and know
the size.
This ignores debug lines with a 0 in the line, col, or addr,
see WebAssembly/debugging#9 (comment)
This ignores debug line offsets into the middle of
instructions, which LLVM sometimes emits for some
reason, see WebAssembly/debugging#9 (comment)
Handling that would likely at least double our memory
usage, which is unfortunate - we are run in an LTO manner,
where the entire app's DWARF is present, and it may be
massive. I think we should see if such odd offsets are
a bug in LLVM, and if we can fix or prevent that.
This does not emit "special" opcodes for debug lines. Those
are purely an optimization, which I wanted to leave for
later. (Even without them we decrease the size quite a lot,
btw, as many lines have 0s in them...)
This adds some testing that shows we can load and save
fib2.c and fannkuch.cpp properly. The latter includes more
than one function and has nontrivial code.
To actually emit correct offsets a few minor fixes are
done here:
* Fix the code section location tracking during reading -
the correct offset we care about is the body of the code
section, not including the section declaration and size.
* Fix wasm-stack debug line emitting. We need to update
in BinaryInstWriter::visit(), that is, right before writing
bytes for the instruction. That differs from
* BinaryenIRWriter::visit which is a recursive function
that also calls the children - so the offset there would be
of the first child. For some reason that is correct with
source maps, I don't understand why, but it's wrong for
DWARF...
* Print code section offsets in hex, to match other tools.
Remove DWARFUpdate pass, which was useful for testing
temporarily, but doesn't make sense now (it just updates without
writing a binary).
cc @yurydelendik
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Optionally track the binary format code section offsets,
that is, when loading a binary, remember where each IR
node was read from. This is necessary for DWARF
debug info, as these are the offsets DWARF refers to.
(Note that eventually we may want to do something
else, like first read the DWARF and only then add
debug info annotations into the IR in a more LLVM-like
manner, but this is more straightforward and should be
enough to update debug lines and ranges).
This tracking adds noticeable overhead - every single
IR node adds an entry in a map - so avoid it unless
actually necessary. Specifically, if the user passes in
-g and there are actually DWARF sections in the
binary, and we are not about to remove those sections,
then we need it.
Print binary format code section offsets in text, when
printing with -g. This will help debug and test dwarf
support. It looks like
;; code offset: 0x7
as an annotation right before each node.
Also add support for -g in wasm-opt tests (unlike
a pass, it has just one - as a prefix).
Helps #2400
|
|
|
| |
As specified in https://github.com/WebAssembly/simd/pull/126.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
According to the current spec, `local.tee`'s return type should be the
same as its local's type. (Discussions on whether we should change this
rule is going on in WebAssembly/reference-types#55, but here I will
assume this spec does not change. If this changes, we should change many
parts of Binaryen transformation anyway...)
But currently in Binaryen `local.tee`'s type is computed from its
value's type. This didn't make any difference in the MVP, but after we
have subtype relationship in #2451, this can become a problem. For
example:
```
(func $test (result funcref) (local $0 anyref)
(local.tee $0
(ref.func $test)
)
)
```
This shouldn't validate in the spec, but this will pass Binaryen
validation with the current `local.tee` implementation.
This makes `local.tee`'s type computed from the local's type, and makes
`LocalSet::makeTee` get a type parameter, to which we should pass the
its corresponding local's type. We don't embed the local type in the
class `LocalSet` because it may increase memory size.
This also fixes the type of `local.get` to be the local type where
`local.get` and `local.set` pair is created from `local.tee`.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Function signatures were previously redundantly stored on Function
objects as well as on FunctionType objects. These two signature
representations had to always be kept in sync, which was error-prone
and needlessly complex. This PR takes advantage of the new ability of
Type to represent multiple value types by consolidating function
signatures as a pair of Types (params and results) stored on the
Function object.
Since there are no longer module-global named function types,
significant changes had to be made to the printing and emitting of
function types, as well as their parsing and manipulation in various
passes.
The C and JS APIs and their tests also had to be updated to remove
named function types.
|
|
|
|
|
| |
This works more like llvm's unreachable handler in that is preserves
information even in release builds.
|
|
|
|
|
|
| |
This means that debugging/tracing can now be enabled and controlled
centrally without managing and passing state around the codebase.
|
|
|
|
|
|
|
|
|
|
| |
Create a new ParallelFunctionAnalysis helper, which lets us
run in parallel on all functions and collect info from them,
without manually handling locks etc.
Use that in the binary writing code's type collection logic,
avoiding a lock for each type increment.
Also add Signature printing which was useful to debug this.
|
|
|
|
|
|
|
|
|
| |
This is the start of a larger refactoring to remove FunctionType entirely and
store types and signatures directly on the entities that use them. This PR
updates BrOnExn and Events to remove their use of FunctionType and makes the
BinaryWriter traverse the module and collect types rather than using the global
FunctionType list. While we are collecting types, we also sort them by frequency
as an optimization. Remaining uses of FunctionType in Function, CallIndirect,
and parsing will be removed in a future PR.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Adds the ability to create multivalue types from vectors of concrete value
types. All types are transparently interned, so their representation is still a
single uint32_t. Types can be extracted into vectors of their component parts,
and all the single value types expand into vectors containing themselves.
Multivalue types are not yet used in the IR, but their creation and inspection
functionality is exposed and tested in the C and JS APIs.
Also makes common type predicates methods of Type and improves the ergonomics of
type printing.
|
|
|
|
|
| |
This experimental instruction is specified in
https://github.com/WebAssembly/simd/pull/127 and is being implemented
to enable further investigation of its performance impact.
|
|
|
| |
As proposed in https://github.com/WebAssembly/simd/pull/27.
|
|
|
|
| |
As specified at
https://github.com/WebAssembly/simd/blob/master/proposals/simd/SIMD.md#swizzling-using-variable-indices.
|
|
|
|
|
|
| |
Adds support for the new load and extend instructions. Also updates
from C++11 to C++17 in order to use generic lambdas in the interpreter
implementation.
|
|
|
|
|
| |
As specified at https://github.com/WebAssembly/simd/pull/102.
Also fixes bugs in the JS API for other SIMD bitwise operators.
|
|
|
|
|
|
|
| |
Introduces a new instruction class, `SIMDLoad`. Implements encoding,
decoding, parsing, printing, and interpretation of the load and splat
instructions, including in the C and JS APIs. `v128.load` remains in
the `Load` instruction class for now because the interpreter code
expects a `Load` to be able to load any memory value type.
|
| |
|
|
|
|
|
|
|
|
|
| |
Renames the SIMDBitselect class to SIMDTernary and adds the new
{f32x4,f64x2}.qfm{a,s} ternary instructions. Because the SIMDBitselect
class is no more, this is a backwards-incompatible change to the C
interface. The new instructions are not yet used in the fuzzer because
they are not yet implemented in V8.
The corresponding LLVM commit is https://reviews.llvm.org/rL370556.
|
|
|
|
|
|
|
| |
This adds `atomic.fence` instruction:
https://github.com/WebAssembly/threads/blob/master/proposals/threads/Overview.md#fence-operator
This also fix bugs in `atomic.wait` and `atomic.notify` instructions in
binaryen.js and adds tests for them.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Another round of trying to push upstream things from my fork.
This PR only adds support for anyref itself as an opaque type. It does NOT implement the full [reference types proposal](https://github.com/WebAssembly/reference-types/blob/master/proposals/reference-types/Overview.md)--so no table.get/set/grow/etc or ref.null, ref.func, etc.
Figured it was easier to review and merge as we go, especially if I did something fundamentally wrong.
***
I did put it under the `--enable-reference-types` flag as I imagine that even though this PR doesn't complete the full feature set, it probably is the right home. Lmk if not.
I'll also be adding a few github comments to places I want to point out/question.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds basic support for exception handling instructions, according
to the spec:
https://github.com/WebAssembly/exception-handling/blob/master/proposals/Exceptions.md
This PR includes support for:
- Binary reading/writing
- Wast reading/writing
- Stack IR
- Validation
- binaryen.js + C API
- Few IR routines: branch-utils, type-updating, etc
- Few passes: just enough to make `wasm-opt -O` pass
- Tests
This PR does not include support for many optimization passes, fuzzer,
or interpreter. They will be follow-up PRs.
Try-catch construct is modeled in Binaryen IR in a similar manner to
that of if-else: each of try body and catch body will contain a block,
which can be omitted if there is only a single instruction. This block
will not be emitted in wast or binary, as in if-else. As in if-else,
`class Try` contains two expressions each for try body and catch body,
and `catch` is not modeled as an instruction. `exnref` value pushed by
`catch` is get by `pop` instruction.
`br_on_exn` is special: it returns different types of values when taken
and not taken. We make `exnref`, the type `br_on_exn` pushes if not
taken, as `br_on_exn`'s type.
|
|
|
|
|
|
|
|
|
| |
The blacklist means "functions here are to be ignored and not instrumented, we can assume they never unwind." The whitelist means "only these functions, and no others, can unwind." I had hoped such lists would not be necessary, since Asyncify's overhead is much smaller than the old Asyncify and Emterpreter, but as projects have noticed, the overhead to size and speed is still significant. The lists give power users a way to reduce any unnecessary overhead.
A slightly tricky thing is escaping of names: we escape names from the names section (see #2261 #1646). The lists arrive in human-readable format, so we escape them before comparing to the internal escaped names. To enable that I refactored wasm-binary a little bit to provide the escaping logic, cc @yurydelendik
If both lists are specified, an error is shown (since that is meaningless). If a name appears in a list that is not in the module, we show a warning, which will hopefully help people debug typos etc. I had hoped to make this an error, but the problem is that due to inlining etc. a single list will not always work for both unoptimized and optimized builds (a function may vanish when optimizing, due to duplicate function elimination or inlining).
Fixes #2218.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously `StackWriter` and its subclasses had routines for all three
modes (`Binaryen2Binary`, `Binaryen2Stack`, and `Stack2Binary`) within a
single class. This splits routines for each in a separate class and
also factors out binary writing into a separate class
(`BinaryInstWriter`) so other classes can make use of it.
The new classes are:
- `BinaryInstWriter`:
Binary instruction writer. Only responsible for emitting binary
contents and no other logic
- `BinaryenIRWriter`: Converts binaryen IR into something else
- `BinaryenIRToBinaryWriter`: Writes binaryen IR to binary
- `StackIRGenerator`: Converts binaryen IR to stack IR
- `StackIRToBinaryWriter`: Writes stack IR to binary
|
|
|
|
| |
In WebAssembly/exception-handling#79 we agreed to rename `except_ref`
type to `exnref`.
|
|
|
|
|
|
|
|
|
|
|
| |
Including parsing, printing, assembling, disassembling.
TODO:
- interpreting
- effects
- finalization and typing
- fuzzing
- JS/C API
|
|
|
|
|
| |
Fix and test mutable globals support, replace string literals with
constants, and add a pass to emit the target features section.
|
|
|
|
|
|
| |
The event section should be between the global section and the export
section, if present. Here tests are missing, but we don't have a very
good way of testing validity of binary anyway. We are planning to add d8
tests in a separate PR.
|
|
|
|
| |
Otherwise there is no way to view a wasm object file in binaryen.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds support for the event and the event section, as specified in
https://github.com/WebAssembly/exception-handling/blob/master/proposals/Exceptions.md#changes-to-the-binary-model.
Wasm events are features that suspend the current execution and transfer
the control flow to a corresponding handler. Currently the only
supported event kind is exceptions.
For events, this includes support for
- Binary file reading/writing
- Wast file reading/writing
- Binaryen.js API
- Fuzzer
- Validation
- Metadce
- Passes: metrics, minify-imports-and-exports,
remove-unused-module-elements
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- Reflected new renamed instruction names in code and tests:
- `get_local` -> `local.get`
- `set_local` -> `local.set`
- `tee_local` -> `local.tee`
- `get_global` -> `global.get`
- `set_global` -> `global.set`
- `current_memory` -> `memory.size`
- `grow_memory` -> `memory.grow`
- Removed APIs related to old instruction names in Binaryen.js and added
APIs with new names if they are missing.
- Renamed `typedef SortedVector LocalSet` to `SetsOfLocals` to prevent
name clashes.
- Resolved several TODO renaming items in wasm-binary.h:
- `TableSwitch` -> `BrTable`
- `I32ConvertI64` -> `I32WrapI64`
- `I64STruncI32` -> `I64SExtendI32`
- `I64UTruncI32` -> `I64UExtendI32`
- `F32ConvertF64` -> `F32DemoteI64`
- `F64ConvertF32` -> `F64PromoteF32`
- Renamed `BinaryenGetFeatures` and `BinaryenSetFeatures` to
`BinaryenModuleGetFeatures` and `BinaryenModuleSetFeatures` for
consistency.
|
| |
|
|
|
|
|
|
| |
It doesn't seem to be used anywhere and I don't know why the
implementation for `WasmBinaryBuilder::getGlobalName` and
`WasmBinaryBuilder::getFunctionIndexName` are different. Renamed
`getFunctionIndexName` to `getFunctionName` for consistency.
|
|
|
|
| |
This adds except_ref type, which is a part of the exception handling
proposal.
|
|
|
| |
This only adds the feature and its flag and not the instructions yet.
|
|
|
| |
Applies the changes in #2065, and temprarily disables the hook since it's too slow to run on a change this large. We should re-enable it in a later commit.
|
|
|
| |
Mass change to apply clang-format to everything. We are applying this in a PR by me so the (git) blame is all mine ;) but @aheejin did all the work to get clang-format set up and all the manual work to tidy up some things to make the output nicer in #2048
|
|
|
|
|
|
|
| |
Implement interpretation of remaining bulk memory ops, add bulk memory
spec tests with light modifications, fix bugs preventing the fuzzer
from running correctly with bulk memory, and fix bugs found by the
fuzzer.
|
|
|
|
|
|
| |
This reverts commit cb2d63586c08a3dd194d2b733ceb3f5051c081f8.
The issues with feature validation were mostly resolved in #1993, and
this PR finishes the job by adding feature flags to wasm-as to avoid
emitting the DataCount section when bulk-memory is not enabled.
|
|
|
|
|
| |
Its presence was causing validation errors in the Emscripten test
suite. This should be reverted once the default feature set is no
longer All.
|
|
|
|
|
|
|
|
| |
* DataCount section
Read the DataCount section and verify that it agrees with the data
section. Also emit the DataCount section when bulk-memory is enabled
and there are a nonzero number of segments. Factor out some shared
unit test code.
|
|
|
|
|
| |
This allows us to emit a (potentially modified) target features
section and conditionally emit other sections such as the DataCount
section based on the presence of features.
|
|
|
|
|
|
|
|
| |
Hash the contents of all of memory and log that out in random places in the fuzzer, so we are more sensitive there and can catch memory bugs.
Fix UB that was uncovered by this in the binary writing code - if a segment is empty, we should not look at &vector[0], and instead use vector.data().
Add Builder::addExport convenience method.
|
|
|
|
|
|
| |
It was previously part of writing a binary, but changing the number of
segments at such a late stage would not work in the presence of bulk
memory's datacount section. Also updates the memory packing pass
to respect the web's limits on the number of data segments.
|
|
|
|
|
| |
Adds support for the bulk memory proposal's passive segments. Uses a
new (data passive ...) s-expression syntax to mark sections as
passive.
|
|
|
|
|
|
|
| |
If the user does not supply features explicitly on the command line,
read and use the features in the target features section for
validation and passes. If the user does supply features explicitly,
error if they are not a superset of the features marked as used in the
target features section and the user does not explicitly handle this.
|
|
|
|
|
|
|
|
| |
This renames the following:
- `i32.wait` -> `i32.atomic.wait`
- `i64.wait` -> `i64.atomic.wait`
- `wake` -> `atomic.notify`
to match the spec.
|