| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
|
|
|
|
| |
This is more work than a typical instruction because it also adds a new section:
all the (string.const "foo") strings are put in a new "strings" section in the binary, and
the instructions refer to them by index.
|
|
|
|
|
|
| |
This is the first instruction from the Strings proposal.
This includes everything but interpreter support.
|
|
|
|
|
|
|
|
| |
This starts to implement the Wasm Strings proposal
https://github.com/WebAssembly/stringref/blob/main/proposals/stringref/Overview.md
This just adds the types.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* Updating wasm.h/cpp for DataSegments
* Updating wasm-binary.h/cpp for DataSegments
* Removed link from Memory to DataSegments and updated module-utils, Metrics and wasm-traversal
* checking isPassive when copying data segments to know whether to construct the data segment with an offset or not
* Removing memory member var from DataSegment class as there is only one memory rn. Updated wasm-validator.cpp
* Updated wasm-interpreter
* First look at updating Passes
* Updated wasm-s-parser
* Updated files in src/ir
* Updating tools files
* Last pass on src files before building
* added visitDataSegment
* Fixing build errors
* Data segments need a name
* fixing var name
* ran clang-format
* Ensuring a name on DataSegment
* Ensuring more datasegments have names
* Adding explicit name support
* Fix fuzzing name
* Outputting data name in wasm binary only if explicit
* Checking temp dataSegments vector to validateBinary because it's the one with the segments before we processNames
* Pass on when data segment names are explicitly set
* Ran auto_update_tests.py and check.py, success all around
* Removed an errant semi-colon and corrected a counter. Everything still passes
* Linting
* Fixing processing memory names after parsed from binary
* Updating the test from the last fix
* Correcting error comment
* Impl kripken@ comments
* Impl tlively@ comments
* Updated tests that remove data print when == 0
* Ran clang format
* Impl tlively@ comments
* Ran clang-format
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds exported tags to `exports` section in wasm-emscripten-finalize
metadata so Emscripten can use it.
Also fixes a bug in the parser. We have only recognized the export
format of
```wasm
(tag $e2 (param f32))
(export "e2" (tag $e2))
```
and ignored this format:
```wasm
(tag $e1 (export "e1") (param i32))
```
Companion patch: https://github.com/emscripten-core/emscripten/pull/17064
|
|
|
|
|
|
|
|
|
|
| |
Share the logic for parsing imported and non-imported globals of the formats:
(import "module" "base" (global $name? type))
(global $name? type init)
This fixes #4676, since the deleted logic for parsing imported globals did not
handle parsing GC types correctly.
|
|
|
|
|
|
| |
This unsafe experimental instruction is semantically equivalent to
ref.cast_static, but V8 will unsafely turn it into a nop. This is meant to help
us measure cast overhead more precisely than we can by globally turning all
casts into nops.
|
|
|
|
|
|
| |
Remove `Type::externref` and `HeapType::ext` and replace them with uses of
anyref and any, respectively, now that we have unified these types in the GC
proposal. For backwards compatibility, continue to parse `extern` and
`externref` and maintain their relevant C API functions.
|
|
|
|
| |
Instead of just reporting the type index that causes an error when building
types, report the name of the responsible type when parsing the text format.
|
|
|
|
|
|
|
|
|
|
|
| |
It is possible for type building to fail, for example if the declared nominal
supertypes form a cycle or are structurally invalid. Previously we would report
a fatal error and kill the program from inside `TypeBuilder::build()` in these
situations, but this handles errors at the wrong layer of the code base and is
inconvenient for testing the error cases.
In preparation for testing the new error cases introduced by isorecursive
typing, make type building fallible and add new tests for existing error cases.
Also fix supertype cycle detection, which it turns out did not work correctly.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In `--hybrid` isorecursive mode, associate each defined type with a recursion
group, represented as a `(rec ...)` wrapping the type definitions in the text
format. Parse that text format, create the rec groups using a new TypeBuilder
method, and print the rec groups in the printer.
The only semantic difference rec groups currently make is that if one type in a
rec group will be included in the output, all the types in that rec group will
be included. This is because changing a rec group in any way (for example by
removing a type) changes the identity of the types in that group in the
isorecursive type system. Notably, rec groups do not yet participate in
validation, so `--hybrid` is largely equivalent to `--nominal` for now.
|
|
|
|
|
|
|
|
| |
This field was originally added with the goal of allowing types from multiple
type systems to coexist by determining the type system on a per-type level
rather than globally. This goal was never fully achieved and the `isNominal`
field is not used outside of tests. Now that we are working on implementing the
hybrid isorecursive system, it does not look like having types from multiple
systems coexist will be useful in the near term, so clean up this tech debt.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
With nominal function types, this change makes it so that we preserve the
identity of the function type used with call_indirect instructions rather than
recreating a function heap type, which may or may not be the same as the
originally parsed heap type, from the function signature during module writing.
This will simplify the type system implementation by removing the need to store
a "canonical" nominal heap type for each unique signature. We previously
depended on those canonical types to avoid creating multiple duplicate function
types during module writing, but now we aren't creating any new function types
at all.
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
| |
Implement parsing the new {func,struct,array}_subtype format for nominal types.
For now, the new format is parsed the same way the old-style (extends X) format
is parsed, i.e. in --nominal mode types are parsed as nominal but otherwise they
are parsed as equirecursive. Intentionally do not parse the new types
unconditionally as nominal for now to allow frontends to update their nominal
text format while continuing to use the workflow of running wasm-opt without
--nominal to lower nominal types to structural types.
|
| |
|
|
|
|
| |
Adds the part of the spec test suite that this passes (without table.set we
can't do it all).
|
|
|
|
|
|
|
|
|
| |
See #4149
This modifies the test added in #4163 which used static casts on
dynamically-created structs and arrays. That was technically not
valid (as we won't want users to "mix" the two forms). This makes that
test 100% static, which both fixes the test and gives test coverage
to the new instructions added here.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
These variants take a HeapType that is the type we intend to cast to,
and do not take an RTT.
These are intended to be more statically optimizable. For now though
this PR just implements the minimum to get them parsing and to get
through the optimizer without crashing.
Spec: https://docs.google.com/document/d/1afthjsL_B9UaMqCA5ekgVmOm75BVFu6duHNsN9-gnXw/edit#
See #4149
|
|
|
|
|
|
|
| |
array.init is like array.new_with_rtt except that it takes
as arguments the values to initialize the array with (as opposed to
a size and an optional initial value).
Spec: https://docs.google.com/document/d/1afthjsL_B9UaMqCA5ekgVmOm75BVFu6duHNsN9-gnXw/edit#
|
|
|
|
|
|
| |
Before this, the element segments would be printed as having type
funcref, and then if their table had a specialized type, the element
type would not be a subtype of the table and validation would fail.
|
|
|
| |
This is necessary when using GC and EH together, for instance.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As suggested in
https://github.com/WebAssembly/binaryen/pull/3955#issuecomment-871016647
This applies commandline features first. If the features section is present, and
disallows some of them, then we warn. Otherwise, the features can combine
(for example, a wasm may enable feature X because it has to use it, and a user
can simply add the flag for feature Y if they want the optimizer to try to use it;
both flags will then be enabled).
This is important because in some cases we need to know the features before
parsing the wasm, in the case that the wasm does not use the features section.
In particular, non-nullable GC locals have an effect during parsing. (Typed
function references also does, but we found a way to apply its effect all the time,
that is, always use the refined type, and that happened to not break the case
where the feature is disabled - but such a workaround is not possible with
non-nullable locals.)
To make this less error-prone, add a FeatureSet input as a parameter to
WasmBinaryBuilder. That is, when building a module, we must give it the
features to use while doing so.
This will unblock #3955 . That PR will also add a test for the actual usage
of a feature during loading (the test can only be added there, after that PR
unbreaks things).
|
|
|
|
|
|
|
|
|
| |
When using nominal types, func.ref of two functions with identical signatures
but different HeapTypes will yield different types. To preserve these semantics,
Functions need to track their HeapTypes, not just their Signatures.
This PR replaces the Signature field in Function with a HeapType field and adds
new utility methods to make it almost as simple to update and query the function
HeapType as it was to update and query the Function Signature.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously, ref.func instructions would be assigned the canonical (i.e. first
parsed) heap type for the referenced function signature rather than the HeapType
actually specified in the type definition. In nominal mode, this could cause
validation failures because the types assigned to ref.func instructions would
not be correct.
Fix the problem by tracking function HeapTypes rather than function Signatures
when parsing the text format.
There can still be validation failures when round-tripping modules because
function HeapTypes are not properly preserved after parsing, but that will be
addressed in a follow-up PR.
|
|
|
|
|
|
|
|
| |
This attribute is always 0 and reserved for future use. In Binayren's
unofficial text format we were writing this field as `(attr 0)`, but we
have recently come to the conclusion that this is not necessary.
Relevant discussion:
https://github.com/WebAssembly/exception-handling/pull/160#discussion_r653254680
|
|
|
|
|
|
|
|
|
|
|
| |
We recently decided to change 'event' to 'tag', and to 'event section'
to 'tag section', out of the rationale that the section contains a
generalized tag that references a type, which may be used for something
other than exceptions, and the name 'event' can be confusing in the web
context.
See
- https://github.com/WebAssembly/exception-handling/issues/159#issuecomment-857910130
- https://github.com/WebAssembly/exception-handling/pull/161
|
|
|
|
|
|
|
|
|
|
| |
This is the same as rtt.sub, but creates a "new" rtt each time. See
https://docs.google.com/document/d/1DklC3qVuOdLHSXB5UXghM_syCh-4cMinQ50ICiXnK3Q/edit#
The old Literal implementation of rtts becomes a little more complex here,
as it was designed for the original spec where only structure matters. It may
be worth a complete redesign there, but for now as the spec is in flux I think
the approach here is good enough.
|
|
|
|
|
|
|
| |
Adds a `--nominal` option to switch the type machinery from equirecursive to
nominal. Implements binary and text parsing and emitting of nominal types using
new type constructor opcodes and an `(extends $super)` text syntax extension.
When not in nominal mode, these extensions will still be parsed but will not
have any effect and will not be used when emitting.
|
|
|
|
| |
This removes the restriction that `try` should have at least one
`catch`/`catch_all`/`delegate`. See WebAssembly/exception-handling#157.
|
|
|
|
|
|
| |
They are basically the flip versions. The only interesting part in the impl is that their
returned typed and sent types are different.
Spec: https://docs.google.com/document/d/1DklC3qVuOdLHSXB5UXghM_syCh-4cMinQ50ICiXnK3Q/edit
|
|
|
|
|
|
|
|
| |
Spec for it is here:
https://docs.google.com/document/d/1DklC3qVuOdLHSXB5UXghM_syCh-4cMinQ50ICiXnK3Q/edit#
Also reorder some things in wasm.h that were not in the canonical order (that has
no effect, but it is confusing to read).
|
|
|
|
| |
We must do that before assuming the type is a heap type in getStructIndex,
or we'd hit an assert there.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is a rewrite of the wasm-shell tool, with the goal of improved
compatibility with the reference interpreter and the spec test suite.
To facilitate that, module instances are provided with a list of linked
instances, and imported objects are looked up in the correct instance.
The new shell can:
- register and link modules using the (register ...) command.
- parse binary modules with the syntax (module binary ...).
- provide the "spectest" module defined in the reference interpreter
- assert instantiation traps with assert_trap
- better check linkability by looking up the linked instances in
- assert_unlinkable
It cannot call external function references that are not direct imports.
That would require bigger changes.
|
|
|
|
|
|
|
|
|
| |
Renames the SIMD instructions
* LoadExtSVec8x8ToVecI16x8 -> Load8x8SVec128
* LoadExtUVec8x8ToVecI16x8 -> Load8x8UVec128
* LoadExtSVec16x4ToVecI32x4 -> Load16x4SVec128
* LoadExtUVec16x4ToVecI32x4 -> Load16x4UVec128
* LoadExtSVec32x2ToVecI64x2 -> Load32x2SVec128
* LoadExtUVec32x2ToVecI64x2 -> Load32x2UVec128
|
|
|
|
|
|
|
|
|
| |
Renames the SIMD instructions
* LoadSplatVec8x16 -> Load8SplatVec128
* LoadSplatVec16x8 -> Load16SplatVec128
* LoadSplatVec32x4 -> Load32SplatVec128
* LoadSplatVec64x2 -> Load64SplatVec128
* Load32Zero -> Load32ZeroVec128
* Load64Zero -> Load64ZeroVec128
|
|
|
|
|
|
|
|
| |
the builder (#3790)
The builder can receive a HeapType so that callers don't need to set non-nullability
themselves.
Not NFC as some of the callers were in fact still making it nullable.
|
|
|
|
|
|
|
|
|
|
|
| |
Adds C/JS APIs for the SIMD instructions
* Load8LaneVec128 (was LoadLaneVec8x16)
* Load16LaneVec128 (was LoadLaneVec16x8)
* Load32LaneVec128 (was LoadLaneVec32x4)
* Load64LaneVec128 (was LoadLaneVec64x2)
* Store8LaneVec128 (was StoreLaneVec8x16)
* Store16LaneVec128 (was StoreLaneVec16x8)
* Store32LaneVec128 (was StoreLaneVec32x4)
* Store64LaneVec128 (was StoreLaneVec64x2)
|
| |
|
|
|
|
| |
This is just noticeable when debugging locally and doing a quick print to
stdout.
|
|
|
|
| |
Also removes experimental SIMD instructions that were not included in the final
spec proposal.
|
|
|
|
| |
Previously an out-of-bounds index would result in an out-of-bounds read during
finalization of the tuple.extract expression.
|
|
|
|
|
|
|
| |
We've been keeping old syntax in the text format parser although they've
been removed from the parser and hardly any test case relies on them.
This PR will remove old syntax support for tables and element segments
and simplify the corresponding parser functions. A few test files were
affected by this that are updated.
|
|
|
|
|
|
|
|
| |
The passive keyword has been removed from spec's text format, and now
any data segment that doesn't have an offset is considered as passive.
This PR remove that from both parser and the Print pass, plus all tests
that used that syntax.
Fixes #2339
|
|
|
|
|
|
|
|
|
|
| |
Makes TypeBuilders growable, adds a `getTempHeapType` method, allows the
`getTemp*Type` methods to take arbitrary temporary or canonical HeapTypes rather
than just an index, and allows BasicHeapTypes to be assigned to TypeBuilder
slots. All of these changes are necessary for the upcoming re-implementation of
equirecursive LUB calculation.
Also adds a new utility to TypeBuilder for using `operator[]` as an intuitive
and readable wrapper around the `getTempHeapType` and `setHeapType` methods.
|