| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As suggested in
https://github.com/WebAssembly/binaryen/pull/3955#issuecomment-871016647
This applies commandline features first. If the features section is present, and
disallows some of them, then we warn. Otherwise, the features can combine
(for example, a wasm may enable feature X because it has to use it, and a user
can simply add the flag for feature Y if they want the optimizer to try to use it;
both flags will then be enabled).
This is important because in some cases we need to know the features before
parsing the wasm, in the case that the wasm does not use the features section.
In particular, non-nullable GC locals have an effect during parsing. (Typed
function references also does, but we found a way to apply its effect all the time,
that is, always use the refined type, and that happened to not break the case
where the feature is disabled - but such a workaround is not possible with
non-nullable locals.)
To make this less error-prone, add a FeatureSet input as a parameter to
WasmBinaryBuilder. That is, when building a module, we must give it the
features to use while doing so.
This will unblock #3955 . That PR will also add a test for the actual usage
of a feature during loading (the test can only be added there, after that PR
unbreaks things).
|
|
|
|
|
|
|
|
|
| |
When using nominal types, func.ref of two functions with identical signatures
but different HeapTypes will yield different types. To preserve these semantics,
Functions need to track their HeapTypes, not just their Signatures.
This PR replaces the Signature field in Function with a HeapType field and adds
new utility methods to make it almost as simple to update and query the function
HeapType as it was to update and query the Function Signature.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously, ref.func instructions would be assigned the canonical (i.e. first
parsed) heap type for the referenced function signature rather than the HeapType
actually specified in the type definition. In nominal mode, this could cause
validation failures because the types assigned to ref.func instructions would
not be correct.
Fix the problem by tracking function HeapTypes rather than function Signatures
when parsing the text format.
There can still be validation failures when round-tripping modules because
function HeapTypes are not properly preserved after parsing, but that will be
addressed in a follow-up PR.
|
|
|
|
|
|
|
|
| |
This attribute is always 0 and reserved for future use. In Binayren's
unofficial text format we were writing this field as `(attr 0)`, but we
have recently come to the conclusion that this is not necessary.
Relevant discussion:
https://github.com/WebAssembly/exception-handling/pull/160#discussion_r653254680
|
|
|
|
|
|
|
|
|
|
|
| |
We recently decided to change 'event' to 'tag', and to 'event section'
to 'tag section', out of the rationale that the section contains a
generalized tag that references a type, which may be used for something
other than exceptions, and the name 'event' can be confusing in the web
context.
See
- https://github.com/WebAssembly/exception-handling/issues/159#issuecomment-857910130
- https://github.com/WebAssembly/exception-handling/pull/161
|
|
|
|
|
|
|
|
|
|
| |
This is the same as rtt.sub, but creates a "new" rtt each time. See
https://docs.google.com/document/d/1DklC3qVuOdLHSXB5UXghM_syCh-4cMinQ50ICiXnK3Q/edit#
The old Literal implementation of rtts becomes a little more complex here,
as it was designed for the original spec where only structure matters. It may
be worth a complete redesign there, but for now as the spec is in flux I think
the approach here is good enough.
|
|
|
|
|
|
|
| |
Adds a `--nominal` option to switch the type machinery from equirecursive to
nominal. Implements binary and text parsing and emitting of nominal types using
new type constructor opcodes and an `(extends $super)` text syntax extension.
When not in nominal mode, these extensions will still be parsed but will not
have any effect and will not be used when emitting.
|
|
|
|
| |
This removes the restriction that `try` should have at least one
`catch`/`catch_all`/`delegate`. See WebAssembly/exception-handling#157.
|
|
|
|
|
|
| |
They are basically the flip versions. The only interesting part in the impl is that their
returned typed and sent types are different.
Spec: https://docs.google.com/document/d/1DklC3qVuOdLHSXB5UXghM_syCh-4cMinQ50ICiXnK3Q/edit
|
|
|
|
|
|
|
|
| |
Spec for it is here:
https://docs.google.com/document/d/1DklC3qVuOdLHSXB5UXghM_syCh-4cMinQ50ICiXnK3Q/edit#
Also reorder some things in wasm.h that were not in the canonical order (that has
no effect, but it is confusing to read).
|
|
|
|
| |
We must do that before assuming the type is a heap type in getStructIndex,
or we'd hit an assert there.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is a rewrite of the wasm-shell tool, with the goal of improved
compatibility with the reference interpreter and the spec test suite.
To facilitate that, module instances are provided with a list of linked
instances, and imported objects are looked up in the correct instance.
The new shell can:
- register and link modules using the (register ...) command.
- parse binary modules with the syntax (module binary ...).
- provide the "spectest" module defined in the reference interpreter
- assert instantiation traps with assert_trap
- better check linkability by looking up the linked instances in
- assert_unlinkable
It cannot call external function references that are not direct imports.
That would require bigger changes.
|
|
|
|
|
|
|
|
|
| |
Renames the SIMD instructions
* LoadExtSVec8x8ToVecI16x8 -> Load8x8SVec128
* LoadExtUVec8x8ToVecI16x8 -> Load8x8UVec128
* LoadExtSVec16x4ToVecI32x4 -> Load16x4SVec128
* LoadExtUVec16x4ToVecI32x4 -> Load16x4UVec128
* LoadExtSVec32x2ToVecI64x2 -> Load32x2SVec128
* LoadExtUVec32x2ToVecI64x2 -> Load32x2UVec128
|
|
|
|
|
|
|
|
|
| |
Renames the SIMD instructions
* LoadSplatVec8x16 -> Load8SplatVec128
* LoadSplatVec16x8 -> Load16SplatVec128
* LoadSplatVec32x4 -> Load32SplatVec128
* LoadSplatVec64x2 -> Load64SplatVec128
* Load32Zero -> Load32ZeroVec128
* Load64Zero -> Load64ZeroVec128
|
|
|
|
|
|
|
|
| |
the builder (#3790)
The builder can receive a HeapType so that callers don't need to set non-nullability
themselves.
Not NFC as some of the callers were in fact still making it nullable.
|
|
|
|
|
|
|
|
|
|
|
| |
Adds C/JS APIs for the SIMD instructions
* Load8LaneVec128 (was LoadLaneVec8x16)
* Load16LaneVec128 (was LoadLaneVec16x8)
* Load32LaneVec128 (was LoadLaneVec32x4)
* Load64LaneVec128 (was LoadLaneVec64x2)
* Store8LaneVec128 (was StoreLaneVec8x16)
* Store16LaneVec128 (was StoreLaneVec16x8)
* Store32LaneVec128 (was StoreLaneVec32x4)
* Store64LaneVec128 (was StoreLaneVec64x2)
|
| |
|
|
|
|
| |
This is just noticeable when debugging locally and doing a quick print to
stdout.
|
|
|
|
| |
Also removes experimental SIMD instructions that were not included in the final
spec proposal.
|
|
|
|
| |
Previously an out-of-bounds index would result in an out-of-bounds read during
finalization of the tuple.extract expression.
|
|
|
|
|
|
|
| |
We've been keeping old syntax in the text format parser although they've
been removed from the parser and hardly any test case relies on them.
This PR will remove old syntax support for tables and element segments
and simplify the corresponding parser functions. A few test files were
affected by this that are updated.
|
|
|
|
|
|
|
|
| |
The passive keyword has been removed from spec's text format, and now
any data segment that doesn't have an offset is considered as passive.
This PR remove that from both parser and the Print pass, plus all tests
that used that syntax.
Fixes #2339
|
|
|
|
|
|
|
|
|
|
| |
Makes TypeBuilders growable, adds a `getTempHeapType` method, allows the
`getTemp*Type` methods to take arbitrary temporary or canonical HeapTypes rather
than just an index, and allows BasicHeapTypes to be assigned to TypeBuilder
slots. All of these changes are necessary for the upcoming re-implementation of
equirecursive LUB calculation.
Also adds a new utility to TypeBuilder for using `operator[]` as an intuitive
and readable wrapper around the `getTempHeapType` and `setHeapType` methods.
|
|
|
|
|
|
| |
This PR adds support for `ref.null t` as a valid element segment
item. The abbreviated format of `(elem ... func $f $g...)` is kept in
both printing and binary emitting if all items are `ref.func`s. Public
APIs aren't updated in this PR.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
After this PR we still do not support non-nullable locals. But we no longer
turn all types into nullable upon load. In particular, we support non-nullable
types on function parameters and struct fields, etc. This should be enough to
experiment with optimizations in both binaryen and in VMs regarding non-
nullability (since we expect that optimizing VMs can do well inside functions
anyhow; it's non-nullability across calls and from data that the VM can't be
expected to think about).
Let is handled as before, by lowering it into gets and sets. In addition, we
turn non-nullable locals into nullable ones, and add a ref.as_non_null on
all their gets (to keep the type identical there). This is used not just for
loading code with a let but also is needed after inlining.
Most of the code changes here are removing FIXMEs for allowing
non-nullable types. But there is also code to handle the issues mentioned
above.
Most of the test updates are removing extra nulls that we added before
when we turned all types nullable. A few tests had actual issues, though,
and also some new tests are added to cover the code changes here.
|
|
|
|
|
|
|
|
|
|
|
| |
Passive element segments do not belong to any table, so the link between
Table and elem needs to be weaker; i.e. an elem may have a table in case
of active segments, or simply be a collection of function references in
case of passive/declarative segments.
This PR takes Table::Segment out and turns it into a first class module
element just like tables and functions. It also implements early support
for parsing, printing, encoding and decoding passive/declarative elem
segments.
|
|
|
|
|
|
|
| |
This adds support for reading (elem declare func $foo .. in the text and
binary formats. We can simply ignore it: we don't need to represent it in
IR, rather we find what needs to be declared when writing. That part takes
a little more work, for which this adds a shared helper function.
|
|
|
|
|
|
|
| |
together (#3647)
Names of structurally identical types end up "collapsed" together after the
types are canonicalized, but with this PR we can properly read content that
has structurally identical types with different names.
|
|
|
| |
This updates them to be correct in the current spec and prototype v3.
|
|
|
|
|
|
|
|
|
| |
Note that Binaryen "canonicalizes" the type, so in the test output here
we end up with $grandchild twice. This is a consequence of us not
storing the heap type as an extra field. I can't think of a downside to
this canonicalization, aside from losing perfect roundtripping, but I think
that's a worthwhile tradeoff for efficiency as we've been thinking so far.
Fixes #3636
|
|
|
|
|
|
|
|
|
|
| |
Adds support for GC struct fields in the binary format, implementing
WebAssembly/gc#193
No extra tests needed, see the .fromBinary output which shows this working.
This also has a minor fix in the s-parser, we should not always add a name
to the map of index=>name - only if it exists. Without that fix, the binary
emitter would write out null strings.
|
|
|
|
|
|
| |
This adds ValidationBuilder which can allow sharing of builder code that also
validates, between the text and binary parsers. In general we share that code in
the validator, but the validator can only run once IR exists, and in some cases we
can't even emit valid IR structure at all.
|
|
|
|
| |
Most of it goes in a new parsing.cpp. One method was only used in
the s-expression's parser, and has been moved there.
|
|
|
|
|
|
|
|
| |
Previously we assumed catch body's size should be at least 3: `catch`
keyword, event name, and body. But catch's body can be empty when the
event's type is none. This PR fixes the bug and allows empty catch
bodies to be parsed correctly.
Fixes #3629.
|
| |
|
|
|
| |
Also add a missing source file for a GC test, let.wasm.
|
|
|
| |
This as a consequence of https://reviews.llvm.org/D95651
|
|
|
|
|
|
|
|
| |
#3591 adds type and field names to the Module object, and used that
for the type but not the fields. This uses it for the fields as well, and removes
the "name" field from the Field objects itself, completing the refactoring.
After this, binary format support can be added as a proper replacement for
#3589
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds a TypeNames entry to modules, which can store names for types. So
far this PR uses that to store type names from text format. Future PRs will add
support for field names and for the binary format.
(Field names are added to wasm.h here to see if we agree on this direction.)
Most of the work here is threading a module through the various functions in
Print.cpp. This keeps the module optional, so that we can still print an
expression independently of a module, which has always been the case, and
which I think we should keep (but, if a module was mandatory perhaps this
would be a little simpler, and could be refactored into a form that depends on
that).
99% of this diff are test updates, since almost all our tests use the text
format, and many of them specify a type name but we used to ignore it.
This is a step towards a proper solution for #3589
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Traverses the module to find type definitions and uses a TypeBuilder to
construct the corresponding HeapTypes rather than constructing them directly.
This allows types to be used in the definitions of other types before they
themselves are defined, which is an important step toward supporting recursive
types. After this PR, no further text parsing changes will be necessary to
support recursive types.
Beyond allowing types to be used before their definitions, this PR also makes a
couple incidental changes to the parser's behavior. First, compound heaptypes
can now only be declared in `(type ...)` elements and cannot be declared inline
at their site of use. This reduces the flexibility of the parser, but is in line
with what the text format spec will probably look like eventually (see
https://github.com/WebAssembly/function-references/issues/42).
The second change is that `(type ...)` elements are now all parsed before `(func
...)` elements rather than in text order with them, so the type indices will be
different and wasts using numeric type indices will be broken. Note however,
that we were already not completely spec compliant in this regard because we
parsed types defined by `(type...)` and `(func...)` elements before types
defined by the type uses of `call_indirect` instructions.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I was previously mistaken about `rethrow`'s argument rule and thought
it only counted `catch`'s depth. But it turns out it follows the same
rule `delegate`'s label: the immediate argument follows the same rule as
when computing branch labels, but it only can target `try` labels
(semantically it targets that `try`'s corresponding `catch`); otherwise
it will be a validation failure. Unlike `delegate`, `rethrow`'s label
denotes not where to rethrow, but which exception to rethrow. For
example,
```wasm
try $l0
catch ($l0)
try $l1
catch ($l1)
rethrow $l0 ;; rethrow the exception caught by 'catch ($l0)'
end
end
```
Refer to this comment for the more detailed informal semantics:
https://github.com/WebAssembly/exception-handling/issues/146#issuecomment-777714491
---
This also reverts some of `delegateTarget` -> `exceptionTarget` changes
done in #3562 in the validator. Label validation rules apply differently
for `delegate` and `rethrow` for try-catch. For example, this is valid:
```wasm
try $l0
try
delegate $l0
catch ($l0)
end
```
But this is NOT valid:
```wasm
try $l0
catch ($l0)
try
delegate $l0
end
```
So `try`'s label should be used within try-catch range (not catch-end
range) for `delegate`s.
But for the `rethrow` the rule is different. For example, this is valid:
```wasm
try $l0
catch ($l0)
rethrow $l0
end
```
But this is NOT valid:
```wasm
try $l0
rethrow $l0
catch ($l0)
end
```
So the `try`'s label should be used within catch-end range instead.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
So far `Try`'s label is only targetted by `delegate`s, but it turns out
`rethrow` also has to follow the same rule as `delegate` so it needs to
target a `Try` label. So this renames variables like
`delegateTargetNames` to `exceptionTargetNames` and methods like
`replaceDelegateTargets` to `replaceExceptionTargets`.
I considered `tryTarget`, but the branch/block counterpart name we use
is not `blockTarget` but `branchTarget`, so I chose `exceptionTarget`.
The patch that fixes `rethrow`'s target will follow; this is the
preparation for that.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds support for reading/writing of the new `delegate` instruction
in the folded wast format, the stack IR format, the poppy IR format, and
the binary format in Binaryen. We don't have a formal spec written down
yet, but please refer to WebAssembly/exception-handling#137 and
WebAssembly/exception-handling#146 for the informal semantics. In the
current version of spec `delegate` is basically a rethrow, but with
branch-like immediate argument so that it can bypass other
catches/delegates in between.
`delegate` is not represented as a new `Expression`, but it is rather
an option within a `Try` class, like `catch`/`catch_all`.
One special thing about `delegate` is, even though it is written
_within_ a `try` in the folded wat format, like
```wasm
(try
(do
...
)
(delegate $l)
)
```
In the unfolded wat format or in the binary format, `delegate` serves as
a scope end instruction so there is no separate `end`:
```wasm
try
...
delegate $l
```
`delegate` semantically targets an outer `catch` or `delegate`, but we
write `delegate` target as a `try` label because we only give labels to
block-like scoping expressions. So far we have not given `Try` a label
and used inner blocks or a wrapping block in case a branch targets the
`try`. But in case of `delegate`, it can syntactically only target `try`
and if it targets blocks or loops it is a validation failure.
So after discussions in #3497, we give `Try` a label but this label can
only be targeted by `delegate`s. Unfortunately this makes parsing and
writing of `Try` expression somewhat complicated. Also there is one
special case; if the immediate argument of `try` is the same as the
depth of control flow stack, this means the 'delegate' delegates to the
caller. To handle this case this adds a fake label
`DELEGATE_CALLER_TARGET`, and when writing it back to the wast format
writes it as an immediate value, unlike other cases in which we write
labels.
This uses `DELEGATE_FIELD_SCOPE_NAME_DEF/USE` to represent `try`'s label
and `delegate`'s target. There are many cases that `try` and
`delegate`'s labels need to be treated in the same way as block and
branch labels, such as for hashing or comparing. But there are routines
in which we automatically assume all label uses are branches. I thought
about adding a new kind of defines such as
`DELEGATE_FIELD_TRY_NAME_DEF/USE`, but I think it will also involve some
duplication of existing routines or classes. So at the moment this PR
chooses to use the existing `DELEGATE_FIELD_SCOPE_NAME_DEF/USE` for
`try` and `delegate` labels and makes only necessary amount of changes
in branch-utils. We can revisit this decision later if necessary.
Many of changes to the existing test cases are because now all `try`s
are automatically assigned a label. They will be removed in
`RemoveUnusedNames` pass in the same way as block labels if not targeted
by any delegates.
This only supports reading and writing and has not been tested against
any optimization passes yet.
---
Original unfolded wat file to generate test/try-delegate.wasm:
```wasm
(module
(event $e)
(func
try
try
delegate 0
catch $e
end)
(func
try
try
catch $e
i32.const 0
drop
try
delegate 1
end
catch $e
end
)
)
```
|
|
|
| |
Adds support for modules with multiple tables. Adds a field for the table name to `CallIndirect` and updates the C/JS APIs accordingly.
|
|
|
|
|
|
|
|
| |
As proposed in https://github.com/WebAssembly/simd/pull/395. Note that the other
instructions in the proposal have not been implemented in LLVM or in V8, so
there is no need to implement them in Binaryen right now either. This PR
introduces a new expression class for the new instructions because they uniquely
take an immediate argument identifying which portion of the input vector to
widen.
|
|
|
|
|
|
|
|
| |
This expands the existing BrOnCast into BrOn that can also handle the
func/data/i31 variants. This is not as elegant as RefIs / RefAs in that BrOnCast
has an extra rtt field, but I think it is still the best option. We already have optional
fields on Break (the value and condition), so making rtt optional is not odd. And
it allows us to share all the behavior of br_on_* which aside from the cast or the
check itself, is identical - returning the value if the branch is not taken, etc.
|
|
|
|
|
|
|
| |
As a result, we cannot handle a br_on_cast with an unreachable RTT. The
binary format solves the problem by ignoring unreachable code, and this makes
the text format do the same.
A nice benefit of this is that we can remove the castType extra field.
|
|
|
|
|
|
|
|
| |
These are similar to is, but instead of returning an i32 answer, they trap on
an invalid value, and return it otherwise.
These could in theory be in a single RefDoThing, with opcodes for both As
and Is, but as the return values are different, that would be a little odd, and
the name would be less clear.
|
| |
|
|
|
|
|
|
|
|
| |
This internal refactoring prepares us for ref.is_func/data/i31, by renaming
the node and adding an "op" field. For now that field must always be "Null"
which means it is a ref.is_null.
This adjusts the C API to match the new IR shape. The high-level JS API
is unchanged.
|