| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
| |
Fixes #6781
|
|
|
|
|
|
|
| |
When lacking a common supertype the GLB operation makes the type of the cast
unreachable, which errors on getHeapType in the later code.
Fixes #6738
|
|
|
|
|
|
|
|
|
| |
This abbreviates a common pattern where we first had to check whether a
heap type was basic, then if it was, get its unshared version and
compare it to some expected BasicHeapType.
Suggested in
https://github.com/WebAssembly/binaryen/pull/6771#discussion_r1683005495.
|
| |
|
|
|
|
| |
We previously special-cased things like GC types, but switch to a more
general solution of detecting what features a table's type requires.
|
| |
|
|
|
|
|
|
| |
Similar to #6765, but for types instead of heap types. Generalize the
logic for transforming written reference types to types that are
supported without GC so that it will automatically handle shared types
and other new types correctly.
|
|
|
|
|
|
|
|
|
|
| |
We represent `ref.null`s as having bottom heap types, even when GC is
not enabled. Bottom heap types are a feature of the GC proposal, so in
that case the binary writer needs to write the corresponding top type
instead. We previously had separate logic for this for each type
hierarchy in the binary writer, but that did not handle shared types and
would not have automatically handled other new types, either. Simplify
and generalize the implementation and test that we can write `ref.null`s
of shared types without GC enabled.
|
|
|
|
|
|
|
| |
Update the validator to reject mixed-shareability ref.eq, although this
is still under discussion in
https://github.com/WebAssembly/shared-everything-threads/issues/76. Fix
the implementation of `Literal::operator==` to work properly with shared
i31ref.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
(#6752)" (#6761)
Allowing Literals with different types to compare equal causes problems
for passes that want equality to mean real equality, e.g. because they
are using literals as map keys or because they otherwise need to use
them interchangeably.
At a minimum, we would need to differentiate a `refEq` operation where
mixed-shareability i31refs can compare equal from physical equality on
Literals, but there is also appetite to disallow mixed-shareability
ref.eq at the spec level. See
https://github.com/WebAssembly/shared-everything-threads/issues/76.
|
|
|
|
|
|
| |
Component binary format: https://github.com/WebAssembly/component-model/blob/main/design/mvp/Binary.md#component-definitions
Context:
https://github.com/WebAssembly/binaryen/issues/6728#issuecomment-2231288924
|
|
|
|
|
|
|
| |
`ref.null` of shared types should only be allowed when shared-everything
is enabled, but we were previously checking only that reference types
were enabled when validating `ref.null`. Update the code to check all
features required by the null type and factor out shared logic for
printing lists of missing feature options in error messages.
|
|
|
|
| |
The logic for adding the shared-everything feature was not previously
executed for shared basic heap types.
|
|
|
|
|
|
|
| |
Normally, values of different types can never compare equal to each
other, but since i31refs are not actually allocations, `ref.eq` has no
way to differentiate a shared i31ref and an unshared i31ref with the
same value, so it will report them as equal. Update the implementation
of value equality to reflect this correctly.
|
|
|
|
|
|
| |
When we switched to the new type printing machinery, we inserted this
extra space to minimize the diff in the test output compared with the
previous type printer. Improve the quality of the printed output by
removing it.
|
| |
|
|
|
|
|
|
|
| |
Implement `ref.i31_shared` the new instruction for creating references
to shared i31s. Implement binary and text parsing and emitting as well
as interpretation. Copy the upstream spec test for i31 and modify it so
that all the heap types are shared. Comment out some parts that we do
not yet support.
|
|
|
|
|
| |
`any.convert_extern` and `extern.convert_any` return references to
shared heap types iff their operands are references to shared heap
types.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Anything else right before an unreachable is removed by the main DCE
pass anyhow, but because of the structured form of BinaryenIR we can't remove
a drop. That is, this is the difference between
(i32.eqz
(i32.const 42)
(unreachable)
)
and
(drop
(call $foo)
)
(unreachable)
In both cases the unreachable is preceded by something we don't need,
but in the latter case it must remain in BinaryenIR for validation.
To optimize this, add a rule in StackIR.
Fixes #6715
|
|
|
|
|
|
|
|
|
| |
Rename instructions `extern.internalize` into `any.convert_extern` and
`extern.externalize` into `extern.convert_any` to follow more closely
the spec. This was changed in
https://github.com/WebAssembly/gc/issues/432.
The legacy name is still accepted in text inputs and in the C and JS
APIs.
|
| |
|
|
|
|
| |
Such as `ref.eq`, `i31.get_{s,u}`, and `array.len`. Also validate that
struct and array operations work on shared structs and arrays.
|
|
|
| |
Add spec tests checking validation for structs and arrays.
|
|
|
| |
Fixes #6695
|
|
|
|
|
|
| |
That child must be a reference, as `finalize()` assumes so. To avoid an
assertion, error early.
Fixes #6696
|
|
|
|
|
| |
The result cannot be `none` or `unreachable` etc.
Fixes #6694
|
|
|
|
|
| |
For 32-bit memories, the offset value must be in the u32 range. Update
the address.wast spec test to assert that a module with an overlarge
offset value is invalid rather than malformed.
|
|
|
|
|
|
| |
Add an `isUTF8` utility and use it in both the text and binary parsers.
Add missing checks for overlong encodings and overlarge code points in
our WTF8 reader, which the new utility uses. Re-enable the spec tests
that test UTF-8 validation.
|
|
|
| |
And re-enable the globals.wast spec test, which checks this.
|
|
|
|
|
|
| |
Fix the wast parser to accept IDs on quoted modules, remove tests that are
invalidated by the multimemory proposal, and add validation that the total
number of variables in a function is less than 2^32 and that the code section is
present if there is a non-empty function section.
|
|
|
|
|
|
|
|
|
|
|
| |
Implement binary and text parsing and printing of shared basic heap types and
incorporate them into the type hierarchy.
To avoid the massive amount of code duplication that would be necessary if we
were to add separate enum variants for each of the shared basic heap types, use
bit 0 to indicate whether the type is shared and replace `getBasic()` with
`getBasic(Unshared)`, which clears that bit. Update all the use sites to record
whether the original type was shared and produce shared or unshared output
without code duplication.
|
|
|
|
|
|
|
|
|
| |
When popping past an unreachable instruction would lead to popping from an empty
stack or popping an incorrect type, we need to avoid popping and produce new
Unreachable instructions instead to ensure we parse valid IR. The logic for
this was flawed and made the synthetic Unreachable come before the popped
unreachable child, which was not correct in the case that that popped
unreachable was a branch or other non-trapping instruction. Fix and simplify the
logic and re-enable the spec test that uncovered the bug.
|
|
|
|
|
|
| |
Rather than treating them as custom sections. Also fix UB where invalid
`Section` enum values could be used as keys in a map. Use the raw `uint8_t`
section IDs as keys instead. Re-enable a disabled spec test that was failing
because of this bug and UB.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The code used i instead of index, as in this pseudocode:
for i in range(num_names):
index = readU32LEB() # index of the data segment to name
name = readName() # name to give that segment
data[i] = name # XXX 'i' should be 'index'
That (funnily enough) happened to always work before since we write names in
order. That is, normally given segments A,B,C we'd write then in the names section
as A,B,C. Then the reader, which had the bug, would always have i and index
identical in value anyhow. But if a wasm producer used different indexes, a
problem could happen.
To test this, add a binary file that has a reversed name section.
Fixes #6672
|
|
|
|
| |
Also update the parser so that implicit type uses are not matched with shared
function types.
|
|
|
|
|
| |
Add the feature and flags to enable and disable it. Require the new feature to
be enabled for shared heap types to validate. To make the test work, update the
validator to actually check features for global types.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Parse the text format for shared composite types as described in the
shared-everything thread proposal. Update the parser to use 'comptype' instead
of 'strtype' to match the final GC spec and add the new syntactic class
'sharecomptype'.
Update the type canonicalization logic to take sharedness into account to avoid
merging shared and unshared types. Make the same change in the TypeMerging pass.
Ensure that shared and unshared types cannot be in a subtype relationship with
each other.
Follow-up PRs will add shared abstract heap types, binary parsing and emitting
for shared types, and fuzzer support for shared types.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The binary writing of `stringview_wtf16.slice` requires scratch locals to store
the `start` and `end` operands while the string operand is converted to a
stringview. To avoid unbounded binary bloat when round-tripping, we detect the
case that `start` and `end` are already `local.get`s and avoid using scratch
locals by deferring the binary writing of the `local.get` operands until after
the stringview conversoins is emitted.
We previously optimized the scratch locals for `start` and `end` independently,
but this could produce incorrect code in the case where the `local.get` for
`start` is deferred but its value is changed by a `local.set` in the code for
`end`. Fix the problem by only optimizing to avoid scratch locals in the case
where both `start` and `end` are already `local.get`s, so they will still be
emitted in the original relative order and they cannot interfere with each other
anyway.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The parser was incorrectly handling the parsing of declarative element segments whose `init` is a `vec(expr)`.
https://webassembly.github.io/spec/core/binary/modules.html#element-section
Binry parser was simply reading a single `u32LEB` value for `init`
instead of parsing a expression regardless `usesExpressions = true`.
This commit updates the `WasmBinaryReader::readElementSegments` function
to correctly parse the expressions for declarative element segments by
calling `readExpression` instead of `getU32LEB` when `usesExpressions = true`.
Resolves the parsing exception:
"[parse exception: bad section size, started at ... not being equal to new position ...]"
Related discussion: https://github.com/tanishiking/scala-wasm/issues/136
|
|
|
|
|
| |
Remove `SExpressionParser`, `SExpressionWasmBuilder`, and `cashew::Parser`.
Simplify gen-s-parser.py. Remove the --new-wat-parser and
--deprecated-wat-parser flags.
|
|
|
|
|
|
|
|
|
|
| |
caught it (#6626)
The DataSegment was manually added to .dataSegments, but we need to add it
using addDataSegment so the maps are updated and getDataSegment(name)
works.
Also add validation that would have caught this earlier: check that each item in
the item lists can be fetched by name.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
With this PR we generate global.gets in globals, which we did not do before.
We do that by replacing makeConst (the only thing we did before, for the
contents of globals) with makeTrivial, and add code to makeTrivial to sometimes
make a global.get. When no suitable global exists, makeGlobalGet will emit a
constant, so there is no danger in trying.
Also raise the number of globals a little.
Also explicitly note the current limitation of requiring all tuple globals to contain
tuple.make and nothing else, including not global.get, and avoid adding such
invalid global.gets in tuple globals in the fuzzer.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Use the new wast parser to parse a full script up front, then traverse the
parsed script data structure and execute the commands. wasm-shell had previously
used the new wat parser for top-level modules, but it now uses the new parser
for module assertions as well. Fix various bugs this uncovered.
After this change, wasm-shell supports all the assertions used in the upstream
spec tests (although not new kinds of assertions introduced in any proposals).
Uncomment various `assert_exhaustion` tests that we can now execute.
Other kinds of assertions remain commented out in our tests: wasm-shell now
supports `assert_unlinkable`, but the interpreter does not eagerly check for the
existence of imports, so those tests do not pass. Tests that check for NaNs also
remain commented out because they do not yet use the standard syntax that
wasm-shell now supports for canonical and arithmetic NaN results, and our
interpreter would not pass all of those tests even if they did use the standard
syntax.
|
|
|
|
|
|
|
|
|
|
|
| |
validation (#6603)
GlobalRefining did not traverse module code, so it did not update global.gets
in other globals.
Add missing validation that actually errors on that: We did not check global.get
types.
These could be separate PRs but it would be difficult to test them separately.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This makes us compliant with the wasm spec by adding a cast: we use the refined
type for br_if fallthrough values, and the wasm spec uses the branch target. If the
two differ, we add a cast after the br_if to make things match.
Alternatively we could match the wasm spec's typing in our IR, but we hope the wasm
spec will improve here, and so this is will only be temporary in that case. Even if not,
this is useful because by using the most refined type in the IR we optimize in the best
way possible, and only suffer when we emit fixups in the binary, but in practice those
cases are very rare: br_if is almost always dropped rather than used, in real-world
code (except for fuzz cases and exploits).
We check carefully when a br_if value is actually used (and not dropped) and its type
actually differs, and it does not already have a cast. The last condition ensures that
we do not keep adding casts over repeated roundtripping.
|
|
|
|
|
| |
Changes to wasm-validator.cpp here are mostly for consistency between
elem and data segment validation.
|
|
|
|
|
|
| |
The stringref proposal has been superseded by the imported JS strings proposal,
but the former has many more operations than the latter. To reduce complexity,
remove all operations that are part of stringref but not part of imported
strings.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The stringview types from the stringref proposal have three irregularities that
break common invariants and require pervasive special casing to handle properly:
they are supertypes of `none` but not subtypes of `any`, they cannot be the
targets of casts, and they cannot be used to construct nullable references. At
the same time, the stringref proposal has been superseded by the imported
strings proposal, which does not have these irregularities. The cost of
maintaing and improving our support for stringview types is no longer worth the
benefit of supporting them.
Simplify the code base by entirely removing the stringview types and related
instructions that do not have analogues in the imported strings proposal and do
not make sense in the absense of stringviews.
Three remaining instructions, `stringview_wtf16.get_codeunit`,
`stringview_wtf16.slice`, and `stringview_wtf16.length` take stringview operands
in the stringref proposal but cannot be removed because they lower to operations
from the imported strings proposal. These instructions are changed to take
stringref operands in Binaryen IR, and to allow a graceful upgrade path for
users of these instructions, the text and binary parsers still accept but ignore
`string.as_wtf16`, which is the instruction used to convert stringrefs to
stringviews. The binary writer emits code sequences that use scratch locals and `string.as_wtf16` to keep the output valid.
Future PRs will further align binaryen with the imported strings proposal
instead of the stringref proposal, for example by making `string` a subtype of
`extern` instead of a subtype of `any` and by removing additional instructions
that do not have analogues in the imported strings proposal.
|
|
|
|
| |
I recently add TableSize/Grow and noticed I didn't need these. It seems
they are superfluous.
|