| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
| |
Note: FP16 is a little different from F32/F64 since it can't represent
the full 2^16 integer range. 65504 is the max whole integer. This leads
to some slightly strange behavior when converting integers greater than
65504 since they become infinity.
Specified at
https://github.com/WebAssembly/half-precision/blob/main/proposals/half-precision/Overview.md
|
|
|
|
|
|
|
| |
We previous incremented the use count for a declared supertype only if
it was also a type we had never seen before. Fix the count by treating
the supertype the same as any other type used in a type definition.
Update tests accordingly, including by manually moving input types
around to better match the output.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Rec groups need to be topologically sorted for the output module to be
valid, but the specific order of rec groups also affects the module size
because types at lower indices requires fewer bytes to reference. We
previously optimized for code size when gathering types by sorting the
list of groups before doing the topological sort. This was brittle,
though, and depended on implementation details of the topological sort
to be correct.
Replace the old topological sort with use of the new
`TopologicalSort::minSort` utility, which is a more principled method of
achieving a minimal topological sort with respect to some comparator.
Also draw inspiration from ReorderGlobals and apply an exponential
factor to take the users of a rec group into account when determining
its weight.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Specified at
https://github.com/WebAssembly/half-precision/blob/main/proposals/half-precision/Overview.md
A few notes:
- The F32x4 and F64x2 versions of madd and nmadd are missing spect
tests.
- For madd, the implementation was incorrectly doing `(b*c)+a` where it
should be `(a*b)+c`.
- For nmadd, the implementation was incorrectly doing `(-b*c)+a` where
it should be `-(a*b)+c`.
- There doesn't appear to be a great way to actually implement a fused
nmadd, but the spec allows the double rounded version I added.
|
|
|
|
|
|
|
| |
The instructions relaxed_fma and relaxed_fnma have been renamed to
relaxed_madd and relaxed_nmadd.
https://github.com/WebAssembly/relaxed-simd/blob/main/proposals/relaxed-simd/Overview.md#binary-format
|
|
|
|
| |
Specified at
https://github.com/WebAssembly/half-precision/blob/main/proposals/half-precision/Overview.md
|
|
|
|
| |
Specified at
https://github.com/WebAssembly/half-precision/blob/main/proposals/half-precision/Overview.md
|
|
|
|
|
|
| |
* Add interpreter support for exnref values.
* Fix optimization passes to support try_table.
* Enable the interpreter (but not in V8, see code) on exceptions.
|
|
|
|
|
|
|
|
|
| |
We previously printed explicit typeuses (e.g. `(type $f)`) in function
signatures when GC was enabled. But even when GC is not enabled,
function types may use non-MVP features that require the explicit
typeuse to be printed. Fix the printer to always print the explicit type
use for such types.
Fixes #6850.
|
|
|
|
|
| |
Also use TableInit in the interpreter to initialize module's table
state, which will now handle traps properly, fixing #6431
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The syntax for handler clauses in `resume` instructions has recently
changed, using `on` instead of `tag` now.
Instead of
```
(resume $ct (tag $tag0 $block0) ... (tag $tagn $blockn))
```
we now have
```
(resume $ct (on $tag0 $block0) ... (on $tagn $blockn))
```
This PR adapts parsing, printing, and some tests accordingly.
(Note that this PR deliberately makes none of the other changes that
will arise from implementing the new, combined stack switching proposal,
yet.)
|
|
|
|
| |
Specified at
https://github.com/WebAssembly/half-precision/blob/main/proposals/half-precision/Overview.md
|
|
|
|
| |
Specified at
https://github.com/WebAssembly/half-precision/blob/main/proposals/half-precision/Overview.md
|
|
|
|
| |
Specified at
https://github.com/WebAssembly/half-precision/blob/main/proposals/half-precision/Overview.md
|
|
|
|
|
| |
The `timport$` prefix is already used for tables, so the binary parser
currently uses `eimport$` to name tags (I guess because they are
normally exception tags?).
|
|
|
|
|
|
| |
Similar to #6765, but for types instead of heap types. Generalize the
logic for transforming written reference types to types that are
supported without GC so that it will automatically handle shared types
and other new types correctly.
|
|
|
|
|
|
|
|
|
|
| |
We represent `ref.null`s as having bottom heap types, even when GC is
not enabled. Bottom heap types are a feature of the GC proposal, so in
that case the binary writer needs to write the corresponding top type
instead. We previously had separate logic for this for each type
hierarchy in the binary writer, but that did not handle shared types and
would not have automatically handled other new types, either. Simplify
and generalize the implementation and test that we can write `ref.null`s
of shared types without GC enabled.
|
|
|
|
|
|
| |
Once the fuzzer is updated to be able to handle initial contents with
shared types, it still will not be able to handle initial contents with
continuation types. To avoid future issues, remove continuations from
lit/basic/shared-types.wast.
|
|
|
|
|
|
| |
When we switched to the new type printing machinery, we inserted this
extra space to minimize the diff in the test output compared with the
previous type printer. Improve the quality of the printed output by
removing it.
|
|
|
|
|
|
|
| |
Implement `ref.i31_shared` the new instruction for creating references
to shared i31s. Implement binary and text parsing and emitting as well
as interpretation. Copy the upstream spec test for i31 and modify it so
that all the heap types are shared. Comment out some parts that we do
not yet support.
|
|
|
|
|
|
|
|
| |
The full syntax for an expression in an element syntax looks like
`(item (ref.null none))`, but we have been printing the abbreviated
version, which omits the `(item ...)`. This abbreviation is only valid
when the item has only a single instruction, so it is not always correct
to use it. Rather than determining whether or not to use the
abbreviation on a case-by-case basis, always print the full syntax.
|
|
|
|
|
|
|
|
|
|
|
| |
Implement binary and text parsing and printing of shared basic heap types and
incorporate them into the type hierarchy.
To avoid the massive amount of code duplication that would be necessary if we
were to add separate enum variants for each of the shared basic heap types, use
bit 0 to indicate whether the type is shared and replace `getBasic()` with
`getBasic(Unshared)`, which clears that bit. Update all the use sites to record
whether the original type was shared and produce shared or unshared output
without code duplication.
|
|
|
|
| |
Also update the parser so that implicit type uses are not matched with shared
function types.
|
|
|
|
| |
This renames old EH tests in the form of `-eh-old.wast` to
`-eh-legacy.wast`, to be clearer in names.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This makes us compliant with the wasm spec by adding a cast: we use the refined
type for br_if fallthrough values, and the wasm spec uses the branch target. If the
two differ, we add a cast after the br_if to make things match.
Alternatively we could match the wasm spec's typing in our IR, but we hope the wasm
spec will improve here, and so this is will only be temporary in that case. Even if not,
this is useful because by using the most refined type in the IR we optimize in the best
way possible, and only suffer when we emit fixups in the binary, but in practice those
cases are very rare: br_if is almost always dropped rather than used, in real-world
code (except for fuzz cases and exploits).
We check carefully when a br_if value is actually used (and not dropped) and its type
actually differs, and it does not already have a cast. The last condition ensures that
we do not keep adding casts over repeated roundtripping.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The new text parser is faster and more standards compliant than the old text
parser. Enable it by default in wasm-opt and update the tests to reflect the
slightly different results it produces. Besides following the spec, the new
parser differs from the old parser in that it:
- Does not synthesize `loop` and `try` labels unnecessarily
- Synthesizes different block names in some cases
- Parses exports in a different order
- Parses `nop`s instead of empty blocks for empty control flow arms
- Does not support parsing Poppy IR
- Produces different error messages
- Cannot parse `pop` except as the first instruction inside a `catch`
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Updating just one or the other of these tools would cause the tests
spec/import-after-*.fail.wast to fail, since only the updated tool would
correctly fail to parse its contents. To avoid this, update both tools at
once. (The tests erroneously pass before this change because check.py does not
ensure that .fail.wast tests fail, only that failing tests end in .fail.wast.)
In wasm-shell, to minimize the diff, only use the new parser to parse modules
and instructions. Continue using the legacy parsing based on s-expressions for
the other wast commands. Updating the parsing of the other commands to use
`Lexer` instead of `SExpressionParser` is left as future work. The boundary
between the two parsing styles is somewhat hacky, but it is worth it to enable
incremental development.
Update the tests to fix incorrect wast rejected by the new parser. Many of the
spec/old_* tests use non-standard forms from before Wasm MVP was standardized,
so fixing them would have been onerous. All of these tests have non-old_*
variants, so simply delete them.
|
|
|
|
|
|
|
|
| |
This PR is part of a series that adds basic support for the typed
continuations/wasmfx proposal.
This particular PR adds cont and nocont as top and bottom types for
continuation types, completely analogous to func and nofunc for function types
(also: exn and noexn).
|
|
|
|
| |
- Output segment names even when no memory is declared.
- Only write explicit names.
|
|
|
| |
The types was ignored and funcref was always used instead.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This PR is part of a series that adds basic support for the [typed
continuations/wasmfx proposal](https://github.com/wasmfx/specfx).
This particular PR adds support for the `suspend` instruction for suspending
with a given tag, documented
[here](https://github.com/wasmfx/specfx/blob/main/proposals/continuations/Overview.md#instructions).
These instructions are of the form `(suspend $tag)`. Assuming that `$tag` is
defined with _n_ `param` types `t_1` to `t_n`, the instruction consumes _n_
arguments of types `t_1` to `t_n`. Its result type is the same as the `result`
type of the tag. Thus, the folded textual representation looks like
`(suspend $tag arg1 ... argn)`.
Support for the instruction is implemented in both the old and the new wat
parser.
Note that this PR does not implement validation of the new instruction.
This PR also fixes finalization of `cont.new`, `cont.bind` and `resume` nodes in
those cases where any of their children are unreachable.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This PR is part of a series that adds basic support for the [typed
continuations/wasmfx proposal](https://github.com/wasmfx/specfx).
This particular PR adds support for the `cont.bind` instruction for partially
applying continuations, documented
[here](https://github.com/wasmfx/specfx/blob/main/proposals/continuations/Overview.md#instructions).
In short, these instructions are of the form `(cont.bind $ct_before $ct_after)`
where `$ct_before` and `$ct_after` are related continuation types. They must
only differ in the number of arguments, where `$ct_before` has _n_ additional
parameters as compared to `$ct_after`, for some _n_ ≥ 0. The idea is that
`(cont.bind $ct_before $ct_after)` then takes a reference to a continuation of
type `$ct_before` as well as _n_ operands and returns a (reference to a)
continuation of type `$ct_after`. Thus, the folded textual representation looks
like `(cont.bind $ct_before $ct_after arg1 ... argn c)`.
Support for the instruction is implemented in both the old and the new wat
parser.
Note that this PR does not implement validation of the new instruction.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This PR is part of a series that adds basic support for the [typed
continuations/wasmfx proposal](https://github.com/wasmfx/specfx).
This particular PR adds support for the `cont.new` instruction for creating
continuations, documented [here(https://github.com/wasmfx/specfx/blob/main/proposals/continuations/Overview.md#instructions).
In short, these instructions are of the form `(cont.new $ct)` where `$ct` must
be a continuation type. The instruction takes a single (nullable) function
reference as its argument, which means that the folded representation of the
instruction is of the form `(cont.new $ct (foo ...))`.
Support for the instruction is implemented in both the old and the new wat
parser.
Note that this PR does not implement validation of the new instruction.
|
|
|
|
|
|
|
|
|
| |
Get as many of the lit tests as possible to parse with the new parser, mostly by
moving declared module items to be after imports. Also fix a bug in the new
parser's pop validation to allow supertypes of the expected type.
The two big issues that still prevent some lit tests from working correctly
under the new parser are missing support for symbolic field names and missing
support for source map annotations.
|
|
|
|
|
|
| |
Rather than `(pop valtype*)`, use `(pop valtype)`, where `valtype` is now
allowed to be a tuple. This will make it possible to parse un-folded multivalue
pops in the new text parser. The alternative would have been to put an arity in
the syntax like we have for other tuple instructions, but that's much uglier.
|
|
|
|
| |
Instead of e.g. `(i32 i32)`, use `(tuple i32 i32)`. Having a keyword to
introduce the s-expression is more consistent with the rest of the language.
|
|
|
|
|
| |
This PR is part of a series that adds basic support for the [typed continuations proposal](https://github.com/wasmfx/specfx).
This particular PR adds support for the `resume` instruction. The most notable missing feature is validation, which is not implemented, yet.
|
|
|
|
|
|
|
|
|
| |
The new wat parser is much more strict than the legacy wat parser; the latter
accepts all sorts of things that the spec does not allow. To ease an eventual
transition to using the new wat parser by default, update the tests to use the
standard text format in many places where they previously did not. We do not yet
have a way to prevent new errors from being introduced into the test suite, but
at least there will now be many fewer errors when it comes time to make the
switch.
|
|
|
|
|
|
|
|
|
|
|
|
| |
We previously supported (and primarily used) a non-standard text format for
conditionals in which the condition, if-true expression, and if-false expression
were all simply s-expression children of the `if` expression. The standard text
format, however, requires the use of `then` and `else` forms to introduce the
if-true and if-false arms of the conditional. Update the legacy text parser to
require the standard format and update all tests to match. Update the printer to
print the standard format as well.
The .wast and .wat test inputs were mechanically updated with this script:
https://gist.github.com/tlively/85ae7f01f92f772241ec994c840ccbb1
|
|
|
|
|
| |
Update the legacy text parser and all tests to use the standard text format for shared memories, e.g. `(memory $m 1 1 shared)` rather than `(memory $m (shared 1 1))`. Also remove support for non-standard in-line "data" or "segment" declarations.
This change makes the tests more compatible with the new text parser, which only supports the standard format.
|
|
|
|
|
| |
- Deletes a stray whitespace after `throw_ref`
- Adds missing `makeThrowRef` to `wasm-builder.h`
- Adds a case for `TryTable` in `ControlFlowWalker`
|
|
|
|
|
|
|
|
|
|
| |
Previously the lit test update script interpreted module names as the names of
import items and export names as the names of export items, but it is more
precise to use the actual identifiers of the imported or exported items as the
names instead.
Update update_lit_checks.py to use a more correct regex to match names and to
correctly use the identifiers of import and export items as their names. In some
cases this can improve the readability of test output.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We previously supported a non-standard `(func "name" ...` syntax for declaring
functions exported with the quoted name. Since that is not part of the standard
text format, drop support for it, replacing it with the standard `(func $name
(export "name") ...` syntax instead.
Also replace our other usage of the quoted form in our text output, which was
where we quoted names containing characters that are not allowed to appear in
standard names. To handle that case, adjust our output from `"$name"` to
`$"name"`, which is the standards-track way of supporting such names. Also fix
how we detect non-standard name characters to match the spec.
Update the lit test output generation script to account for these changes,
including by making the `$` prefix on names mandatory. This causes the script to
stop interpreting declarative element segments with the `(elem declare ...`
syntax as being named "declare", so prevent our generated output from regressing
by counting "declare" as a name in the script.
|
|
|
|
|
| |
This adds tests that test all four kinds of `catch` clauses for an empty
tag and a multivalue tag. (Previously we had this test only for an `i32`
tag.)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds basic support for the new instructions in the new EH proposal
passed at the Oct CG hybrid CG meeting:
https://github.com/WebAssembly/meetings/blob/main/main/2023/CG-10.md
https://github.com/WebAssembly/exception-handling/blob/main/proposals/exception-handling/Exceptions.md
This mainly adds two instructions: `try_table` and `throw_ref`. This is
the bare minimum required to read and write text and binary format, and
does not include analyses or optimizations. (It includes some analysis
required for validation of existing instructions.) Validation for
the new instructions is not yet included.
`try_table` faces the same problem with the `resume` instruction in
#6083 that without the module-level tag info, we are unable to know the
'sent types' of `try_table`. This solves it with a similar approach
taken in #6083: this adds `Module*` parameter to `finalize` methods,
which defaults to `nullptr` when not given. The `Module*` parameter is
given when called from the binary and text parser, and we cache those
tag types in `sentTypes` array within `TryTable` class. In later
optimization passes, as long as they don't touch tags, it is fine to
call `finalize` without the `Module*`. Refer to
https://github.com/WebAssembly/binaryen/pull/6083#issuecomment-1854634679
and #6096 for related discussions when `resume` was added.
|
|
|
|
|
|
|
|
|
| |
This moves tests for the old EH spec to `exception-handling-old.wast`
and moves the new `exnref` test into `exception-handling.wast`, onto
which I plan to add more tests for the new EH spec.
The primary reason for splitting the files is I plan to exclude the new
EH test from the fuzzing while the new spec's implementation is in
progress, and I don't want to exclude the old EH tests altogether.
|
|
|
|
|
|
|
| |
We ported basic tests to `test/lit/basic/` in #6160, but comparing
`CHECK` lines with the test code for long functions is not easy, even
though it wouldn't necessarily be worse than the the separate files we
used to have in `test/`. This slices `exception-handling.wast` into
functions so that the `CHECK` lines are easy to check.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This ports all tests from `test/` to `test/lit/basic/`. The set of
commands and `CHECK` lines used are the same as the ones in #6159. Now
we use `lit` to test these, this also deletes all `.wast`,
`.wast.from-wast`, `.wast.fromBinary`, and
`.wast.fromBinary.noDebugInfo` files from `test/` and all related test
routines from the python scripts.
All `CHECK` lines are generated by `update_lit_checks.py --all-items`.
This also deletes these three multi-memory tests in `test/lit/`, because
they seem to contain the same code with the ones in `test/`, which have
been ported to `test/lit/basic/` along with other tests.
- `test/lit/multi-memories-atomics64.wast`
- `test/lit/multi-memories-basics.wast`
- `test/lit/multi-memories-simd.wast`
This also adds newlines between `(func`s in case there are none to make
`CHECK` lines easy to view, and removes some extra existing newlines
here and there.
|
|
|
|
|
|
|
|
| |
Once support for tuple.extract lands in the new WAT parser, this arity immediate
will let the parser determine how many values it should pop off the stack to
serve as the tuple operand to `tuple.extract`. This will usually coincide with
the arity of a tuple-producing instruction on top of the stack, but in the
spirit of treating the input as a proper stack machine, it will not have to and
the parser will still work correctly.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We previously overloaded `drop` to mean both normal drops of single values and
also drops of tuple values. That works fine in the legacy text parser since it
can infer parent-child relationships directly from the s-expression structure of
the input, so it knows that a drop should drop an entire tuple if the
tuple-producing instruction is a child of the drop. The new text parser,
however, is much more like the binary parser in that it uses instruction types
to create parent-child instructions. The new parser always assumes that `drop`
is meant to drop just a single value because that's what it does in WebAssembly.
Since we want to continue to let `Drop` IR expressions consume tuples, and since
we will need a way to write tests for that IR pattern that work with the new
parser, introduce a new pseudoinstruction, `tuple.drop`, to represent drops of
tuples. This pseudoinstruction only exists in the text format and it parses to
normal `Drop` expressions. `tuple.drop` takes the arity of its operand as an
immediate, which will let the new parser parse it correctly in the future.
|