summaryrefslogtreecommitdiff
path: root/test/lit/passes/local-cse_all-features.wast
Commit message (Collapse)AuthorAgeFilesLines
* Use empty blocks instead of nops for empty scopes in IRBuilder (#7080)Thomas Lively2024-11-141-1/+0
| | | | | | | | | | When IRBuilder builds an empty non-block scope such as a function body, an if arm, a try block, etc, it needs to produce some expression to represent the empty contents. Previously it produced a nop, but change it to produce an empty block instead. The binary writer and printer have special logic to elide empty blocks, so this produces smaller output. Update J2CLOpts to recognize functions containing empty blocks as trivial to avoid regressing one of its tests.
* [WasmGC] Add missing ArrayNew variants to Properties::isGenerative (#6691)Alon Zakai2024-06-241-5/+87
| | | Fixes #6690
* LocalCSE: Fix regression from #6587 by accumulating generativity (#6591)Alon Zakai2024-05-151-4/+34
| | | | | | | | | | | | | #6587 was incorrect: It checked generativity early in an incremental manner, but it did not accumulate that information as we do with hashes. As a result we could end up optimizing something with a generative child, and sadly we lacked testing for that case. This adds incremental generativity computation alongside hashes. It also splits out this check from isRelevant. Also add a test for nested effects (as opposed to generativity), but that already worked before this PR (as we compute effects and invalidation as we go, already).
* LocalCSE: Ignore traps of code in between (#6588)Alon Zakai2024-05-141-0/+52
| | | | | | | | | | | | | | | | | | Given: (ORIGINAL) (in between) (COPY) We want to change that to (local.tee $temp (ORIGINAL)) (in between) (local.get $temp) It is fine if "in between" traps: then we never reach the new local.get. This is a safer situation than most optimizations because we are not reordering anything, only replacing known-equivalent code.
* Simplify and consolidate type printing (#5816)Thomas Lively2023-08-241-13/+13
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When printing Binaryen IR, we previously generated names for unnamed heap types based on their structure. This was useful for seeing the structure of simple types at a glance without having to separately go look up their definitions, but it also had two problems: 1. The same name could be generated for multiple types. The generated names did not take into account rec group structure or finality, so types that differed only in these properties would have the same name. Also, generated type names were limited in length, so very large types that shared only some structure could also end up with the same names. Using the same name for multiple types produces incorrect and unparsable output. 2. The generated names were not useful beyond the most trivial examples. Even with length limits, names for nontrivial types were extremely long and visually noisy, which made reading disassembled real-world code more challenging. Fix these problems by emitting simple indexed names for unnamed heap types instead. This regresses readability for very simple examples, but the trade off is worth it. This change also reduces the number of type printing systems we have by one. Previously we had the system in Print.cpp, but we had another, more general and extensible system in wasm-type-printing.h and wasm-type.cpp as well. Remove the old type printing system from Print.cpp and replace it with a much smaller use of the new system. This requires significant refactoring of Print.cpp so that PrintExpressionContents object now holds a reference to a parent PrintSExpression object that holds the type name state. This diff is very large because almost every test output changed slightly. To minimize the diff and ease review, change the type printer in wasm-type.cpp to behave the same as the old type printer in Print.cpp except for the differences in name generation. These changes will be reverted in much smaller PRs in the future to generally improve how types are printed.
* Change the default type system to isorecursive (#5239)Thomas Lively2022-11-231-8/+8
| | | | | | | | | | This makes Binaryen's default type system match the WasmGC spec. Update the way type definitions without supertypes are printed to reduce the output diff for MVP tests that do not involve WasmGC. Also port some type-builder.cpp tests from test/example to test/gtest since they needed to be rewritten to work with isorecursive type anyway. A follow-on PR will remove equirecursive types completely.
* Revert "Revert "Make `call_ref` type annotations mandatory (#5246)" (#5265)" ↵Thomas Lively2022-11-161-5/+6
| | | | | (#5266) This reverts commit 570007dbecf86db5ddba8d303896d841fc2b2d27.
* Revert "Make `call_ref` type annotations mandatory (#5246)" (#5265)Thomas Lively2022-11-161-6/+5
| | | | | This reverts commit b2054b72b7daa89b7ad161c0693befad06a20c90. It looks like the necessary V8 change has not rolled out everywhere yet.
* Make `call_ref` type annotations mandatory (#5246)Thomas Lively2022-11-151-5/+6
| | | | They were optional for a while to allow users to gracefully transition to using them, but now make them mandatory to match the upstream WasmGC spec.
* Emit call_ref with a type annotation (#5079)Thomas Lively2022-09-231-2/+2
| | | | | | | Emit call_ref instructions with type annotations and a temporary opcode. Also implement support for parsing optional type annotations on call_ref in the text and binary formats. This is part of a multi-part graceful update to switch Binaryen and all of its users over to using the type-annotated version of call_ref without there being any breakage.
* [Wasm GC] Support non-nullable locals in the "1a" form (#4959)Alon Zakai2022-08-311-11/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | An overview of this is in the README in the diff here (conveniently, it is near the top of the diff). Basically, we fix up nn locals after each pass, by default. This keeps things easy to reason about - what validates is what is valid wasm - but there are some minor nuances as mentioned there, in particular, we ignore nameless blocks (which are commonly added by various passes; ignoring them means we can keep more locals non-nullable). The key addition here is LocalStructuralDominance which checks which local indexes have the "structural dominance" property of 1a, that is, that each get has a set in its block or an outer block that precedes it. I optimized that function quite a lot to reduce the overhead of running that logic after each pass. The overhead is something like 2% on J2Wasm and 0% on Dart (0%, because in this mode we shrink code size, so there is less work actually, and it balances out). Since we run fixups after each pass, this PR removes logic to manually call the fixup code from various places we used to call it (like eh-utils and various passes). Various passes are now marked as requiresNonNullableLocalFixups => false. That lets us skip running the fixups after them, which we normally do automatically. This helps avoid overhead. Most passes still need the fixups, though - any pass that adds a local, or a named block, or moves code around, likely does. This removes a hack in SimplifyLocals that is no longer needed. Before we worked to avoid moving a set into a try, as it might not validate. Now, we just do it and let fixups happen automatically if they need to: in the common code they probably don't, so the extra complexity seems not worth it. Also removes a hack from StackIR. That hack tried to avoid roundtrip adding a nondefaultable local. But we have the logic to fix that up now, and opts will likely keep it non-nullable as well. Various tests end up updated here because now a local can be non-nullable - previous fixups are no longer needed. Note that this doesn't remove the gc-nn-locals feature. That has been useful for testing, and may still be useful in the future - it basically just allows nn locals in all positions (that can't read the null default value at the entry). We can consider removing it separately. Fixes #4824
* Fix name of port_passes_tests_to_lit.py script. NFC (#4902)Sam Clegg2022-08-121-1/+1
| | | I was reading these tests and failing to find the names script.
* Remove RTTs (#4848)Thomas Lively2022-08-051-16/+8
| | | | | | | RTTs were removed from the GC spec and if they are added back in in the future, they will be heap types rather than value types as in our implementation. Updating our implementation to have RTTs be heap types would have been more work than deleting them for questionable benefit since we don't know how long it will be before they are specced again.
* [Wasm GC] Effects: Differentiate Struct and Array types (#4088)Alon Zakai2021-08-181-2/+53
| | | | | | | | | | | This allows common patterns in J2CL to be optimized, where we write to various array indices and get the values or the reference from a struct. It would be nice to do even better here, and look at actually specific types, but I think we should be careful to keep the runtime constant. That seems hard to do if we accumulate a list of types and do Type::isSubType on them etc. But maybe someone has a better idea than this PR?
* LocalCSE: ignore traps (#4085)Alon Zakai2021-08-171-2/+42
| | | | | | | | | | | | | | | | | | | | If we replace A A A with (local.set A) (local.get) (local.get) then it is ok for A to trap (so long as it does so deterministically), as if it does trap then the first appearance will do so, and the others not be reached anyhow. This helps GC code as often there are repeated struct.gets and such that may trap.
* LocalCSE rewrite (#4079)Alon Zakai2021-08-171-0/+272
Technically this is not a new pass, but it is a rewrite almost from scratch. Local Common Subexpression Elimination looks for repeated patterns, stuff like this: x = (a + b) + c y = a + b => temp = a + b x = temp + c y = temp The old pass worked on flat IR, which is inefficient, and was overly complicated because of that. The new pass uses a new algorithm that I think is pretty simple, see the detailed comment at the top. This keeps the pass enabled only in -O4, like before - right after flattening the IR. That is to make this as minimal a change as possible. Followups will enable the pass in the main pipeline, that is, we will finally be able to run it by default. (Note that to make the pass work well after flatten, an extra simplify-locals is added - the old pass used to do part of simplify-locals internally, which was one source of complexity. Even so, some of the -O4 tests have changes, due to minor factors - they are just minor orderings etc., which can be seen by inspecting the outputs before and after using e.g. --metrics) This plus some followup work leads to large wins on wasm GC output. On j2cl there is a common pattern of repeated struct.gets, so common that this pass removes 85% of all struct.gets, which makes the total binary 15% smaller. However, on LLVM-emitted code the benefit is minor, less than 1%.