summaryrefslogtreecommitdiff
path: root/test/lit/passes/opt_flatten.wast
Commit message (Collapse)AuthorAgeFilesLines
* Simplify and consolidate type printing (#5816)Thomas Lively2023-08-241-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When printing Binaryen IR, we previously generated names for unnamed heap types based on their structure. This was useful for seeing the structure of simple types at a glance without having to separately go look up their definitions, but it also had two problems: 1. The same name could be generated for multiple types. The generated names did not take into account rec group structure or finality, so types that differed only in these properties would have the same name. Also, generated type names were limited in length, so very large types that shared only some structure could also end up with the same names. Using the same name for multiple types produces incorrect and unparsable output. 2. The generated names were not useful beyond the most trivial examples. Even with length limits, names for nontrivial types were extremely long and visually noisy, which made reading disassembled real-world code more challenging. Fix these problems by emitting simple indexed names for unnamed heap types instead. This regresses readability for very simple examples, but the trade off is worth it. This change also reduces the number of type printing systems we have by one. Previously we had the system in Print.cpp, but we had another, more general and extensible system in wasm-type-printing.h and wasm-type.cpp as well. Remove the old type printing system from Print.cpp and replace it with a much smaller use of the new system. This requires significant refactoring of Print.cpp so that PrintExpressionContents object now holds a reference to a parent PrintSExpression object that holds the type name state. This diff is very large because almost every test output changed slightly. To minimize the diff and ease review, change the type printer in wasm-type.cpp to behave the same as the old type printer in Print.cpp except for the differences in name generation. These changes will be reverted in much smaller PRs in the future to generally improve how types are printed.
* Change the default type system to isorecursive (#5239)Thomas Lively2022-11-231-1/+1
| | | | | | | | | | This makes Binaryen's default type system match the WasmGC spec. Update the way type definitions without supertypes are printed to reduce the output diff for MVP tests that do not involve WasmGC. Also port some type-builder.cpp tests from test/example to test/gtest since they needed to be rewritten to work with isorecursive type anyway. A follow-on PR will remove equirecursive types completely.
* [Wasm GC] Support non-nullable locals in the "1a" form (#4959)Alon Zakai2022-08-311-8/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | An overview of this is in the README in the diff here (conveniently, it is near the top of the diff). Basically, we fix up nn locals after each pass, by default. This keeps things easy to reason about - what validates is what is valid wasm - but there are some minor nuances as mentioned there, in particular, we ignore nameless blocks (which are commonly added by various passes; ignoring them means we can keep more locals non-nullable). The key addition here is LocalStructuralDominance which checks which local indexes have the "structural dominance" property of 1a, that is, that each get has a set in its block or an outer block that precedes it. I optimized that function quite a lot to reduce the overhead of running that logic after each pass. The overhead is something like 2% on J2Wasm and 0% on Dart (0%, because in this mode we shrink code size, so there is less work actually, and it balances out). Since we run fixups after each pass, this PR removes logic to manually call the fixup code from various places we used to call it (like eh-utils and various passes). Various passes are now marked as requiresNonNullableLocalFixups => false. That lets us skip running the fixups after them, which we normally do automatically. This helps avoid overhead. Most passes still need the fixups, though - any pass that adds a local, or a named block, or moves code around, likely does. This removes a hack in SimplifyLocals that is no longer needed. Before we worked to avoid moving a set into a try, as it might not validate. Now, we just do it and let fixups happen automatically if they need to: in the common code they probably don't, so the extra complexity seems not worth it. Also removes a hack from StackIR. That hack tried to avoid roundtrip adding a nondefaultable local. But we have the logic to fix that up now, and opts will likely keep it non-nullable as well. Various tests end up updated here because now a local can be non-nullable - previous fixups are no longer needed. Note that this doesn't remove the gc-nn-locals feature. That has been useful for testing, and may still be useful in the future - it basically just allows nn locals in all positions (that can't read the null default value at the entry). We can consider removing it separately. Fixes #4824
* Generate FileCheck checks for all module items (#3957)Thomas Lively2021-06-281-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | Instead of only generating checks for functions, generate checks for all named top-level module items, such as types, tags, tables, and memories. Because module items can be in different orders in the input and the output but FileCheck checks must follow the order of the output, we need to be slightly clever about when we emit the checks. Consider these types in the input file: ``` (type $A (...)) (type $B (...)) ``` If their order is reversed in the output file, then the checks for $B need to be emitted before the checks for $A, so the resulting module will look like this: ``` ;; CHECK: (type $B (...)) ;; CHECK: (type $A (...)) (type $A (...)) (type $B (...)) ``` Rather than this, which looks nicer but would be incorrect: ``` ;; CHECK: (type $A (...)) (type $A (...)) ;; CHECK: (type $B (...)) (type $B (...)) ```
* Flat IR: Allow ref.as_non_null in nested positions (#3732)Alon Zakai2021-03-251-0/+43
We can't disallow it, as its result is non-null which we can't spill to a local. This may cause issues eventually in the combination of GC + flatten, but I don't expect it to. If it does we may need to revisit.