| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
| |
The function type should be printed there just like for non-imported
functions.
|
|
|
|
|
| |
After this change, the only type system usable from the tools will be the
standard isorecursive type system. The nominal type system is still usable via
the API, but it will be removed entirely in a follow-on PR.
|
|
|
|
|
|
|
|
|
|
| |
All top-level Module elements are identified and referred to by Name, but for
historical reasons element and data segments were referred to by index instead.
Fix this inconsistency by using Names to refer to segments from expressions that
use them. Also parse and print segment names like we do for other elements.
The C API is partially converted to use names instead of indices, but there are
still many functions that refer to data segments by index. Finishing the
conversion can be done in the future once it becomes necessary.
|
|
|
|
|
|
|
|
|
|
| |
Previously we treated global.get as a constant expression and only
additionally verified that the target globals were immutable in some cases. But
global.get of a mutable global is never a constant expression, and further,
only imported globals are available in constant expressions unless GC is
enabled.
Fix constant expression validation to only allow global.get of immutable,
imported globals, and fix all the invalid tests.
|
|
|
|
|
|
|
|
| |
As with #5535, this was not noticed because it can only happen on very
small modules where the param/result type appears nowhere else but
in a function signature.
Use generic heap type scanning, which also scans into struct and array
types etc.
|
|
|
|
|
|
| |
This was not noticed before because normally if there is a function type
with multiple results then there is also a function with that property. But
it is possible to make small testcases without such a function, and one might
be imported etc., so we do need to validate this.
|
|
|
| |
Fixes #5511
|
|
|
|
| |
It is implemented as an import, but functionally it is a call within the
module, so it does not cause types to be public.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Do not optimize or modify public heap types in any way. Public heap types
include the types of imported or exported functions, tables, globals, etc. This
is important to maintain the public interface of a module and ensure it can
still link interact as intended with the outside world.
Also add validation error if we find any nontrivial public types that are not
the types of imported or exported functions. This error is meant to help the
user ensure that type optimizations are not silently inhibited. In the future,
we may want to add options to silence this error or downgrade it to a warning.
This commit only updates the type updating machinery to avoid updating public
types. It does not update any optimization passes accordingly. Since we avoid
modifying public signature types already, this is not expected to break
anything, but in the future once we have function subtyping or if we make the
error optional, we may have to update some of our optimization passes.
|
|
|
|
|
|
|
|
|
|
| |
This makes Binaryen's default type system match the WasmGC spec.
Update the way type definitions without supertypes are printed to reduce the
output diff for MVP tests that do not involve WasmGC. Also port some
type-builder.cpp tests from test/example to test/gtest since they needed to be
rewritten to work with isorecursive type anyway.
A follow-on PR will remove equirecursive types completely.
|
|
|
|
|
|
|
|
|
| |
Update `HeapType::getFeatures` to report that GC is used for heap types that
have nontrivial recursion groups or supertypes. Update validation to check the
features on function heap types, not just their individual params and results.
This fixes a fuzz bug in #5239 where initial contents included a rec group but
the fuzzer disabled GC. Since the resulting module passed validation, the rec
groups made it into the binary output, making the type section malformed.
|
|
|
|
|
| |
(#5266)
This reverts commit 570007dbecf86db5ddba8d303896d841fc2b2d27.
|
|
|
|
|
| |
This reverts commit b2054b72b7daa89b7ad161c0693befad06a20c90.
It looks like the necessary V8 change has not rolled out everywhere yet.
|
|
|
|
| |
They were optional for a while to allow users to gracefully transition to using
them, but now make them mandatory to match the upstream WasmGC spec.
|
|
|
|
|
|
|
|
|
|
| |
E.g.
Atomic operation (atomics are disabled)
=>
Atomic operations require threads [--enable-threads]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
These types, `none`, `nofunc`, and `noextern` are uninhabited, so references to
them can only possibly be null. To simplify the IR and increase type precision,
introduce new invariants that all `ref.null` instructions must be typed with one
of these new bottom types and that `Literals` have a bottom type iff they
represent null values. These new invariants requires several additional changes.
First, it is now possible that the `ref` or `target` child of a `StructGet`,
`StructSet`, `ArrayGet`, `ArraySet`, or `CallRef` instruction has a bottom
reference type, so it is not possible to determine what heap type annotation to
emit in the binary or text formats. (The bottom types are not valid type
annotations since they do not have indices in the type section.)
To fix that problem, update the printer and binary emitter to emit unreachables
instead of the instruction with undetermined type annotation. This is a valid
transformation because the only possible value that could flow into those
instructions in that case is null, and all of those instructions trap on nulls.
That fix uncovered a latent bug in the binary parser in which new unreachables
within unreachable code were handled incorrectly. This bug was not previously
found by the fuzzer because we generally stop emitting code once we encounter an
instruction with type `unreachable`. Now, however, it is possible to emit an
`unreachable` for instructions that do not have type `unreachable` (but are
known to trap at runtime), so we will continue emitting code. See the new
test/lit/parse-double-unreachable.wast for details.
Update other miscellaneous code that creates `RefNull` expressions and null
`Literals` to maintain the new invariants as well.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
An overview of this is in the README in the diff here (conveniently, it is near the
top of the diff). Basically, we fix up nn locals after each pass, by default. This keeps
things easy to reason about - what validates is what is valid wasm - but there are
some minor nuances as mentioned there, in particular, we ignore nameless blocks
(which are commonly added by various passes; ignoring them means we can keep
more locals non-nullable).
The key addition here is LocalStructuralDominance which checks which local
indexes have the "structural dominance" property of 1a, that is, that each get has
a set in its block or an outer block that precedes it. I optimized that function quite
a lot to reduce the overhead of running that logic after each pass. The overhead
is something like 2% on J2Wasm and 0% on Dart (0%, because in this mode we
shrink code size, so there is less work actually, and it balances out).
Since we run fixups after each pass, this PR removes logic to manually call the
fixup code from various places we used to call it (like eh-utils and various passes).
Various passes are now marked as requiresNonNullableLocalFixups => false.
That lets us skip running the fixups after them, which we normally do automatically.
This helps avoid overhead. Most passes still need the fixups, though - any pass
that adds a local, or a named block, or moves code around, likely does.
This removes a hack in SimplifyLocals that is no longer needed. Before we
worked to avoid moving a set into a try, as it might not validate. Now, we just do it
and let fixups happen automatically if they need to: in the common code they
probably don't, so the extra complexity seems not worth it.
Also removes a hack from StackIR. That hack tried to avoid roundtrip adding a
nondefaultable local. But we have the logic to fix that up now, and opts will
likely keep it non-nullable as well.
Various tests end up updated here because now a local can be non-nullable -
previous fixups are no longer needed.
Note that this doesn't remove the gc-nn-locals feature. That has been useful for
testing, and may still be useful in the future - it basically just allows nn locals in
all positions (that can't read the null default value at the entry). We can consider
removing it separately.
Fixes #4824
|
|
|
|
|
|
|
|
|
|
| |
call.without.effects has a specific form, where the last parameter is a
function reference, and that function reference must have the right type
for the other parameters if called with them:
(call $call.without.effects
(..i32..)
(..f64..)
(..function reference, which takes params i32 and f64..)
|
|
|
|
|
|
|
|
| |
We were missing CallRef in the CFG traversal code in a place where we
note possible exceptions. As a result we thought CallRef cannot throw, and
were missing some control flow edges.
To actually detect the problem, we need to validate non-nullable locals
properly, which we were not doing. This adds that as well.
|
| |
|
|
|
|
|
|
| |
Apply the same logic to tuple fields as we do for all other fields,
when checking whether a non-nullable value is valid.
Fixes #4554
|
|
|
| |
See https://github.com/WebAssembly/extended-const
|
|
lit and FileCheck are the tools used to run the majority of tests in LLVM. Each
lit test file contains the commands to be run for that test, so lit tests are
much more flexible and can be more precise than our current ad hoc testing
system. FileCheck reads expected test output from comments, so it allows test
output to be written alongside and interspersed with test input, making tests
more readable and precise than in our current system.
This PR adds a new suite to check.py that runs lit tests in the test/lit
directory. A few tests have been ported to demonstrate the features of the new
test runner.
This change is motivated by a need for greater flexibility in testing wasm-split.
See #3359.
|