| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
CodeFolding previously did not consider br_on_* instructions at all, so
it would happily merge tails even if there were br_on_* branches to the
same label with non-matching tails. Fix the bug by making any label
targeted by any instruction not explicitly handled by CodeFolding
unoptimizable. This will gracefully handle other branching instructions
like `resume` and `resume_throw` as well. Folding these branches
properly is left as future work.
Also rename the test file from code-folding_enable-threads.wast to just
code-folding.wast and enable all features instead of just threads. The
old name was left over from when the test was originally ported to lit,
and the new feature is necessary because the new test uses GC
instructions.
|
|
|
|
| |
Replacing an if with a select may have refined the type. Without this fix,
the sharper stale type checks complain.
|
|
|
|
|
|
|
|
| |
I forgot that there is a validation rule that the output type for
br_on_cast and br_on_cast_fail must be a subtype of the input type. We
were previously printing bottom input types in cases where the cast
operand was unreachable, but that's only valid if the cast type is the
same bottom type. Instead print the most precise valid input type, which
is the cast type itself.
|
|
|
|
|
|
|
|
|
| |
Since Load expressions use their `type` field to encode the type of the
loaded value, unreachable loads need to come up with some other valid
type to print. Previously we always chose i32 as that type, but that's
not valid when the load was originally a v128 load with an alignment of
8, since 8 is greater than the maximum valid alignment of 4 for an i32.
Fix the problem by taking alignment into account when choosing a type
for the unreachable load.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously the classification of public types propagated public
visibility only through types that had previously been collected by
`collectHeapTypes`. Since there are settings that cause
`collectHeapTypes` to collect fewer types, it was possible for public
types to be missed if they were only public because they were reached by
an uncollected types.
Ensure that all public heap types are properly classified by propagating
public visibility even through types that are not part of the collected
output.
Fixes #7103.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
br_on_cast and br_on_cast_fail have two type annotations: one for their
input type and one for their cast type. In cases where their operands
were unreachable, we were previously printing "unreachable" for the
input type annotation. This is not valid wat because "unreachable" is
not a reference type.
To fix the problem, print the bottom type of the cast type's hierarchy
as the input type for br_on_cast and br_on_cast_fail when the operand is
unreachable. This ensures that the instructions have the most precise
possible output type according to Wasm typing rules, so it maximizes the
number of contexts in which the printed instructions are valid.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We previously allowed valid expressions to have stale types as long as
those stale types were supertypes of the most precise possible types for
the expressions. Allowing stale types like this could mask bugs where we
failed to propagate precise type information, though.
Make validation stricter by requiring all expressions except for control
flow structures to have the most precise possible types. Control flow
structures are exempt because many passes that can refine types wrap the
refined expressions in blocks with the old type to avoid the need for
refinalization. This pattern would be broken and we would need to
refinalize more frequently without this exception for control flow
structures.
Now that all non-control flow expressions must have precise types,
remove functionality relating to building select instructions with
non-precise types. Since finalization of selects now always calculates a
LUB rather than using a provided type, remove the type parameter from
BinaryenSelect in the C and JS APIs.
Now that stale types are no longer valid, fix a bug in TypeSSA where it
failed to refinalize module-level code. This bug previously would not
have caused problems on its own, but the stale types could cause
problems for later runs of Unsubtyping. Now the stale types would cause
TypeSSA output to fail validation.
Also fix a bug where Builder::replaceWithIdenticalType was in fact
replacing with refined types.
Fixes #7087.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The main fuzz_shell.js code builds and runs the given wasm. After the refactoring
in #7096, it is simple to append to that file and add more build and run operations,
adding more variety to the code, including cross-module interactions. Add logic
to run.py to do that for ClusterFuzz.
To test this, add a node test that builds a module with internal state that can
actually show which module is being executed. The test appends a build+run
operation, whose output prove that we are calling from the first module to the
second and vice versa.
Also add a ClusterFuzz test for run.py that verifies that we add a variety of
build/run operations.
|
|
|
|
|
|
|
|
|
|
|
|
| |
This mostly moves the code around and avoids some duplication. It
also tracks the list of exports with both names and values, so that
if we compile more than one module, we can still access exports
from the previous.
Also add a first test of running fuzz_shell.js in node.
This does make build() append the exports, which was done before
on the main module but not the second one. That only affects the
wasm-split fuzzer, which is not active yet, so this is still NFC.
|
|
|
|
|
|
|
|
|
|
| |
Before, we would simply not export a function that had an e.g. anyref
param. As a result, the modules were effectively "closed", which was
good for testing full closed-world mode, but not for testing degrees of
open world. To improve that, this PR allows the fuzzer to export such
functions, and an "enclose world" pass is added that "closes" the wasm
(makes it more compatible with closed-world) that is run 50% of the
time, giving us coverage of both styles.
|
|
|
|
|
|
|
|
|
|
|
| |
This pass lowers nontrapping FP to int instructions to implement LLVM's
conversion behavior.
This means that they are not fully complete lowerings according to the
wasm spec, but have the same
undefined behavior that LLM does. This keeps the pass simpler and
preserves existing behavior when
compiling without nontrapping-ft.
This will be used in emscripten, so that we can build libraries with
nontrapping-fp and lower them away after link if desired.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The main addition here is a bundle_clusterfuzz.py script which will package up
the exact files that should be uploaded to ClusterFuzz. It also documents the
process and bundling and testing. You can do
bundle.py OUTPUT_FILE.tgz
That bundles wasm-opt from ./bin., which is enough for local testing. For
actually uploading to ClusterFuzz, we need a portable build, and @dschuff
had the idea to reuse the emsdk build, which works nicely. Doing
bundle.py OUTPUT_FILE.tgz --build-dir=/path/to/emsdk/upstream/
will bundle wasm-opt (+libs) from the emsdk. I verified that those builds
work on ClusterFuzz.
I added several forms of testing here. First, our main fuzzer fuzz_opt.py now
has a ClusterFuzz testcase handler, which simulates a ClusterFuzz environment.
Second, there are smoke tests that run in the unit test suite, and can also be
run separately:
python -m unittest test/unit/test_cluster_fuzz.py
Those unit tests can also run on a given bundle, e.g. one created from an
emsdk build, for testing right before upload:
BINARYEN_CLUSTER_FUZZ_BUNDLE=/path/to/bundle.tgz python -m unittest test/unit/test_cluster_fuzz.py
A third piece of testing is to add a --fuzz-passes test. That is a mode for
-ttf (translate random data into a valid wasm fuzz testcase) that uses random
data to pick and run a set of passes, to further shape the wasm. (--fuzz-passes
had no previous testing, and this PR fixes it and tidies it up a little, adding some
newer passes too).
Otherwise this PR includes the key run.py script that is bundled and then
executed by ClusterFuzz, basically a python script that runs wasm-opt -ttf [..]
to generate testcases, sets up their JS, and emits them.
fuzz_shell.js, which is the JS to execute testcases, will now check if it is
provided binary data of a wasm file. If so, it does not read a wasm file from
argv[1]. (This is needed because ClusterFuzz expects a single file for the
testcase, so we make a JS file with bundled wasm inside it.)
|
|
|
|
|
|
|
|
|
|
|
|
| |
IRBuilder often has to generate new label names for blocks and other
scopes. Previously it would generate each new name by starting with
"block" or "label" and incrementing a suffix until finding a fresh name,
but this made name generation quadratic in the number of names to
generate.
To spend less time generating names, track a hint index at which to
start looking for a fresh name and increment it every time a name is
generated. This speeds up a version of the binary parser that uses
IRBuilder by about 15%.
|
|
|
|
| |
Since the resulting code has the same undefined behavior as LLVM, make
the pass name reflect that.
|
|
|
|
|
|
|
|
|
|
| |
When IRBuilder builds an empty non-block scope such as a function body,
an if arm, a try block, etc, it needs to produce some expression to
represent the empty contents. Previously it produced a nop, but change
it to produce an empty block instead. The binary writer and printer have
special logic to elide empty blocks, so this produces smaller output.
Update J2CLOpts to recognize functions containing empty blocks as
trivial to avoid regressing one of its tests.
|
|
|
|
| |
heap-store-optimization.wast had a test without its accompanying
generated output.
|
|
|
|
| |
(#7072)
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
IRBuilder introduces scratch locals to hoist values from underneath
stacky code to the top of the stack for consumption by the next
instruction. When it does so, the sequence of instructions from the set
to the get of the scratch local is packaged in a block so the entire
sequence can be made a child of the next instruction. In cases where the
hoisted value comes from a `pop`, this packaging can make the IR
invalid, since `pop`s are not allowed to appear inside blocks.
Detect when this problem might occur and fix it by running
`EHUtils::handleBlockNestedPops` after the function containing the
problem has been constructed.
|
|
|
|
|
|
|
|
|
| |
Rather than back-patching names when we get to the names section in the
binary reader, skip ahead to read the names section before anything else
so we can use the final names right away. This is a prerequisite for
using IRBuilder in the binary reader.
The only functional change is that we now allow empty local names. Empty
names are perfectly valid.
|
|
|
|
|
|
|
|
|
|
|
| |
There were previously two separate code paths for printing function
signatures, one for imported functions and one for declared functions.
The only intended difference was that parameter names were printed for
declared functions but not for imported functions.
Reduce duplication by consolidating the code paths, and add support for
printing names for imported function parameters that have them. Also fix
a bug where empty names were printed as `$` rather than the correct
`$""`.
|
|
|
|
|
|
|
|
| |
This pass lowers away memory.copy and memory.fill operations. It
generates a function that implements the each of the instructions and
replaces the instructions with calls to those functions.
It does not handle other bulk memory operations (e.g. passive segments
and table operations) because they are not used by emscripten to enable
targeting old browsers that don't support bulk memory.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This PR fixes this situation:
(block $out
(local.set $x (struct.new X Y Z))
(struct.set $X 0 (local.get $x) (..br $out..)) ;; X' here has a br
)
(local.get $x)
=>
(block $out
(local.set $x (struct.new (..br $out..) Y Z))
)
(local.get $x)
We want to fold the struct.set into the struct.new, but the br is
a problem: if it executes then we skip the struct.set, and the last
local.get in fact reads the struct before the write. And, if we did this
optimization, we'd end up with the br on the struct.new, so it
would skip that instruction and even the local.set.
To fix this, we use the new API from #7039, which lets us query,
"is it ok to move the local.set to where the struct.set is?"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I believe the history here is that
1. We added a PickLoadSigns pass. It checks if a load from memory is stored in
a local that is only every used in a signed or an unsigned manner. If it is, we can
adjust the sign of the load (load8_u/s) to do the sign/unsign during the load.
2. The pass finds each LocalGet and looks either 2 or 3 parents above it. For
a sign operation, we need to look up 3, since the operation is x << K >> K. For
an unsigned, we need only 2, since we have x & M. We hardcoded those
numbers 2 and 3.
3. We added the SignExt feature, which adds i32.extend8_s. This does a sign
extend with a single instruction, not two nested ones, so now we can sign-
extend at depth 2, unlike before. Properties::getSignExtValue was updated
for this, but not the pass PickLoadSigns.
The bug that is fixed here is that we looked at depth 3 for a sign-extend, and
we blindly accepted it if we found one. So we ended up accepting
(i32.extend8_s (ANYTHING (x))), which is a sign-extend of something, but
not of x, which is bad.
We were also missing an optimization opportunity, as we didn't look for
depth 2 sign extends.
This bug is quite old, from when Properties got SignExt support, in #3910.
But the blame isn't there - to notice this then, we'd have had to check each
caller of getSignExtValue throughout the codebase, which isn't reasonable.
The fault is mine, from the first write-up of PickLoadSigns in 2017: the code
should have been fully general, handling 2/3 and checking the output when
it does so (adding == curr, that the sign/zero-extended value is the one we
expect). That is what this PR does.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds two new imports to fuzzer modules:
* call-export, which gets an export index and calls it.
* call-export-catch, which does the call in a try-catch, swallowing
any error, and returning 1 if it saw an error.
The former gives us calls back into the wasm, possibly making various
trips between wasm and JS in interesting ways. The latter adds a
try-catch which helps fuzz wasm EH.
We do these calls using a wasm export index, i.e., the index in
the list of exports. This is simple, but it does have the downside that
it makes executing the wasm sensitive to changes in exports (e.g.
wasm-merge adds more), which requires some handling in the fuzzer.
|
| |
|
|
|
|
| |
`ModuleUtils::copyTable` was not copying the `indexType` property.
|
| |
|
|
|
| |
This allows 64-bit bounds checking to work properly.
|
|
|
|
| |
Some places assumed a 32-bit index.
|
|
|
| |
A bunch of places assumed a 32-bit index.
|
|
|
|
|
| |
When we combine a load/store offset with a const, we must not
overflow, as the semantics of offsets do not wrap.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
CFP is less precise than GUFA, in particular, when it flows around types then
it does not consider what field it is flowing them to, and its core data
structure is "if a struct.get is done on this type's field, what can be read?".
To see the issue this PR fixes, assume we have
A
/ \
B C
Then if we see struct.set $C, we know that can be read by a struct.get $A
(we can store a reference to a C in such a local/param/etc.), so we propagate
the value of that set to A. And, in general, anything in A can appear in B
(say, if we see a copy, a struct.set of struct.get that operates on types A,
then one of the sides might be a B), so we propagate from A to B. But
now we have propagated something from C to B, which might be of an
incompatible type.
This cannot cause runtime issues, as it just means we are propagating more
than we should, and will end up with less-useful results. But it can break
validation if no other value is possible but one with an incompatible type,
as we'd replace a struct.get $B with a value that only makes sense for C.
(The qualifier "no other value is possible" was added in the previous
sentence because if another one is possible then we'd end up with too
many values to infer anything, and not optimize at all, avoiding any error.)
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This fixes a regression from #7019. That PR fixed an error on situations with
mixed public and private types, but it made us stop optimizing in valid cases,
including cases with entirely private types.
The specific regression was that we checked if we had an entry in the
map of "can become immutable", and we thought that was enough. But
we may have a private child type with a public parent, and still be able to
optimize in the child if the field is not present in the parent. We also did
not have exhaustive checking of all the states canBecomeImmutable can be,
so add those + testing.
|
|
|
|
|
| |
Continues the work from #7027 which added throwing from JS, this adds
table get/set operations from JS, to further increase our coverage of
Wasm/JS interactions (the table can be used from both sides).
|
| |
|
|
|
|
|
|
|
|
| |
unrefine the output (#7036)
Paradoxically, when a BrOn's castType is refined, its own type (the type it flows out)
can get un-refined: making the castType non-nullable means nulls no longer
flow on the branch, so they may flow out directly, making the BrOn nullable.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
TypeMerging works by representing the type definition graph as a
partitioned DFA and then refining the partitions to find mergeable
types. #7023 was due to a bug where the DFA included edges from public
types to their children, but did not necessarily include corresponding
states for those children.
One way to fix the bug would have been to traverse the type graph,
finding all reachable public types and creating DFA states for them, but
that might be expensive in cases where there are large graphs of public
types.
Instead, fix the problem by removing the edges from public types to
their children entirely. Types reachable from public types are also
public and therefore are not eligible to be merged, so these edges were
never necessary for correctness.
Fixes #7023.
|
|
|
|
|
|
|
|
|
|
|
| |
We already generated (throw ..) instructions in wasm, but it makes sense to model
throws from outside as well, as they cross the module boundary. This adds a new fuzzer
import to the generated modules, "throw", that just does a throw from JS etc.
Also be more precise about handling fuzzing-support imports in fuzz-exec: we now
check that logging functions start with "log*" and error otherwise (this check is
now needed given we have "throw", which is not logging). Also fix a minor issue
with name conflicts for logging functions by using getValidFunctionName for them,
both for logging and for throw.
|
|
|
|
|
|
|
|
| |
We only checked for the case of the immediate super being public while we
are private, but it might be a grandsuper instead. That is, any ancestor that
is public will prevent GTO from removing a field (since we can only add
fields on top of our ancestors). Also, the ancestors might not all have the
field, which would add more complexity to that particular assertion, so just
remove it, and add comprehensive tests.
|
|
|
|
|
|
|
|
|
|
|
| |
These were added to avoid common problems with closed world mode, but
in practice they are causing more harm than good, forcing users to work
around them. In the meantime (until #6965), remove this validation to unblock
current toolchain makers.
Fix GlobalTypeOptimization and AbstractTypeRefining on issues that this
uncovers: without this validation, it is possible to run them on more wasm
files than before, hence these were not previously detected. They are
bundled in this PR because their tests cannot validate before this PR.
|
|
|
|
|
|
|
|
|
|
| |
Similar to #7017 . As with that PR, this reduces some optimizations that were
valid, as we tried to do something complex here and refine types in a public
rec group when it seemed safe to do so, but our analysis was incomplete.
The testcase here shows how another operation can end up causing a
dependency that breaks things, if another type that uses one that we
modify is public. To be safe, ignore all public types. In the future perhaps we
can find a good way to handle "almost-private" types in public rec groups,
in closed world.
|
|
|
| |
Similar to #7017 and #7018
|
| |
|
|
|
|
|
|
| |
TypeUpdater which it uses internally already does so, but we must also
ignore such types earlier, and make no other modifications to them.
Helps #7015
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When EH+GC are enabled then wasm has non-nullable types, and the
sent exnref should be non-nullable. In BinaryenIR we use the non-
nullable type all the time, which we also do for function references
and other things; we lower it if GC is not enabled to a nullable type
for the binary format (see `WasmBinaryWriter::writeType`, to which
comments were added in this PR). That is, this PR makes us handle
exnref the same as those other types.
A new test verifies that behavior. Various existing tests are updated
because ReFinalize will now use the more refined type, so this is
an optimization. It is also a bugfix as in #6987 we started to emit
the refined form in the fuzzer, and this PR makes us handle it
properly in validation and ReFinalization.
|
|
|
|
|
| |
Similar to Break, BrOn, etc., we must apply subtyping constraints of the
types we send to blocks, so that Unsubtyping will not remove subtypings
that are actually needed.
|
|
|
|
|
| |
A mutable exported global might be shared with another module which
writes to it using the current type, which is unsafe and the type system does
not allow, so do not refine there.
|
|
|
|
|
|
|
|
|
|
| |
(#7008)
When we gather strings, we create new globals for each one, that is then
the canonical defining global for it, which will then be used everywhere
else. We create such a global if we lack one, but if we happen to have such
a global - a global that simply defines a string - then we reuse it. But we
didn't handle the case where there was a use before the definition, and
failed to sort the definition before the use.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If we have
(drop
(block $b (result exnref)
(try_table (catch_all_ref $b)
then we don't really need to send the ref: it is dropped, so we can just replace
catch_all_ref with catch_all and then remove the drop and the block value.
MergeBlocks already had logic to remove block values, so it is the natural
place to add this.
|