| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
IRBuilder is a utility for turning arbitrary valid streams of Wasm
instructions into valid Binaryen IR. It is already used in the text
parser, so now use it in the binary parser as well. Since the IRBuilder
API for building each intruction requires only the information that the
binary and text formats include as immediates to that instruction, the
parser is now much simpler than before. In particular, it does not need
to manage a stack of instructions to figure out what the children of
each expression should be; IRBuilder handles this instead.
There are some differences between the IR constructed by IRBuilder and
the IR the binary parser constructed before this change. Most
importantly, IRBuilder generates better multivalue code because it
avoids eagerly breaking up multivalue results into individual components
that might need to be immediately reassembled into a tuple. It also
parses try-delegate more correctly, allowing the delegate to target
arbitrary labels, not just other `try`s. There are also a couple
superficial differences in the generated label and scratch local names.
As part of this change, add support for recording binary source
locations in IRBuilder.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When printing Binaryen IR, we previously generated names for unnamed heap types
based on their structure. This was useful for seeing the structure of simple
types at a glance without having to separately go look up their definitions, but
it also had two problems:
1. The same name could be generated for multiple types. The generated names did
not take into account rec group structure or finality, so types that differed
only in these properties would have the same name. Also, generated type names
were limited in length, so very large types that shared only some structure
could also end up with the same names. Using the same name for multiple types
produces incorrect and unparsable output.
2. The generated names were not useful beyond the most trivial examples. Even
with length limits, names for nontrivial types were extremely long and visually
noisy, which made reading disassembled real-world code more challenging.
Fix these problems by emitting simple indexed names for unnamed heap types
instead. This regresses readability for very simple examples, but the trade off
is worth it.
This change also reduces the number of type printing systems we have by one.
Previously we had the system in Print.cpp, but we had another, more general and
extensible system in wasm-type-printing.h and wasm-type.cpp as well. Remove the
old type printing system from Print.cpp and replace it with a much smaller use
of the new system. This requires significant refactoring of Print.cpp so that
PrintExpressionContents object now holds a reference to a parent
PrintSExpression object that holds the type name state.
This diff is very large because almost every test output changed slightly. To
minimize the diff and ease review, change the type printer in wasm-type.cpp to
behave the same as the old type printer in Print.cpp except for the differences
in name generation. These changes will be reverted in much smaller PRs in the
future to generally improve how types are printed.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously when we processed a block for example, we'd do this:
;; start is here
(block (result type)
;; end is here
.. contents ..
)
;; end delimiter is here
Not how this represents the block's start and end as the "header", and
uses an extra delimiter to mark the end.
I think this is wrong, and was an attempt to handle some offsets from
LLVM that otherwise made no sense, ones at the end of the "header".
But it turns out that this makes us completely incorrect on some things
where there is a low/high pc pair, and we need to understand that the
end of a block is at the end opcode at the very end, and not the end of
the header. This PR changes us to do that, i.e.
;; start is here
(block (result type)
.. contents ..
)
;; end is here
This fixes a testcase already in the test suite,
test/passes/fib_nonzero-low-pc_dwarf.bin.txt
where you can see that lexical block now has a valid value for the end, and
not a 0 (the proper scope extends all the way to the end of the big block in
that function, and is now the same in the DWARF before and after we
process it). test/passes/fannkuch3_dwarf.bin.txt is also improved by
this.
To implement this, this removes the BinaryLocations::End delimeter. After
this we just need one type of delimiter actually, but I didn't refactor that any
more to keep this PR small (see TODO).
This removes an assertion in writeDebugLocationEnd() that is no longer
valid: the assert ensures that we wrote an end only if there was a 0 for
the end, but for a control flow structure, we write the end of the "header"
automatically like for any expression, and then overwrite it later when we
finish writing the children and the end marker. We could in theory special-case
control flow structures to avoid the first write, but it would add more complexity.
This uncovered what appears to be a possible bug in our debug_line
handling, see test/passes/fannkuch3_manyopts_dwarf.bin.txt. That needs
to be looked into more, but I suspect that was invalid info from when we
looked at the end of the "header" of control flow structures. Note that there
was one definite bug uncovered here, fixed by the extra
} else if (locationUpdater.hasOldExprEnd(oldAddr)) {
that is added here, which was definitely a bug.
|
|
|
|
|
|
|
|
|
| |
The s-parser was assigning numbers names per-type where as
the binaryn reader was using the global import count as the
number to append.
This change switches to use per-element count which I think
it preferable as it increases the stability of the auto-generated
names. e.g. memory is now always named `$mimport0`.
|
|
|
| |
Implements the parts of the Extended Name Section Proposal that are trivially applicable to Binaryen, in particular table, memory and global names. Does not yet implement label, type, elem and data names.
|
|
This lets us run most tests at least on that platform.
Add a new function for skipping those tests, skip_if_on_windows,
so that it's easy to find which tests are disabled on windows for later fixing
efforts.
This fixes a few minor issues for windows, like comparisons
should ignore \r in some cases.
Rename all passes tests that use --dwarfdump to contain "dwarf"
in their name, which makes it easy to skip those (and is clearer
anyhow).
|