| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Function signatures were previously redundantly stored on Function
objects as well as on FunctionType objects. These two signature
representations had to always be kept in sync, which was error-prone
and needlessly complex. This PR takes advantage of the new ability of
Type to represent multiple value types by consolidating function
signatures as a pair of Types (params and results) stored on the
Function object.
Since there are no longer module-global named function types,
significant changes had to be made to the printing and emitting of
function types, as well as their parsing and manipulation in various
passes.
The C and JS APIs and their tests also had to be updated to remove
named function types.
|
|
|
|
|
|
| |
This fixes the parent-child relationship computation in `DataFlow.Graph`
when there is a loop. This wasn't discovered until now because this is
used in Souperify and Souperify only runs after Flatten pass, which
produces redundant blocks between inside and outside of a loop.
|
|
|
|
|
|
| |
This pass writes and reads the module. This shows the effects
of converting to and back from the binary format, and will be
useful in testing dwarf debug support (where we'll need to see
that writing and reading a module preserves debug info properly).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently `none` and `unreachable` types are stored as the same empty
`{}` in src/wasm/wasm-type.cpp. This makes `Type::operator<` incorrectly
when given `none` and `unreachable`, because it expands both given types
and lexicographically compare them, when both of the expanded vector
will be empty.
This was found by the fuzzer. This line in `Modder::visitExpression`
tries to retrieve candidates of the same type. Because we can't really
compare these two types, if you give `unreachable` as the key,
candidates of `none` type can be returned. This generates incorrect code
that ends up failing in validation in a very weird way.
It was hard to generate a small testcase to trigger this part because it
was found by generating fuzzed code from a random data file. But I guess
this fix is pretty straightforward.
Fixes #2512.
|
|
|
|
|
|
|
|
|
|
|
| |
The `$` is not actually part of the name, its the marker that starts
a name in the wat format. It can be confusing to see it show up when
doing `cerr << name`, for example.
This change has Print.cpp add the `$` which seem like the right place
to do this. Plus it revealed a bunch of places where were not calling
printName to escape all the names we were printing.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Current `<<` operator on `Literal` prints `[type].const` with it. But
`[type].const` is rather an instruction than a literal itself, and
printing it with the literals makes less sense when we later have
literals whose type don't have `const` instructions (such as reference
types).
This patch
- Makes `<<` operator on `Literal` print only its value
- Makes wasm-shell's shell interface comply with the spec interpreter's
printing format (`value : type`).
- Prints wasm-shell's `[trap]` message to stderr
These make all `fix_` routines for spec tests in check.py unnecessary.
|
|
|
|
|
|
|
|
|
| |
This is the start of a larger refactoring to remove FunctionType entirely and
store types and signatures directly on the entities that use them. This PR
updates BrOnExn and Events to remove their use of FunctionType and makes the
BinaryWriter traverse the module and collect types rather than using the global
FunctionType list. While we are collecting types, we also sort them by frequency
as an optimization. Remaining uses of FunctionType in Function, CallIndirect,
and parsing will be removed in a future PR.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Adds the ability to create multivalue types from vectors of concrete value
types. All types are transparently interned, so their representation is still a
single uint32_t. Types can be extracted into vectors of their component parts,
and all the single value types expand into vectors containing themselves.
Multivalue types are not yet used in the IR, but their creation and inspection
functionality is exposed and tested in the C and JS APIs.
Also makes common type predicates methods of Type and improves the ergonomics of
type printing.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
clang/llvm introduce __original_main as a workaround for
the fact that main may have different signatures. A downside
to that is that users get it in stack traces, which is confusing.
In -O2 and above we normally inline __original_main anyhow,
but as this is for debugging, non-optimized builds matter too,
so add a pass for this.
The implementation is trivial, just call doInling. However we
must check some corner cases first.
Bonus minor fixes to FindAllPointers, which unnecessarily
created an object to get the class Id (which is not valid
for all classes), and that it didn't take the input by
reference properly, which meant we couldn't get the
pointer to the function body's toplevel.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This pass strips DWARF debug sections, but not other debug
sections. This is useful when emitting source maps, as we do
need the SourceMapURL section, but the DWARF sections are
not longer necessary (and we've seen a testcase where they
are massively large, so big the wasm can't even be loaded in
a browser...).
Also contains a trivial one-line fix in --extract-function which
was necessary to create the testcase here: that pass extracts
a function from a wasm file (like llvm-extract) but it didn't check
if an export already existed for the function.
|
|
|
|
|
| |
Adds the AssemblyScript-specific passes post-assemblyscript
and post-assemblyscript-finalize, eliminating redundant ARC-style
retain/release patterns conservatively emitted by the compiler.
|
|
|
|
|
|
|
|
|
|
|
|
| |
When we see invoke_ calls in emscripten-generated code, we know
they call into JS just to do a try-catch for exceptions. If the target being
called cannot throw, which we check in a whole-program manner, then
we can simply skip the invoke.
I confirmed that this fixes the regression in emscripten-core/emscripten#9817 (comment)
(that is, with this optimization, upstream is around as fast as fastcomp).
When we have native wasm exception handling, this can be
extended to optimize that as well.
|
|
|
|
|
| |
The original is necessary if we want to pass it to wasm, where it will be called
directly, without JS legalization. For example the JS dynamic loader in
emscripten needs this, emscripten-core/emscripten#9562
|
|
|
|
|
|
|
| |
- When a catch body is a block, call its `finalize` function with the
correct type
- Don't create a block when there's one instruction in a catch body
- Remove `makeCatch` from gen-s-parser.py; it's not necessary
- Fix a test case that has a `catch` without `try`
|
| |
|
|
|
|
|
|
|
|
|
| |
- Adds `items` function for `FeatureOptions` so we can get a vector of
eligible types
- Replaces hardcoded enumeration of MVP types with `getConcreteTypes`,
which also adds v128 type to the list if SIMD is enabled
- Removes `getType()` function; this does not seem to be used anywhere
- Renames `vectorPick` with `pick`
- Use the absolute path for d8 in the fuzzer
|
|
|
| |
Fixes #2417
|
|
|
| |
PostWalker traversal should visit its value.
|
|
|
|
| |
Like an `If`, `Try` construct is reachable when either its try body or
catch body is reachable. This adds support for that.
|
|
|
|
|
| |
Previously RemoveUnusedModuleElements pass only preserved exported
events and did not preserve events used in `throw` and `br_on_exn`
instructions. This fixes it.
|
|
|
| |
This fixes a crash when programs containing load_splats are optimized.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
These passes are meant to be run after Asyncify has been run, they modify the
output. We can assume that we will always unwind if we reach an import, or
that we will never unwind, etc.
This is meant to help with lazy code loading, that is, the ability for an
initially-downloaded wasm to not contain all the code, and if code not present
there is called, we download all the rest and continue with that. That could
work something like this:
* The wasm is created. It contains calls to a special import for lazy code
loading.
* Asyncify is run on it.
* The initially downloaded wasm is created by running
--mod-asyncify-always-and-only-unwind: if the special import for lazy code
loading is called, we will definitely unwind, and we won't rewind in this binary.
* The lazily downloaded wasm is created by running --mod-asyncify-never-unwind:
we will rewind into this binary, but no longer need support for unwinding.
(Optionally, there could also be a third wasm, which has not had Asyncify run
on it, and which we'd swap to for max speed.)
These --mod-asyncify passes allow the optimizer to do a lot of work, especially
for the initially downloaded wasm if we have lots of calls to the lazy code
loading import. In that case the optimizer will see that those calls unwind,
which means the code after them is not reached, potentially making lots of code
dead and removable.
|
|
|
|
| |
`exnref` is enabled by not reference type feature but exception handling
feature. Sorry that I missed this in #2377.
|
|
|
|
|
| |
`pop` is not a real instruction and automatically generated when reading
binary and deleted when writing binary, so this does not work with
instrumentation.
|
| |
|
|
|
| |
This adds support for anyref and exnref types in InstrumentLocals pass.
|
|
|
|
|
| |
We've had an option to set the location of the sbrk ptr, but not the value.
Applying the value as well is necessary for standalone wasm, as otherwise we set
it in JS.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This optimizes stuff like
(global.set $x (i32.const 123))
(global.get $x)
into
(global.set $x (i32.const 123))
(i32.const 123)
This doesn't help much with LLVM output as it's rare to use globals (except for the stack pointer, and that's already well optimized), but it may help on general wasm. It can also help with Asyncify that does use globals extensively.
|
|
|
|
|
| |
With the optional asserts, we throw if we see an unwind begin in code that we thought could never unwind (say, because the user incorrectly blacklisted it).
Helps with emscripten-core/emscripten#9389
|
|
|
|
|
| |
Properly handle fastcomp wasm safe heap: emscripten_get_sbrk_ptr is an asm.js library function, which means it is inside the wasm after asm2wasm, and exported. Find it via the export.
|
|
|
|
|
|
|
| |
Currently emscripten links the wasm, then links the JS, then computes the final static allocations and in particular the location of the sbrk ptr (i.e. the location in memory of the brk location). Emscripten then imports that into the asm.js or wasm as env.DYNAMICTOP_PTR. However, this didn't work in the wasm backend where we didn't have support for importing globals from JS, so we implement sbrk in JS.
I am proposing that we change this model to allow us to write sbrk in C and compile it to wasm. To do so, that C code can import an extern C function, emscripten_get_sbrk_ptr(), which basically just returns that location. The PostEmscripten pass can even apply that value at compile time, so we avoid the function call, and end up in the optimal place, see #2325 and emscripten PRs will be opened once other stuff lands.
However, the SafeHeap pass must be updated to handle this, or our CI will break in the middle. This PR fixes that, basically making it check if env.DYNAMICTOP_PTR exists, or if not then looking for env.emscripten_get_sbrk_ptr, so that it can handle both.
|
|
|
|
|
|
|
| |
(which is called DYNAMICTOP_PTR in emscripten) (#2325)
The assumption is that an import env.emscripten_get_sbrk_ptr exists, and we replace the value returned from there with a constant. (We can't do all this in wasm-emscripten-finalize, as it happens before the JS compiler runs, which can add more static allocations; we only know where the sbrk ptr is later in compilation.) This just replaces the import with a function returning the constant; inlining etc. can help more later.
By setting this at compile time we can reduce code size and avoid importing it at runtime, which makes us more compatible with wasi (less special imports).
|
|
|
| |
This makes the minification pass aware of "wasi_unstable" and "wasi" as well.
|
|
|
|
|
|
|
| |
This adds `atomic.fence` instruction:
https://github.com/WebAssembly/threads/blob/master/proposals/threads/Overview.md#fence-operator
This also fix bugs in `atomic.wait` and `atomic.notify` instructions in
binaryen.js and adds tests for them.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds basic support for exception handling instructions, according
to the spec:
https://github.com/WebAssembly/exception-handling/blob/master/proposals/Exceptions.md
This PR includes support for:
- Binary reading/writing
- Wast reading/writing
- Stack IR
- Validation
- binaryen.js + C API
- Few IR routines: branch-utils, type-updating, etc
- Few passes: just enough to make `wasm-opt -O` pass
- Tests
This PR does not include support for many optimization passes, fuzzer,
or interpreter. They will be follow-up PRs.
Try-catch construct is modeled in Binaryen IR in a similar manner to
that of if-else: each of try body and catch body will contain a block,
which can be omitted if there is only a single instruction. This block
will not be emitted in wast or binary, as in if-else. As in if-else,
`class Try` contains two expressions each for try body and catch body,
and `catch` is not modeled as an instruction. `exnref` value pushed by
`catch` is get by `pop` instruction.
`br_on_exn` is special: it returns different types of values when taken
and not taken. We make `exnref`, the type `br_on_exn` pushes if not
taken, as `br_on_exn`'s type.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is both an optimization and a workaround for the problem that emscripten-core/emscripten#7641 uncovered and had to be reverted because of.
What's going on there is that wasm-emscripten-finalize turns emscripten_longjmp_jmpbuf into emscripten_longjmp (for some LLVM internal reason - there's a long comment in the source that I didn't fully follow). There are two such imports already, one for each name, and before that PR, we ended up with just one. After that PR, we end up with two. And with two, the minification of import names gets confused - we have two imports with the same name, and the code there ends up ignoring one of them.
I'm not sure why that PR changed things - I guess the wasm-emscripten-finalize code looks at the name, and that PR changed what name appears? @sbc100 maybe #2285 is related?
Anyhow, it's not trivial to make import minification code support two identical imports, but I don't think we should - we should avoid having such duplication anyhow. And we should add an assert that they don't exist (I'll open a PR for that later when it's possible).
This fixes the duplication by adding a useful pass to remove duplicate imports (just functions, for now). Pretty simple, but we didn't do it yet. Even if there is a wasm-emscripten-finalize bug we need to fix with those duplicate imports, I think this pass is still a good thing to add.
I confirmed that this fixes the issue caused by that PR.
|
| |
|
|
|
|
|
| |
I fixed flatten.bin.txt which seems to have just had some corrupted data, and I removed some fancy unicode from the spec comments tests, which I'm not sure it's important enough to figure out how to fix.
Fixes #1691
|
|
|
|
|
|
|
|
| |
* Fix stack pointer identification for wasm::ABI::getStackSpace().
Recent stack pointer simplification in Emscripten broke the --spill-pointers
pass. This fix for #2229 restores this functionality by recognizing an
alternative coding idiom in Emscripten-generated WASM code.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently various expressions handle this differently, and now we
consistently follow this rules:
---
For all non-control-flow value-returning instructions, if a type of an
expression is unreachable, we emit an unreachable and don't emit the
instruction itself. If we don't emit an unreachable, instructions that
follow can have validation failure in wasm binary format. For example:
```
[unreachable] (f32.add
[unreachable] (i32.eqz
[unreachable] (unreachable)
)
...
)
```
This is a valid prgram in binaryen IR, because the unreachable type
propagates out of an expression, making both i32.eqz and f32.add
unreachable. But in binary format, this becomes:
```
unreachable
i32.eqz
f32.add ;; validation failure; it expects f32 but takes an i32!
```
And here f32.add causes validation failure in wasm validation. So in this
case we add an unreachable to prevent following instructions to consume
the current value (here i32.eqz).
In actual tests, I used `global.get` to an f32 global, which does not
return a value, instead of `f32.add`, because `f32.add` itself will not
be emitted if one of argument is unreachable.
---
So the changes are:
- For instructions that don't return a value, removes unreachable
emitting code if it exists.
- Add the unreachable emitting code for value-returning instructions if
there isn't one.
- Check for unreachability only once after emitting all children for
atomic instructions. Currently only atomic instructions check
unreachability after visiting each children and bail out right after,
which is valid, but not consistent with others.
- Don't emit an extra unreachable after a return (and return_call). I
guess it is unnecessary.
|
|
|
|
|
|
|
|
|
| |
When a memory instruction's type is unreachable, i.e., one of its
child expressions is unreachable, the instruction will be printed like
`unreachable.load`, which is invalid text format.
This prints unreachable prefix instruction types as `i32` to just make
them pass the parser. It is OK because they are not reachable anyway.
Also this removes printing of `?` in atomic.rmw instruction printing.
|
|
|
|
|
|
|
|
|
| |
The blacklist means "functions here are to be ignored and not instrumented, we can assume they never unwind." The whitelist means "only these functions, and no others, can unwind." I had hoped such lists would not be necessary, since Asyncify's overhead is much smaller than the old Asyncify and Emterpreter, but as projects have noticed, the overhead to size and speed is still significant. The lists give power users a way to reduce any unnecessary overhead.
A slightly tricky thing is escaping of names: we escape names from the names section (see #2261 #1646). The lists arrive in human-readable format, so we escape them before comparing to the internal escaped names. To enable that I refactored wasm-binary a little bit to provide the escaping logic, cc @yurydelendik
If both lists are specified, an error is shown (since that is meaningless). If a name appears in a list that is not in the module, we show a warning, which will hopefully help people debug typos etc. I had hoped to make this an error, but the problem is that due to inlining etc. a single list will not always work for both unoptimized and optimized builds (a function may vanish when optimizing, due to duplicate function elimination or inlining).
Fixes #2218.
|
|
|
|
| |
Adds tail call support to fuzzer and makes small changes to handle return calls in multiple utilities and passes. Makes larger changes to DAE and inlining passes to properly handle tail calls.
|
|
|
|
|
|
|
|
|
|
|
| |
(global $g1 (mut i32) (i32.const 42))
(global $g2 i32 (global.get $g1))
can be optimized to
(global $g1 (mut i32) (i32.const 42))
(global $g2 i32 (i32.const 42))
even though $g1 is mutable - because it can't be mutated during module instantiation.
|
|
|
|
| |
#2242 had exposed the bug that the `Trapper` pass was defining `walkFunction` when it should have been defining `doWalkFunction`.
|
|
|
|
|
| |
(#2244)
This reverts commit 72c52ea7d4eb61b95cf8a5164947cb760fe42e9c, which was causing test failures after it merged.
|
|
|
|
| |
This prevents those instructions from becoming invalid due to memory
packing optimizations and is also a code size win. Fixes #2227.
|
| |
|
|
|
|
|
|
|
| |
After some discussion this seems like a less confusing name: what the pass does is "asyncify" code, after all.
The one downside is the name overlaps with the old emscripten "Asyncify" utility, which we'll need to clarify in the docs there.
This keeps the old --bysyncify flag around for now, which is helpful for avoiding temporary breakage on CI as we move the emscripten side as well.
|
|
|
| |
This became noticeable after #2216 which led to some eqz eqz pairs in the test suite.
|