| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
| |
We switched from emitting the legacy `ref.cast_static` instruction to emitting
`ref.cast null` in #5331, but that wasn't quite correct. The legacy instruction
had polymorphic typing so that its output type was nullable if and only if its
input type was nullable. In contrast, `ref.cast null` always has a a nullable
output type.
Fix our output by instead emitting non-nullable `ref.cast` if the output should
be non-nullable. Parse `ref.cast` in binary and text forms as well. Since the IR
can only represent the legacy polymorphic semantics, disallow unsupported casts
from nullable to non-nullable references or vice versa for now.
|
|
|
|
|
|
|
| |
The standard casting instructions now allow casting to basic heap types, not
just user-defined types, but they also require that the intended type and
argument type have a common supertype. Update the validator to use the standard
rules, update the binary parser and printer to allow basic types, and update the
tests to remove or modify newly invalid test cases.
|
|
|
|
|
|
|
| |
We previously supported only the non-standard cast instructions introduced when
we were experimenting with nominal types. Parse the names and opcodes of their
standard counterparts and switch to emitting the standard names and opcodes.
Port all of the tests to use the standard instructions, but add additional tests
showing that the non-standard versions are still parsed correctly.
|
|
|
|
|
|
|
|
|
|
| |
The upstream WasmGC spec has removed `data` and introduced `struct`. To make the
migration easier, we have been supporting `struct` as an `alias` for `data` and
`structref` as an alias for `dataref`.
Update the tests to prefer the `struct` aliases over `data` for test input to
make the future migration easier. Also update some tests that had stale comments
about ref.null types being updated and remove some tests for instructions like
br_on_data and ref.as_data that do not make sense without a `data` type.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
With this change we default to an open world, that is, we do the safe thing
by default: we no longer assume a closed world. Users that want a closed
world must pass --closed-world.
Atm we just do not run passes that assume a closed world. (We might later
refine them to find which types don't escape and only optimize those.) The
RemoveUnusedModuleElements is an exception in that the closed-world
flag influences one part of its operation, but not the rest.
Fixes #5292
|
|
|
|
|
| |
As noticed in #5303, the test changes here are because we did unnecessary work
which created a new rec group, which then led to a rec group being printed out.
|
|
|
|
|
|
|
|
|
|
| |
This makes Binaryen's default type system match the WasmGC spec.
Update the way type definitions without supertypes are printed to reduce the
output diff for MVP tests that do not involve WasmGC. Also port some
type-builder.cpp tests from test/example to test/gtest since they needed to be
rewritten to work with isorecursive type anyway.
A follow-on PR will remove equirecursive types completely.
|
|
|
|
|
| |
(#5266)
This reverts commit 570007dbecf86db5ddba8d303896d841fc2b2d27.
|
|
|
|
|
| |
This reverts commit b2054b72b7daa89b7ad161c0693befad06a20c90.
It looks like the necessary V8 change has not rolled out everywhere yet.
|
|
|
|
| |
They were optional for a while to allow users to gracefully transition to using
them, but now make them mandatory to match the upstream WasmGC spec.
|
|
|
| |
See: https://reviews.llvm.org/D125728
|
|
|
| |
Test that we can still parse the old annotated form as well.
|
|
|
|
|
|
|
|
|
| |
`array` is the supertype of all defined array types and for now is a subtype of
`data`. (Once `data` becomes `struct` this will no longer be true.) Update the
binary and text parsing of `array.len` to ignore the obsolete type annotation
and update the binary emitting to emit a zero in place of the old type
annotation and the text printing to print an arbitrary heap type for the
annotation. A follow-on PR will add support for the newer unannotated version of
`array.len`.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
These types, `none`, `nofunc`, and `noextern` are uninhabited, so references to
them can only possibly be null. To simplify the IR and increase type precision,
introduce new invariants that all `ref.null` instructions must be typed with one
of these new bottom types and that `Literals` have a bottom type iff they
represent null values. These new invariants requires several additional changes.
First, it is now possible that the `ref` or `target` child of a `StructGet`,
`StructSet`, `ArrayGet`, `ArraySet`, or `CallRef` instruction has a bottom
reference type, so it is not possible to determine what heap type annotation to
emit in the binary or text formats. (The bottom types are not valid type
annotations since they do not have indices in the type section.)
To fix that problem, update the printer and binary emitter to emit unreachables
instead of the instruction with undetermined type annotation. This is a valid
transformation because the only possible value that could flow into those
instructions in that case is null, and all of those instructions trap on nulls.
That fix uncovered a latent bug in the binary parser in which new unreachables
within unreachable code were handled incorrectly. This bug was not previously
found by the fuzzer because we generally stop emitting code once we encounter an
instruction with type `unreachable`. Now, however, it is possible to emit an
`unreachable` for instructions that do not have type `unreachable` (but are
known to trap at runtime), so we will continue emitting code. See the new
test/lit/parse-double-unreachable.wast for details.
Update other miscellaneous code that creates `RefNull` expressions and null
`Literals` to maintain the new invariants as well.
|
|
|
|
|
| |
Annotations on array.get and array.set were not being counted and the code could
generally be simplified since `count` already ignores types that don't need to
be counted.
|
|
|
|
| |
This is the case for dynamic linking where the segment offset are
derived from he `__memory_base` import.
|
|
|
|
|
|
|
| |
Emit call_ref instructions with type annotations and a temporary opcode. Also
implement support for parsing optional type annotations on call_ref in the text
and binary formats. This is part of a multi-part graceful update to switch
Binaryen and all of its users over to using the type-annotated version of
call_ref without there being any breakage.
|
|
|
|
|
|
|
| |
Previously when we parsed `string.const` payloads in the text format we were
using the text strings directly instead of un-escaping them. Fix that parsing,
and while we're editing the code, also add support for the `\r` escape allowed
by the spec. Remove a spurious nested anonymous namespace and spurious `static`s
in Print.cpp as well.
|
|
|
|
|
|
|
|
|
| |
floating points (#5034)
```
(-x) + y -> y - x
x + (-y) -> x - y
x - (-y) -> x + y
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Recently we added logic to ignore effects that don't "escape" past the function call.
That is, e.g. local.set only affects the current function scope, and once the call stack
is unwound it no longer matters as an effect. This moves that logic to a shared place,
and uses it in the core Vacuum logic.
The new constructor in EffectAnalyzer receives a function and then scans it as
a whole. This works just like e.g. scanning a Block as a whole (if we see a break in
the block, that has an effect only inside it, and the Block + children doesn't have a
branch effect).
Various tests are updated so they don't optimize away trivially, by adding new
return values for them.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
due to timeout (#5039)
I think this simplifies the logic behind what we consider to trap. Before we had kind of
a hack in visitLoop that now has a more clear reasoning behind it: we consider as
trapping things that trap in all VMs all the time, or will eventually. So a single allocation
doesn't trap, but an unbounded amount can, and an infinite loop is considered to
trap as well (a timeout in a VM will be hit eventually, somehow).
This means we cannot optimize way a trivial infinite loop with no effects in it,
while (1) {}
But we can optimize it out in trapsNeverHappen mode. In any event, such a loop
is not a realistic situation; an infinite loop with some other effect in it, like a call to
an import, will not be optimized out, of course.
Also clarify some other things regarding traps and trapsNeverHappen following
recent discussions in https://github.com/emscripten-core/emscripten/issues/17732
Specifically, TNH will never be allowed to remove calls to imports.
|
|
|
|
|
|
| |
This import was being injected and then used to implement trapping.
Rather than injecting an import that doesn't exist in the original
module we instead use the existing mechanism to implement this as
an internal helper.
|
|
|
|
|
|
|
|
| |
x - C -> x + (-C)
min(C, x) -> min(x, C)
max(C, x) -> max(x, C)
And remove redundant rules
|
|
|
|
|
|
|
| |
When we see e.g. x < y and x has fewer bits set, we can infer a result.
Helps #5010. As mentioned there, this is one of the top superoptimizer findings.
On j2wasm it ends up removing a few hundred binary operations for example.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
(#4985)
x + nan -> nan'
x - nan -> nan'
x * nan -> nan'
x / nan -> nan'
min(x, nan) -> nan'
max(x, nan) -> nan'
where nan' is canonicalized nan of rhs
x != nan -> 1
x == nan -> 0
x >= nan -> 0
x <= nan -> 0
x > nan -> 0
x < nan -> 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In practice typed function references will not ship before GC and is not
independently useful, so it's not necessary to have a separate feature for it.
Roll the functionality previously enabled by --enable-typed-function-references
into --enable-gc instead.
This also avoids a problem with the ongoing implementation of the new GC bottom
heap types. That change will make all ref.null instructions in Binaryen IR refer
to one of the bottom heap types. But since those bottom types are introduced in
GC, it's not valid to emit them in binaries unless unless GC is enabled. The fix
if only reference types is enabled is to emit (ref.null func) instead
of (ref.null nofunc), but that doesn't always work if typed function references
are enabled because a function type more specific than func may be required.
Getting rid of typed function references as a separate feature makes this a
nonissue.
|
|
|
|
| |
Do not export functions that have types not allowed in the rules for
JS interop. Only very few GC types can be on the JS boundary atm.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
An overview of this is in the README in the diff here (conveniently, it is near the
top of the diff). Basically, we fix up nn locals after each pass, by default. This keeps
things easy to reason about - what validates is what is valid wasm - but there are
some minor nuances as mentioned there, in particular, we ignore nameless blocks
(which are commonly added by various passes; ignoring them means we can keep
more locals non-nullable).
The key addition here is LocalStructuralDominance which checks which local
indexes have the "structural dominance" property of 1a, that is, that each get has
a set in its block or an outer block that precedes it. I optimized that function quite
a lot to reduce the overhead of running that logic after each pass. The overhead
is something like 2% on J2Wasm and 0% on Dart (0%, because in this mode we
shrink code size, so there is less work actually, and it balances out).
Since we run fixups after each pass, this PR removes logic to manually call the
fixup code from various places we used to call it (like eh-utils and various passes).
Various passes are now marked as requiresNonNullableLocalFixups => false.
That lets us skip running the fixups after them, which we normally do automatically.
This helps avoid overhead. Most passes still need the fixups, though - any pass
that adds a local, or a named block, or moves code around, likely does.
This removes a hack in SimplifyLocals that is no longer needed. Before we
worked to avoid moving a set into a try, as it might not validate. Now, we just do it
and let fixups happen automatically if they need to: in the common code they
probably don't, so the extra complexity seems not worth it.
Also removes a hack from StackIR. That hack tried to avoid roundtrip adding a
nondefaultable local. But we have the logic to fix that up now, and opts will
likely keep it non-nullable as well.
Various tests end up updated here because now a local can be non-nullable -
previous fixups are no longer needed.
Note that this doesn't remove the gc-nn-locals feature. That has been useful for
testing, and may still be useful in the future - it basically just allows nn locals in
all positions (that can't read the null default value at the entry). We can consider
removing it separately.
Fixes #4824
|
|
|
|
|
|
|
| |
Match the latest version of the GC spec. This change does not depend on V8
changing its interpretation of the shorthands because we are still temporarily
not emitting the binary shorthands, but all Binaryen users will have to update
their interpretations along with this change if they use the text or binary
shorthands.
|
|
|
| |
Adding multi-memories to the the list of wasm-features.
|
|
|
|
|
| |
Just like `extern` is no longer a subtype of `any` in the new GC type system,
`func` is no longer a subtype of `any`, either. Make that change in our type
system implementation and update tests and fuzzers accordingly.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This fixes what looks like it might be a regression in #4943. It's not actually
an issue since it just affects wat files, but it did uncover an existing
inefficiency. The situation is this:
(block
..
(br $somewhere)
(nop)
)
Removing such a nop is always helpful, as the pass might see that that
br goes to where control flow is going anyhow, and the nop would
confuse it. We used to remove such nops only when the block had a name,
which is why wat testcases looks optimal, but we were actually doing the
less-efficient thing on real-world code. It was a minor inefficiency, though, as
the nop is quickly removed by later passes anyhow. Still, the fix is trivial (to
always remove such nops, regardless of a name on the block or not).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously the wat parser would turn this input:
(block
(nop)
)
into something like this:
(block $block17
(nop)
)
It just added a name all the time, in case the block is referred to by an index
later even though it doesn't have a name.
This PR makes us rountrip more precisely by not adding such names: if there
was no name before, and there is no break by index, then do not add a name.
In addition, this will be useful for non-nullable locals since whether a block has
a name or not matters there. Like #4912, this makes us more regular in our
usage of block names.
|
|
|
|
|
|
|
| |
The GC proposal has split `any` and `extern` back into two separate types, so
reintroduce `HeapType::ext` to represent `extern`. Before it was originally
removed in #4633, externref was a subtype of anyref, but now it is not. Now that
we have separate heaptype type hierarchies, make `HeapType::getLeastUpperBound`
fallible as well.
|
|
|
|
|
|
|
| |
This PR removes the single memory restriction in IR, adding support for a single module to reference multiple memories. To support this change, a new memory name field was added to 13 memory instructions in order to identify the memory for the instruction.
It is a goal of this PR to maintain backwards compatibility with existing text and binary wasm modules, so memory indexes remain optional for memory instructions. Similarly, the JS API makes assumptions about which memory is intended when only one memory is present in the module. Another goal of this PR is that existing tests behavior be unaffected. That said, tests must now explicitly define a memory before invoking memory instructions or exporting a memory, and memory names are now printed for each memory instruction in the text format.
There remain quite a few places where a hardcoded reference to the first memory persist (memory flattening, for example, will return early if more than one memory is present in the module). Many of these call-sites, particularly within passes, will require us to rethink how the optimization works in a multi-memories world. Other call-sites may necessitate more invasive code restructuring to fully convert away from relying on a globally available, single memory pointer.
|
|
|
|
|
| |
Also, add support for the `--binaryen-bin` flag to
`scripts/port_passes_tests_to_lit.py`. This is needed for folks who
don't do in-tree builds.
|
|
|
|
|
|
|
| |
RTTs were removed from the GC spec and if they are added back in in the future,
they will be heap types rather than value types as in our implementation.
Updating our implementation to have RTTs be heap types would have been more work
than deleting them for questionable benefit since we don't know how long it will
be before they are specced again.
|
|
|
|
|
|
|
|
|
| |
Basic reference types like `Type::funcref`, `Type::anyref`, etc. made it easy to
accidentally forget to handle reference types with the same basic HeapTypes but
the opposite nullability. In principle there is nothing special about the types
with shorthands except in the binary and text formats. Removing these shorthands
from the internal type representation by removing all basic reference types
makes some code more complicated locally, but simplifies code globally and
encourages properly handling both nullable and non-nullable reference types.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* Updating wasm.h/cpp for DataSegments
* Updating wasm-binary.h/cpp for DataSegments
* Removed link from Memory to DataSegments and updated module-utils, Metrics and wasm-traversal
* checking isPassive when copying data segments to know whether to construct the data segment with an offset or not
* Removing memory member var from DataSegment class as there is only one memory rn. Updated wasm-validator.cpp
* Updated wasm-interpreter
* First look at updating Passes
* Updated wasm-s-parser
* Updated files in src/ir
* Updating tools files
* Last pass on src files before building
* added visitDataSegment
* Fixing build errors
* Data segments need a name
* fixing var name
* ran clang-format
* Ensuring a name on DataSegment
* Ensuring more datasegments have names
* Adding explicit name support
* Fix fuzzing name
* Outputting data name in wasm binary only if explicit
* Checking temp dataSegments vector to validateBinary because it's the one with the segments before we processNames
* Pass on when data segment names are explicitly set
* Ran auto_update_tests.py and check.py, success all around
* Removed an errant semi-colon and corrected a counter. Everything still passes
* Linting
* Fixing processing memory names after parsed from binary
* Updating the test from the last fix
* Correcting error comment
* Impl kripken@ comments
* Impl tlively@ comments
* Updated tests that remove data print when == 0
* Ran clang format
* Impl tlively@ comments
* Ran clang-format
|
|
|
|
| |
Otherwise when a type is only used on a global, it will be incorrectly omitted
from the output.
|
|
|
|
|
|
|
|
| |
We have some possible use cases for this pass, and so are restoring
it.
This reverts the removal in #3261, fixes compile errors in internal API
changes since then, and flips the direction of the stack for the
wasm backend.
|
|
|
|
|
|
| |
With only reference types but not GC, we cannot easily create a constant
for eqref for example. Only GC adds i31.new etc. To avoid assertions in
the fuzzer, avoid randomly picking (ref eq) etc., that is, keep it nullable
so that we can emit a (ref.null eq) if we need a constant value of that type.
|
|
|
|
|
|
|
|
|
|
| |
Diff without whitespace is smaller.
We can't emit HeapType::data without GC. Fixing that by switching to func,
another problem was uncovered: makeRefFuncConst had a TODO to handle
the case where we need a function to refer to but have created none yet. In
fact that TODO was done at the end of the function. Fix up the logic in
between to actually get there.
|
|
|
|
|
|
| |
* Don't emit "i31" or "data" if GC is not enabled, as only the GC feature adds those.
* Don't emit "any" without GC either. While it is allowed, fuzzer limitations prevent
this atm (see details in comment - it's fixable).
|
|
|
|
|
|
| |
Remove `Type::externref` and `HeapType::ext` and replace them with uses of
anyref and any, respectively, now that we have unified these types in the GC
proposal. For backwards compatibility, continue to parse `extern` and
`externref` and maintain their relevant C API functions.
|
|
|
|
| |
Helps #4632: This makes it take 4 seconds instead of 5 minutes.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
in a function. (#4567)
* Lift the restriction in liveness-traversal.h that supported max 65535 locals in a function.
* Lint
* Fix typo
* Fix static
* Lint
* Lint
* Lint
* Add needed canRun function
* lint
* Use either a sparse or a dense matrix for tracking liveness copies, depending on the locals count.
* Lint
* Fix lint
* Lint
* Implement sparse_square_matrix class and use that as a backing.
* Lint
* Lint
* Lint #includes
* Lint
* Lint includes
* Remove unnecessary code
* Fix canonical accesses to copies matrix
* Lint
* Add missing variable update
* Remove canRun() function
* Address review
* Update expected test results
* Update test name
* Add asserts to sparse_square_matrix set and get functions that they are not out of bound.
* Lint includes
* Update test expectation
* Use .clear() + .resize() to reset totalCopies vector
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If we see (ref.func $foo) that does not mean that $foo is reachable - we
must also see a (call_ref ..) of the proper type. Only after seeing both should
we mark the function as reachable, which this PR does.
This adds some complexity as we need to track intermediate state as we go,
since we could see the RefFunc before the CallRef or vice versa. We also
need to handle the case of a RefFunc without a CallRef properly: We cannot
remove the function, as the RefFunc must refer to it, but at least we can
empty out the body since we know it is never reached.
This removes an old wasm-opt test which is now superseded by a new lit
test.
On J2Wasm output this removes 3% of all functions, which account for
2.5% of total code size.
|
| |
|