| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
| |
|
|
|
|
|
|
|
|
|
|
|
| |
The nesting limit of around 20 was enough to cause exponential blowup. A 20K
input file lead to a 2GB wasm in one case I saw (!) which takes many seconds to
fuzz.
Instead, reduce the limit, and also check if random tells us that the random
input is done; when that's done we should stop, which limits us to O(input size).
Also do this for non-nullable types, and handle that in globals (we cannot emit a
RefAsNulNull there, so switch the global type if necessary).
|
|
|
|
|
|
| |
Even with a 1% chance of a huge array, there is a second problem aside from
hitting an allocation failure, which is DoS - building such a huge array of
Literals takes noticeable time in the fuzzer. Instead, just limit array max sizes,
which is consistent with what we do for struct sizes etc.
|
|
|
|
|
|
|
|
|
|
| |
Previously we treated global.get as a constant expression and only
additionally verified that the target globals were immutable in some cases. But
global.get of a mutable global is never a constant expression, and further,
only imported globals are available in constant expressions unless GC is
enabled.
Fix constant expression validation to only allow global.get of immutable,
imported globals, and fix all the invalid tests.
|
|
|
|
| |
Only rarely return an uninhabitable subtype of an inhabitable one. This
avoids a major source of uninhabitability and immediate traps.
|
|
|
|
| |
In particular, the removed code path here that did a RefAsNonNull of a null
was causing a lot of code to just trap.
|
|
|
|
|
|
|
|
|
|
| |
Previously we emitted it early, and would then modify it in random ways
like other initial content. But this function is called frequently during
execution, so if we were unlucky and modded that function to trap then
basically all other functions would trap as well.
After fixing this, some places assert on not having any functions or types
to pick a random one from, so fix those places too.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
With this we generate random GC types that may be used in creating
instructions later.
We don't create many instructions yet, which will be the next step after
this.
Also add some trivial assertions in some places, that have helped
debugging in the past.
Stop fuzzing TypeMerging for now due to #5556 , which this PR
uncovers.
|
| |
|
|
|
|
|
|
|
|
|
| |
This is a (more) standard name for `array.init_static`. (The full upstream name
in the spec repo is `array.new_canon_fixed`, but I'm still hoping we can drop
`canon` from all the instruction names and it doesn't appear elsewhere in
Binaryen).
Update all the existing tests to use the new name and add a test specifically to
ensure the old name continues parsing.
|
|
|
|
|
|
|
|
| |
To match the standard instruction name, rename the expression class without
changing any parsing or printing behavior. A follow-on PR will take care of the
functional side of this change while keeping support for parsing the old name.
This change will allow `ArrayInit` to be used as the expression class for the
upcoming `array.init_data` and `array.init_elem` instructions.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously the idea was that we started with HANG_LIMIT = 10 or so, and we'd decrement
it by one in each potentially-recursive call and loop entry. When we reached 0 we'd start
to unwind the stack. Then, after we unwound it all the way, we'd reset HANG_LIMIT before
calling the next export.
That approach adds complexity that each "execution wrapper", like for JS or for --fuzz-exec,
had to manually reset HANG_LIMIT. That was done by calling an export. Calls to those
exports had to appear in various places, which is sort of a hack.
The new approach here does the following when the hang limit reaches zero: It resets
HANG_LIMIT, and it traps. The trap unwinds the call stack all the way out. When the next
export is called, it will have a fresh hang limit since we reset it before the trap.
This does have downsides. Before, we did not always trap when we hit the hang limit but
rather we'd emit something unreachable, like a return. The idea was that we'd leave the
current function scope at least, so we don't hang forever. That let us still execute a small
amount of code "on the way out" as we unwind the stack. I'm not sure it's worth the
complexity for that.
The advantages of this PR are to simplify the code, and also it makes more fuzzing
approaches easy to implement. I'd like to add a wasm-ctor-eval fuzzer, and having to add
hacks to call the hang limit init export in it would be tricky. With this PR, the execution
model is simple in the fuzzer: The exports are called one by one, in order, and that's it -
no extra magic execution needs to be done.
Also bump the hang limit from 10 to 100, just to give some more chance for code to run.
|
|
|
|
| |
Half the time, never add any unreachable code. This ensures we run the
most code we possibly can half the time, at least.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This makes the fuzzer replace things with an unreachable instruction in
rare situations. The hope was to find bugs like #5487, but instead it's
mostly found bugs in the inliner actually (#5492, #5493).
This also fixes an uncovered bug in the fuzzer, where we refinalized in
more than one place. It is unsafe to do so before labels are fixed up
(as duplicate labels can confuse us as to which types are needed; this
is actually the same issue as in #5492). To fix that, remove the extra
refinalize that was too early, and also rename the fixup function since
it does a general fixup for all the things.
|
|
|
|
|
| |
The assertion that the offset is zero does not necessarily hold for code that
uses this instruction via the clang builtin. Add support so that Emscripten
wasm2js tests pass in the presence of such code.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This can handle e.g.
(drop
(i32.add
(call ..)
(call ..)
)
)
We can remove the add and just leave two dropped calls:
(drop
(call ..)
)
(drop
(call ..)
)
|
|
|
|
|
|
| |
`struct` has replaced `data` in the upstream spec, so update Binaryen's types to
match. We had already supported `struct` as an alias for data, but now remove
support for `data` entirely. Also remove instructions like `ref.is_data` that
are deprecated and do not make sense without a `data` type.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
These operations are deprecated and directly representable as casts, so remove
their opcodes in the internal IR and parse them as casts instead. For now, add
logic to the printing and binary writing of RefCast to continue emitting the
legacy instructions to minimize test changes. The few test changes necessary are
because it is no longer valid to perform a ref.as_func on values outside the
func type hierarchy now that ref.as_func is subject to the ref.cast validation
rules.
RefAsExternInternalize, RefAsExternExternalize, and RefAsNonNull are left
unmodified. A future PR may remove RefAsNonNull as well, since it is also
expressible with casts.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* Replace `RefIs` with `RefIsNull`
The other `ref.is*` instructions are deprecated and expressible in terms of
`ref.test`. Update binary and text parsing to parse those instructions as
`RefTest` expressions. Also update the printing and emitting of `RefTest`
expressions to emit the legacy instructions for now to minimize test changes and
make this a mostly non-functional change. Since `ref.is_null` is the only
`RefIs` instruction left, remove the `RefIsOp` field and rename the expression
class to `RefIsNull`.
The few test changes are due to the fact that `ref.is*` instructions are now
subject to `ref.test` validation, and in particular it is no longer valid to
perform a `ref.is_func` on a value outside of the `func` type hierarchy.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The `br_on{_non}_{data,i31,func}` operations are deprecated and directly
representable in terms of the new `br_on_cast` and `br_on_cast_fail`
instructions, so remove their dedicated IR opcodes in favor of representing them
as casts. `br_on_null` and `br_on_non_null` cannot be consolidated the same way
because their behavior is not directly representable in terms of `br_on_cast`
and `br_on_cast_fail`; when the cast to null bottom type succeeds, the null
check instructions implicitly drop the null value whereas the cast instructions
would propagate it.
Add special logic to the binary writer and printer to continue emitting the
deprecated instructions for now. This will allow us to update the test suite in
a separate future PR with no additional functional changes.
Some tests are updated because the validator no longer allows passing non-func
data to `br_on_func`. Doing so has not made sense since we separated the three
reference type hierarchies.
|
|
|
|
|
|
|
|
|
| |
As well as br_on_cast_fail null. Unlike the existing br_on_cast* instructions,
these new instructions treat the cast as succeeding when the input is a null.
Update the internal representation of the cast type in `BrOn` expressions to be
a `Type` rather than a `HeapType` so it will include nullability information.
Also update and improve `RemoveUnusedBrs` to handle the new instructions
correctly and optimize in more cases.
|
|
|
|
|
|
|
|
|
|
|
|
| |
We switched from emitting the legacy `ref.cast_static` instruction to emitting
`ref.cast null` in #5331, but that wasn't quite correct. The legacy instruction
had polymorphic typing so that its output type was nullable if and only if its
input type was nullable. In contrast, `ref.cast null` always has a a nullable
output type.
Fix our output by instead emitting non-nullable `ref.cast` if the output should
be non-nullable. Parse `ref.cast` in binary and text forms as well. Since the IR
can only represent the legacy polymorphic semantics, disallow unsupported casts
from nullable to non-nullable references or vice versa for now.
|
|
|
|
|
|
|
| |
The standard casting instructions now allow casting to basic heap types, not
just user-defined types, but they also require that the intended type and
argument type have a common supertype. Update the validator to use the standard
rules, update the binary parser and printer to allow basic types, and update the
tests to remove or modify newly invalid test cases.
|
|
|
|
|
|
|
| |
We previously supported only the non-standard cast instructions introduced when
we were experimenting with nominal types. Parse the names and opcodes of their
standard counterparts and switch to emitting the standard names and opcodes.
Port all of the tests to use the standard instructions, but add additional tests
showing that the non-standard versions are still parsed correctly.
|
|
|
|
|
|
|
|
|
|
| |
The upstream WasmGC spec has removed `data` and introduced `struct`. To make the
migration easier, we have been supporting `struct` as an `alias` for `data` and
`structref` as an alias for `dataref`.
Update the tests to prefer the `struct` aliases over `data` for test input to
make the future migration easier. Also update some tests that had stale comments
about ref.null types being updated and remove some tests for instructions like
br_on_data and ref.as_data that do not make sense without a `data` type.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
With this change we default to an open world, that is, we do the safe thing
by default: we no longer assume a closed world. Users that want a closed
world must pass --closed-world.
Atm we just do not run passes that assume a closed world. (We might later
refine them to find which types don't escape and only optimize those.) The
RemoveUnusedModuleElements is an exception in that the closed-world
flag influences one part of its operation, but not the rest.
Fixes #5292
|
|
|
|
|
| |
As noticed in #5303, the test changes here are because we did unnecessary work
which created a new rec group, which then led to a rec group being printed out.
|
|
|
|
|
|
|
|
|
|
| |
This makes Binaryen's default type system match the WasmGC spec.
Update the way type definitions without supertypes are printed to reduce the
output diff for MVP tests that do not involve WasmGC. Also port some
type-builder.cpp tests from test/example to test/gtest since they needed to be
rewritten to work with isorecursive type anyway.
A follow-on PR will remove equirecursive types completely.
|
|
|
|
|
| |
(#5266)
This reverts commit 570007dbecf86db5ddba8d303896d841fc2b2d27.
|
|
|
|
|
| |
This reverts commit b2054b72b7daa89b7ad161c0693befad06a20c90.
It looks like the necessary V8 change has not rolled out everywhere yet.
|
|
|
|
| |
They were optional for a while to allow users to gracefully transition to using
them, but now make them mandatory to match the upstream WasmGC spec.
|
|
|
| |
See: https://reviews.llvm.org/D125728
|
|
|
| |
Test that we can still parse the old annotated form as well.
|
|
|
|
|
|
|
|
|
| |
`array` is the supertype of all defined array types and for now is a subtype of
`data`. (Once `data` becomes `struct` this will no longer be true.) Update the
binary and text parsing of `array.len` to ignore the obsolete type annotation
and update the binary emitting to emit a zero in place of the old type
annotation and the text printing to print an arbitrary heap type for the
annotation. A follow-on PR will add support for the newer unannotated version of
`array.len`.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
These types, `none`, `nofunc`, and `noextern` are uninhabited, so references to
them can only possibly be null. To simplify the IR and increase type precision,
introduce new invariants that all `ref.null` instructions must be typed with one
of these new bottom types and that `Literals` have a bottom type iff they
represent null values. These new invariants requires several additional changes.
First, it is now possible that the `ref` or `target` child of a `StructGet`,
`StructSet`, `ArrayGet`, `ArraySet`, or `CallRef` instruction has a bottom
reference type, so it is not possible to determine what heap type annotation to
emit in the binary or text formats. (The bottom types are not valid type
annotations since they do not have indices in the type section.)
To fix that problem, update the printer and binary emitter to emit unreachables
instead of the instruction with undetermined type annotation. This is a valid
transformation because the only possible value that could flow into those
instructions in that case is null, and all of those instructions trap on nulls.
That fix uncovered a latent bug in the binary parser in which new unreachables
within unreachable code were handled incorrectly. This bug was not previously
found by the fuzzer because we generally stop emitting code once we encounter an
instruction with type `unreachable`. Now, however, it is possible to emit an
`unreachable` for instructions that do not have type `unreachable` (but are
known to trap at runtime), so we will continue emitting code. See the new
test/lit/parse-double-unreachable.wast for details.
Update other miscellaneous code that creates `RefNull` expressions and null
`Literals` to maintain the new invariants as well.
|
|
|
|
|
| |
Annotations on array.get and array.set were not being counted and the code could
generally be simplified since `count` already ignores types that don't need to
be counted.
|
|
|
|
| |
This is the case for dynamic linking where the segment offset are
derived from he `__memory_base` import.
|
|
|
|
|
|
|
| |
Emit call_ref instructions with type annotations and a temporary opcode. Also
implement support for parsing optional type annotations on call_ref in the text
and binary formats. This is part of a multi-part graceful update to switch
Binaryen and all of its users over to using the type-annotated version of
call_ref without there being any breakage.
|
|
|
|
|
|
|
| |
Previously when we parsed `string.const` payloads in the text format we were
using the text strings directly instead of un-escaping them. Fix that parsing,
and while we're editing the code, also add support for the `\r` escape allowed
by the spec. Remove a spurious nested anonymous namespace and spurious `static`s
in Print.cpp as well.
|
|
|
|
|
|
|
|
|
| |
floating points (#5034)
```
(-x) + y -> y - x
x + (-y) -> x - y
x - (-y) -> x + y
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Recently we added logic to ignore effects that don't "escape" past the function call.
That is, e.g. local.set only affects the current function scope, and once the call stack
is unwound it no longer matters as an effect. This moves that logic to a shared place,
and uses it in the core Vacuum logic.
The new constructor in EffectAnalyzer receives a function and then scans it as
a whole. This works just like e.g. scanning a Block as a whole (if we see a break in
the block, that has an effect only inside it, and the Block + children doesn't have a
branch effect).
Various tests are updated so they don't optimize away trivially, by adding new
return values for them.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
due to timeout (#5039)
I think this simplifies the logic behind what we consider to trap. Before we had kind of
a hack in visitLoop that now has a more clear reasoning behind it: we consider as
trapping things that trap in all VMs all the time, or will eventually. So a single allocation
doesn't trap, but an unbounded amount can, and an infinite loop is considered to
trap as well (a timeout in a VM will be hit eventually, somehow).
This means we cannot optimize way a trivial infinite loop with no effects in it,
while (1) {}
But we can optimize it out in trapsNeverHappen mode. In any event, such a loop
is not a realistic situation; an infinite loop with some other effect in it, like a call to
an import, will not be optimized out, of course.
Also clarify some other things regarding traps and trapsNeverHappen following
recent discussions in https://github.com/emscripten-core/emscripten/issues/17732
Specifically, TNH will never be allowed to remove calls to imports.
|
|
|
|
|
|
| |
This import was being injected and then used to implement trapping.
Rather than injecting an import that doesn't exist in the original
module we instead use the existing mechanism to implement this as
an internal helper.
|
|
|
|
|
|
|
|
| |
x - C -> x + (-C)
min(C, x) -> min(x, C)
max(C, x) -> max(x, C)
And remove redundant rules
|
|
|
|
|
|
|
| |
When we see e.g. x < y and x has fewer bits set, we can infer a result.
Helps #5010. As mentioned there, this is one of the top superoptimizer findings.
On j2wasm it ends up removing a few hundred binary operations for example.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
(#4985)
x + nan -> nan'
x - nan -> nan'
x * nan -> nan'
x / nan -> nan'
min(x, nan) -> nan'
max(x, nan) -> nan'
where nan' is canonicalized nan of rhs
x != nan -> 1
x == nan -> 0
x >= nan -> 0
x <= nan -> 0
x > nan -> 0
x < nan -> 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In practice typed function references will not ship before GC and is not
independently useful, so it's not necessary to have a separate feature for it.
Roll the functionality previously enabled by --enable-typed-function-references
into --enable-gc instead.
This also avoids a problem with the ongoing implementation of the new GC bottom
heap types. That change will make all ref.null instructions in Binaryen IR refer
to one of the bottom heap types. But since those bottom types are introduced in
GC, it's not valid to emit them in binaries unless unless GC is enabled. The fix
if only reference types is enabled is to emit (ref.null func) instead
of (ref.null nofunc), but that doesn't always work if typed function references
are enabled because a function type more specific than func may be required.
Getting rid of typed function references as a separate feature makes this a
nonissue.
|
|
|
|
| |
Do not export functions that have types not allowed in the rules for
JS interop. Only very few GC types can be on the JS boundary atm.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
An overview of this is in the README in the diff here (conveniently, it is near the
top of the diff). Basically, we fix up nn locals after each pass, by default. This keeps
things easy to reason about - what validates is what is valid wasm - but there are
some minor nuances as mentioned there, in particular, we ignore nameless blocks
(which are commonly added by various passes; ignoring them means we can keep
more locals non-nullable).
The key addition here is LocalStructuralDominance which checks which local
indexes have the "structural dominance" property of 1a, that is, that each get has
a set in its block or an outer block that precedes it. I optimized that function quite
a lot to reduce the overhead of running that logic after each pass. The overhead
is something like 2% on J2Wasm and 0% on Dart (0%, because in this mode we
shrink code size, so there is less work actually, and it balances out).
Since we run fixups after each pass, this PR removes logic to manually call the
fixup code from various places we used to call it (like eh-utils and various passes).
Various passes are now marked as requiresNonNullableLocalFixups => false.
That lets us skip running the fixups after them, which we normally do automatically.
This helps avoid overhead. Most passes still need the fixups, though - any pass
that adds a local, or a named block, or moves code around, likely does.
This removes a hack in SimplifyLocals that is no longer needed. Before we
worked to avoid moving a set into a try, as it might not validate. Now, we just do it
and let fixups happen automatically if they need to: in the common code they
probably don't, so the extra complexity seems not worth it.
Also removes a hack from StackIR. That hack tried to avoid roundtrip adding a
nondefaultable local. But we have the logic to fix that up now, and opts will
likely keep it non-nullable as well.
Various tests end up updated here because now a local can be non-nullable -
previous fixups are no longer needed.
Note that this doesn't remove the gc-nn-locals feature. That has been useful for
testing, and may still be useful in the future - it basically just allows nn locals in
all positions (that can't read the null default value at the entry). We can consider
removing it separately.
Fixes #4824
|
|
|
|
|
|
|
| |
Match the latest version of the GC spec. This change does not depend on V8
changing its interpretation of the shorthands because we are still temporarily
not emitting the binary shorthands, but all Binaryen users will have to update
their interpretations along with this change if they use the text or binary
shorthands.
|