summaryrefslogtreecommitdiff
path: root/third_party/llvm-project/DWARFDebugInfoEntry.cpp
Commit message (Collapse)AuthorAgeFilesLines
* DWARF support for multiple line tables (#2557)Alon Zakai2020-01-091-1/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Multiple tables appear to be emitted when linking files together. This fixes our support for that, which did not update their size properly. This required patching the YAML emitting code from LLVM in order to measure the size and then emit it, as that code is apparently not designed to handle changes in line table contents. Other minor fixes: * Set the flags for our dwarfdump command to emit the same as llvm-dwarfdump does with -v -all. * Add support for a few more opcodes, set_discriminator, set_basic_block, fixed_advance_pc, set_isa. * Handle a compile unit without abbreviations in the YAML code (again, apparently not something this LLVM code was intended to do). * Handle a compile unit with zero entries in the YAML code (ditto). * Properly set the AddressSize - we use the DWARFContext in a different way than LLVM expects, apparently. With this the emscripten test suite passes with -gforce_dwarf without crashing. My overall impression so from the the YAML code is that it probably isn't a long-term solution for us. Perhaps it may end up being scaffolding, that is, we can replace it with our own code eventually that is based on it, and remove most of the LLVM code. Before deciding that we should get everything working first, and this seems like the quickest path there.
* DWARF parsing and writing support using LLVM (#2520)Alon Zakai2019-12-191-0/+69
This imports LLVM code for DWARF handling. That code has the Apache 2 license like us. It's also the same code used to emit DWARF in the common toolchain, so it seems like a safe choice. This adds two passes: --dwarfdump which runs the same code LLVM runs for llvm-dwarfdump. This shows we can parse it ok, and will be useful for debugging. And --dwarfupdate writes out the DWARF sections (unchanged from what we read, so it just roundtrips - for updating we need #2515). This puts LLVM in thirdparty which is added here. All the LLVM code is behind USE_LLVM_DWARF, which is on by default, but off in JS for now, as it increases code size by 20%. This current approach imports the LLVM files directly. This is not how they are intended to be used, so it required a bunch of local changes - more than I expected actually, for the platform-specific stuff. For now this seems to work, so it may be good enough, but in the long term we may want to switch to linking against libllvm. A downside to doing that is that binaryen users would need to have an LLVM build, and even in the waterfall builds we'd have a problem - while we ship LLVM there anyhow, we constantly update it, which means that binaryen would need to be on latest llvm all the time too (which otherwise, given DWARF is quite stable, we might not need to constantly update). An even larger issue is that as I did this work I learned about how DWARF works in LLVM, and while the reading code is easy to reuse, the writing code is trickier. The main code path is heavily integrated with the MC layer, which we don't have - we might want to create a "fake MC layer" for that, but it sounds hard. Instead, there is the YAML path which is used mostly for testing, and which can convert DWARF to and from YAML and from binary. Using the non-YAML parts there, we can convert binary DWARF to the YAML layer's nice Info data, then convert that to binary. This works, however, this is not the path LLVM uses normally, and it supports only some basic DWARF sections - I had to add ranges support, in fact. So if we need more complex things, we may end up needing to use the MC layer approach, or consider some other DWARF library. However, hopefully that should not affect the core binaryen code which just calls a library for DWARF stuff. Helps #2400