/* * Copyright 2023 WebAssembly Community Group participants * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include "wasm.h" #include "../lattice.h" #ifndef wasm_analysis_lattices_powerset_h #define wasm_analysis_lattices_powerset_h namespace wasm::analysis { // Represents a powerset lattice constructed from a finite set of consecutive // integers from 0 to n which can be represented by a bitvector. Set elements // are represented by FiniteIntPowersetLattice::Element, which represents // members present in each element by bits in the bitvector. class FiniteIntPowersetLattice { // The size of the set that the powerset lattice was created from. This is // equivalent to the size of the Top lattice element. size_t setSize; public: FiniteIntPowersetLattice(size_t setSize) : setSize(setSize) {} // Returns the size of the set that the powerset lattices was created from. size_t getSetSize() { return setSize; } // This represents an element of a powerset lattice. The element is itself a // set which has set members. The bitvector tracks which possible members of // the element are actually present. class Element { // If bitvector[i] is true, then member i is present in the lattice element, // otherwise it isn't. std::vector bitvector; // This constructs a bottom element, given the lattice set size. Used by the // lattice's getBottom function. Element(size_t latticeSetSize) : bitvector(latticeSetSize) {} public: Element(Element&& source) = default; Element(const Element& source) = default; Element& operator=(Element&& source) = default; Element& operator=(const Element& source) = default; // Counts the number of members present the element itself. For instance, if // we had {true, false, true}, the count would be 2. O(N) operation which // iterates through the bitvector. size_t count() const; bool get(size_t index) { return bitvector[index]; } void set(size_t index, bool value) { bitvector[index] = value; } bool isTop() const { return count() == bitvector.size(); } bool isBottom() const { return count() == 0; } // Prints out the bits in the bitvector for a lattice element. void print(std::ostream& os); friend FiniteIntPowersetLattice; }; // Compares two lattice elements and returns a result indicating the // left element's relation to the right element. LatticeComparison compare(const Element& left, const Element& right) const noexcept; // Returns an instance of the bottom lattice element. Element getBottom() const noexcept; // Modifies `joinee` to be the join (aka least upper bound) of `joinee` and // `joiner`. Returns true if `joinee` was modified, i.e. if it was not already // an upper bound of `joiner`. bool join(Element& joinee, const Element& joiner) const noexcept; }; // A layer of abstraction over FiniteIntPowersetLattice which maps // set members of some type T to indices in the bitvector. Allows // the finite powerset lattice to be generalized to arbitrary types. template class FinitePowersetLattice { FiniteIntPowersetLattice intLattice; // Maps a bitvector index to some element member of type T. // Used to produce initial ordering of element members. std::vector members; // Maps an element member of type T to a bitvector index. std::unordered_map memberIndices; public: using Element = FiniteIntPowersetLattice::Element; // Takes in an ordered list of all elements of the set to create // the powerset lattice from (i.e. the powerset lattice top element). This // is used for mapping the elements to bitvector indices. FinitePowersetLattice(std::vector&& setMembers) : intLattice(setMembers.size()), members(std::move(setMembers)) { for (size_t i = 0; i < members.size(); ++i) { memberIndices[members[i]] = i; } } // Iterator to access the list of element members. using membersIterator = typename std::vector::const_iterator; membersIterator membersBegin() { return members.cbegin(); } membersIterator membersEnd() { return members.cend(); } size_t getSetSize() { return intLattice.getSetSize(); } T indexToMember(size_t index) { return members[index]; } size_t memberToIndex(T member) { return memberIndices[member]; } // Adds member to a powerset lattice element. void add(Element* element, T member) { element->set(memberIndices[member], true); } // Removes member from a powerset lattice element. void remove(Element* element, T member) { element->set(memberIndices[member], false); } // Checks if member is included in the element set. bool exists(Element* element, T member) { return element->get(memberIndices[member]); } // We use implementations from FiniteIntPowersetLattice here. LatticeComparison compare(const Element& left, const Element& right) const noexcept { return intLattice.compare(left, right); } Element getBottom() const noexcept { return intLattice.getBottom(); } bool join(Element& joinee, const Element& joiner) const noexcept { return intLattice.join(joinee, joiner); } }; } // namespace wasm::analysis #include "powerset-impl.h" #endif // wasm_analysis_lattices_powerset_h