#include #include #include #include #include #include #include "simple_ast.h" #include "optimizer.h" #include "optimizer-shared.cpp" typedef std::vector StringVec; //================== // Globals //================== Ref extraInfo; //================== // Infrastructure //================== template int indexOf(T list, V value) { for (size_t i = 0; i < list.size(); i++) { if (list[i] == value) return i; } return -1; } int jsD2I(double x) { return (int)((int64_t)x); } char *strdupe(const char *str) { char *ret = (char *)malloc(strlen(str)+1); // leaked! strcpy(ret, str); return ret; } IString getHeapStr(int x, bool unsign) { switch (x) { case 8: return unsign ? HEAPU8 : HEAP8; case 16: return unsign ? HEAPU16 : HEAP16; case 32: return unsign ? HEAPU32 : HEAP32; } assert(0); return ":("; } Ref deStat(Ref node) { if (node[0] == STAT) return node[1]; return node; } Ref getStatements(Ref node) { if (node[0] == DEFUN) { return node[3]; } else if (node[0] == BLOCK) { return node->size() > 1 ? node[1] : nullptr; } else { return arena.alloc(); } } // Types AsmType intToAsmType(int type) { if (type >= 0 && type <= ASM_NONE) return (AsmType)type; else { assert(0); return ASM_NONE; } } // forward decls Ref makeEmpty(); bool isEmpty(Ref node); Ref makeAsmVarDef(const IString& v, AsmType type); Ref makeArray(int size_hint); Ref makeBool(bool b); Ref makeNum(double x); Ref makeName(IString str); Ref makeAsmCoercion(Ref node, AsmType type); Ref make1(IString type, Ref a); Ref make3(IString type, Ref a, Ref b, Ref c); AsmData::AsmData(Ref f) { func = f; // process initial params Ref stats = func[3]; size_t i = 0; while (i < stats->size()) { Ref node = stats[i]; if (node[0] != STAT || node[1][0] != ASSIGN || node[1][2][0] != NAME) break; node = node[1]; Ref name = node[2][1]; int index = func[2]->indexOf(name); if (index < 0) break; // not an assign into a parameter, but a global IString& str = name->getIString(); if (locals.count(str) > 0) break; // already done that param, must be starting function body locals[str] = Local(detectType(node[3]), true); params.push_back(str); stats[i] = makeEmpty(); i++; } // process initial variable definitions and remove '= 0' etc parts - these // are not actually assignments in asm.js while (i < stats->size()) { Ref node = stats[i]; if (node[0] != VAR) break; for (size_t j = 0; j < node[1]->size(); j++) { Ref v = node[1][j]; IString& name = v[0]->getIString(); Ref value = v[1]; if (locals.count(name) == 0) { locals[name] = Local(detectType(value, nullptr, true), false); vars.push_back(name); v->setSize(1); // make an un-assigning var } else { assert(j == 0); // cannot break in the middle goto outside; } } i++; } outside: // look for other var definitions and collect them while (i < stats->size()) { traversePre(stats[i], [&](Ref node) { Ref type = node[0]; if (type == VAR) { dump("bad, seeing a var in need of fixing", func); abort(); //, 'should be no vars to fix! ' + func[1] + ' : ' + JSON.stringify(node)); } }); i++; } // look for final RETURN statement to get return type. Ref retStmt = stats->back(); if (!!retStmt && retStmt[0] == RETURN && !!retStmt[1]) { ret = detectType(retStmt[1]); } else { ret = ASM_NONE; } } void AsmData::denormalize() { Ref stats = func[3]; // Remove var definitions, if any for (size_t i = 0; i < stats->size(); i++) { if (stats[i][0] == VAR) { stats[i] = makeEmpty(); } else { if (!isEmpty(stats[i])) break; } } // calculate variable definitions Ref varDefs = makeArray(vars.size()); for (auto v : vars) { varDefs->push_back(makeAsmVarDef(v, locals[v].type)); } // each param needs a line; reuse emptyNodes as much as we can size_t numParams = params.size(); size_t emptyNodes = 0; while (emptyNodes < stats->size()) { if (!isEmpty(stats[emptyNodes])) break; emptyNodes++; } size_t neededEmptyNodes = numParams + (varDefs->size() ? 1 : 0); // params plus one big var if there are vars if (neededEmptyNodes > emptyNodes) { stats->insert(0, neededEmptyNodes - emptyNodes); } else if (neededEmptyNodes < emptyNodes) { stats->splice(0, emptyNodes - neededEmptyNodes); } // add param coercions int next = 0; for (auto param : func[2]->getArray()) { IString str = param->getIString(); assert(locals.count(str) > 0); stats[next++] = make1(STAT, make3(ASSIGN, makeBool(true), makeName(str.c_str()), makeAsmCoercion(makeName(str.c_str()), locals[str].type))); } if (varDefs->size()) { stats[next] = make1(VAR, varDefs); } /* if (inlines->size() > 0) { var i = 0; traverse(func, function(node, type) { if (type == CALL && node[1][0] == NAME && node[1][1] == 'inlinejs') { node[1] = inlines[i++]; // swap back in the body } }); } */ // ensure that there's a final RETURN statement if needed. if (ret != ASM_NONE) { Ref retStmt = stats->back(); if (!retStmt || retStmt[0] != RETURN) { Ref retVal = makeNum(0); if (ret != ASM_INT) { retVal = makeAsmCoercion(retVal, ret); } stats->push_back(make1(RETURN, retVal)); } } //printErr('denormalized \n\n' + astToSrc(func) + '\n\n'); } // Constructions TODO: share common constructions, and assert they remain frozen Ref makeArray(int size_hint=0) { return &arena.alloc()->setArray(size_hint); } Ref makeBool(bool b) { return &arena.alloc()->setBool(b); } Ref makeString(const IString& s) { return &arena.alloc()->setString(s); } Ref makeEmpty() { return ValueBuilder::makeToplevel(); } Ref makeNum(double x) { return ValueBuilder::makeDouble(x); } Ref makeName(IString str) { return ValueBuilder::makeName(str); } Ref makeBlock() { return ValueBuilder::makeBlock(); } Ref make1(IString s1, Ref a) { Ref ret(makeArray(2)); ret->push_back(makeString(s1)); ret->push_back(a); return ret; } Ref make2(IString s1, IString s2, Ref a) { Ref ret(makeArray(2)); ret->push_back(makeString(s1)); ret->push_back(makeString(s2)); ret->push_back(a); return ret; } Ref make2(IString s1, Ref a, Ref b) { Ref ret(makeArray(3)); ret->push_back(makeString(s1)); ret->push_back(a); ret->push_back(b); return ret; } Ref make3(IString type, IString a, Ref b, Ref c) { Ref ret(makeArray(4)); ret->push_back(makeString(type)); ret->push_back(makeString(a)); ret->push_back(b); ret->push_back(c); return ret; } Ref make3(IString type, Ref a, Ref b, Ref c) { Ref ret(makeArray(4)); ret->push_back(makeString(type)); ret->push_back(a); ret->push_back(b); ret->push_back(c); return ret; } Ref makeAsmVarDef(const IString& v, AsmType type) { Ref val; switch (type) { case ASM_INT: val = makeNum(0); break; case ASM_DOUBLE: val = make2(UNARY_PREFIX, PLUS, makeNum(0)); break; case ASM_FLOAT: { if (!ASM_FLOAT_ZERO.isNull()) { val = makeName(ASM_FLOAT_ZERO); } else { val = make2(CALL, makeName(MATH_FROUND), &(makeArray(1))->push_back(makeNum(0))); } break; } case ASM_FLOAT32X4: { val = make2(CALL, makeName(SIMD_FLOAT32X4), &(makeArray(4))->push_back(makeNum(0)).push_back(makeNum(0)).push_back(makeNum(0)).push_back(makeNum(0))); break; } case ASM_FLOAT64X2: { val = make2(CALL, makeName(SIMD_FLOAT64X2), &(makeArray(2))->push_back(makeNum(0)).push_back(makeNum(0))); break; } case ASM_INT8X16: { val = make2(CALL, makeName(SIMD_INT8X16), &(makeArray(16))->push_back(makeNum(0)).push_back(makeNum(0)).push_back(makeNum(0)).push_back(makeNum(0)).push_back(makeNum(0)).push_back(makeNum(0)).push_back(makeNum(0)).push_back(makeNum(0)).push_back(makeNum(0)).push_back(makeNum(0)).push_back(makeNum(0)).push_back(makeNum(0)).push_back(makeNum(0)).push_back(makeNum(0)).push_back(makeNum(0)).push_back(makeNum(0))); break; } case ASM_INT16X8: { val = make2(CALL, makeName(SIMD_INT16X8), &(makeArray(8))->push_back(makeNum(0)).push_back(makeNum(0)).push_back(makeNum(0)).push_back(makeNum(0)).push_back(makeNum(0)).push_back(makeNum(0)).push_back(makeNum(0)).push_back(makeNum(0))); break; } case ASM_INT32X4: { val = make2(CALL, makeName(SIMD_INT32X4), &(makeArray(4))->push_back(makeNum(0)).push_back(makeNum(0)).push_back(makeNum(0)).push_back(makeNum(0))); break; } default: assert(0); } return make1(v, val); } Ref makeAsmCoercion(Ref node, AsmType type) { switch (type) { case ASM_INT: return make3(BINARY, OR, node, makeNum(0)); case ASM_DOUBLE: return make2(UNARY_PREFIX, PLUS, node); case ASM_FLOAT: return make2(CALL, makeName(MATH_FROUND), &(makeArray(1))->push_back(node)); case ASM_FLOAT32X4: return make2(CALL, makeName(SIMD_FLOAT32X4_CHECK), &(makeArray(1))->push_back(node)); case ASM_FLOAT64X2: return make2(CALL, makeName(SIMD_FLOAT64X2_CHECK), &(makeArray(1))->push_back(node)); case ASM_INT8X16: return make2(CALL, makeName(SIMD_INT8X16_CHECK), &(makeArray(1))->push_back(node)); case ASM_INT16X8: return make2(CALL, makeName(SIMD_INT16X8_CHECK), &(makeArray(1))->push_back(node)); case ASM_INT32X4: return make2(CALL, makeName(SIMD_INT32X4_CHECK), &(makeArray(1))->push_back(node)); case ASM_NONE: default: return node; // non-validating code, emit nothing XXX this is dangerous, we should only allow this when we know we are not validating } } // Checks bool isEmpty(Ref node) { return (node->size() == 2 && node[0] == TOPLEVEL && node[1]->size() == 0) || (node->size() > 0 && node[0] == BLOCK && (!node[1] || node[1]->size() == 0)); } bool commable(Ref node) { // TODO: hashing IString type = node[0]->getIString(); if (type == ASSIGN || type == BINARY || type == UNARY_PREFIX || type == NAME || type == NUM || type == CALL || type == SEQ || type == CONDITIONAL || type == SUB) return true; return false; } bool isMathFunc(const char *name) { static const char *Math_ = "Math_"; static unsigned size = strlen(Math_); return strncmp(name, Math_, size) == 0; } bool isMathFunc(Ref value) { return value->isString() && isMathFunc(value->getCString()); } bool callHasSideEffects(Ref node) { // checks if the call itself (not the args) has side effects (or is not statically known) return !(node[1][0] == NAME && isMathFunc(node[1][1])); } bool hasSideEffects(Ref node) { // this is 99% incomplete! IString type = node[0]->getIString(); switch (type[0]) { case 'n': if (type == NUM || type == NAME) return false; break; case 's': if (type == STRING) return false; if (type == SUB) return hasSideEffects(node[1]) || hasSideEffects(node[2]); break; case 'u': if (type == UNARY_PREFIX) return hasSideEffects(node[2]); break; case 'b': if (type == BINARY) return hasSideEffects(node[2]) || hasSideEffects(node[3]); break; case 'c': if (type == CALL) { if (callHasSideEffects(node)) return true; // This is a statically known call, with no side effects. only args can side effect us for (auto arg : node[2]->getArray()) { if (hasSideEffects(arg)) return true; } return false; } else if (type == CONDITIONAL) return hasSideEffects(node[1]) || hasSideEffects(node[2]) || hasSideEffects(node[3]); break; } return true; } // checks if a node has just basic operations, nothing with side effects nor that can notice side effects, which // implies we can move it around in the code bool triviallySafeToMove(Ref node, AsmData& asmData) { bool ok = true; traversePre(node, [&](Ref node) { Ref type = node[0]; if (type == STAT || type == BINARY || type == UNARY_PREFIX || type == ASSIGN || type == NUM) return; else if (type == NAME) { if (!asmData.isLocal(node[1]->getIString())) ok = false; } else if (type == CALL) { if (callHasSideEffects(node)) ok = false; } else { ok = false; } }); return ok; } // Transforms // We often have branchings that are simplified so one end vanishes, and // we then get // if (!(x < 5)) // or such. Simplifying these saves space and time. Ref simplifyNotCompsDirect(Ref node) { if (node[0] == UNARY_PREFIX && node[1] == L_NOT) { // de-morgan's laws do not work on floats, due to nans >:( if (node[2][0] == BINARY && (detectType(node[2][2]) == ASM_INT && detectType(node[2][3]) == ASM_INT)) { Ref op = node[2][1]; switch(op->getCString()[0]) { case '<': { if (op == LT) { op->setString(GE); break; } if (op == LE) { op->setString(GT); break; } return node; } case '>': { if (op == GT) { op->setString(LE); break; } if (op == GE) { op->setString(LT); break; } return node; } case '=': { if (op == EQ) { op->setString(NE); break; } return node; } case '!': { if (op == NE) { op->setString(EQ); break; } return node; } default: return node; } return make3(BINARY, op, node[2][2], node[2][3]); } else if (node[2][0] == UNARY_PREFIX && node[2][1] == L_NOT) { return node[2][2]; } } return node; } Ref flipCondition(Ref cond) { return simplifyNotCompsDirect(make2(UNARY_PREFIX, L_NOT, cond)); } void safeCopy(Ref target, Ref source) { // safely copy source onto target, even if source is a subnode of target Ref temp = source; // hold on to source *target = *temp; } void clearEmptyNodes(Ref arr) { int skip = 0; for (size_t i = 0; i < arr->size(); i++) { if (skip) { arr[i-skip] = arr[i]; } if (isEmpty(deStat(arr[i]))) { skip++; } } if (skip) arr->setSize(arr->size() - skip); } void clearUselessNodes(Ref arr) { int skip = 0; for (size_t i = 0; i < arr->size(); i++) { Ref curr = arr[i]; if (skip) { arr[i-skip] = curr; } if (isEmpty(deStat(curr)) || (curr[0] == STAT && !hasSideEffects(curr[1]))) { skip++; } } if (skip) arr->setSize(arr->size() - skip); } void removeAllEmptySubNodes(Ref ast) { traversePre(ast, [](Ref node) { if (node[0] == DEFUN) { clearEmptyNodes(node[3]); } else if (node[0] == BLOCK && node->size() > 1 && !!node[1]) { clearEmptyNodes(node[1]); } else if (node[0] == SEQ && isEmpty(node[1])) { safeCopy(node, node[2]); } }); } void removeAllUselessSubNodes(Ref ast) { traversePrePost(ast, [](Ref node) { Ref type = node[0]; if (type == DEFUN) { clearUselessNodes(node[3]); } else if (type == BLOCK && node->size() > 1 && !!node[1]) { clearUselessNodes(node[1]); } else if (type == SEQ && isEmpty(node[1])) { safeCopy(node, node[2]); } }, [](Ref node) { Ref type = node[0]; if (type == IF) { bool empty2 = isEmpty(node[2]), has3 = node->size() == 4 && !!node[3], empty3 = !has3 || isEmpty(node[3]); if (!empty2 && empty3 && has3) { // empty else clauses node->setSize(3); } else if (empty2 && !empty3) { // empty if blocks safeCopy(node, make2(IF, make2(UNARY_PREFIX, L_NOT, node[1]), node[3])); } else if (empty2 && empty3) { if (hasSideEffects(node[1])) { safeCopy(node, make1(STAT, node[1])); } else { safeCopy(node, makeEmpty()); } } } }); } Ref unVarify(Ref vars) { // transform var x=1, y=2 etc. into (x=1, y=2), i.e., the same assigns, but without a var definition Ref ret = makeArray(1); ret->push_back(makeString(STAT)); if (vars->size() == 1) { ret->push_back(make3(ASSIGN, makeBool(true), makeName(vars[0][0]->getIString()), vars[0][1])); } else { ret->push_back(makeArray(vars->size()-1)); Ref curr = ret[1]; for (size_t i = 0; i+1 < vars->size(); i++) { curr->push_back(makeString(SEQ)); curr->push_back(make3(ASSIGN, makeBool(true), makeName(vars[i][0]->getIString()), vars[i][1])); if (i != vars->size()-2) { curr->push_back(makeArray()); curr = curr[2]; } } curr->push_back(make3(ASSIGN, makeBool(true), makeName(vars->back()[0]->getIString()), vars->back()[1])); } return ret; } // Calculations int measureCost(Ref ast) { int size = 0; traversePre(ast, [&size](Ref node) { Ref type = node[0]; if (type == NUM || type == UNARY_PREFIX) size--; else if (type == BINARY) { if (node[3][0] == NUM && node[3][1]->getNumber() == 0) size--; else if (node[1] == DIV || node[1] == MOD) size += 2; } else if (type == CALL && !callHasSideEffects(node)) size -= 2; else if (type == SUB) size++; size++; }); return size; } //================== // Params //================== bool preciseF32 = false, receiveJSON = false, emitJSON = false, minifyWhitespace = false, last = false; //===================== // Optimization passes //===================== #define HASES \ bool has(const IString& str) { \ return count(str) > 0; \ } \ bool has(Ref node) { \ return node->isString() && count(node->getIString()) > 0; \ } class StringSet : public cashew::IStringSet { public: StringSet() {} StringSet(const char *str) : IStringSet(str) {} HASES void dump() { err("==="); for (auto str : *this) { errv("%s", str.c_str()); } err("==="); } }; StringSet USEFUL_BINARY_OPS("<< >> | & ^"), COMPARE_OPS("< <= > >= == == != !=="), BITWISE("| & ^"), SAFE_BINARY_OPS("+ -"), // division is unsafe as it creates non-ints in JS; mod is unsafe as signs matter so we can't remove |0's; mul does not nest with +,- in asm COERCION_REQUIRING_OPS("sub unary-prefix"), // ops that in asm must be coerced right away COERCION_REQUIRING_BINARIES("* / %"); // binary ops that in asm must be coerced StringSet ASSOCIATIVE_BINARIES("+ * | & ^"), CONTROL_FLOW("do while for if switch"), LOOP("do while for"), NAME_OR_NUM("name num"), CONDITION_CHECKERS("if do while switch"), SAFE_TO_DROP_COERCION("unary-prefix name num"); StringSet BREAK_CAPTURERS("do while for switch"), CONTINUE_CAPTURERS("do while for"), FUNCTIONS_THAT_ALWAYS_THROW("abort ___resumeException ___cxa_throw ___cxa_rethrow"); bool isFunctionTable(const char *name) { static const char *functionTable = "FUNCTION_TABLE"; static unsigned size = strlen(functionTable); return strncmp(name, functionTable, size) == 0; } bool isFunctionTable(Ref value) { return value->isString() && isFunctionTable(value->getCString()); } // Internal utilities bool canDropCoercion(Ref node) { if (SAFE_TO_DROP_COERCION.has(node[0])) return true; if (node[0] == BINARY) { switch (node[1]->getCString()[0]) { case '>': return node[1] == RSHIFT || node[1] == TRSHIFT; case '<': return node[1] == LSHIFT; case '|': case '^': case '&': return true; } } return false; } Ref simplifyCondition(Ref node) { node = simplifyNotCompsDirect(node); // on integers, if (x == 0) is the same as if (x), and if (x != 0) as if (!x) if (node[0] == BINARY && (node[1] == EQ || node[1] == NE)) { Ref target; if (detectType(node[2]) == ASM_INT && node[3][0] == NUM && node[3][1]->getNumber() == 0) { target = node[2]; } else if (detectType(node[3]) == ASM_INT && node[2][0] == NUM && node[2][1]->getNumber() == 0) { target = node[3]; } if (!!target) { if (target[0] == BINARY && (target[1] == OR || target[1] == TRSHIFT) && target[3][0] == NUM && target[3][1]->getNumber() == 0 && canDropCoercion(target[2])) { target = target[2]; // drop the coercion, in a condition it is ok to do if (x) } if (node[1] == EQ) { return make2(UNARY_PREFIX, L_NOT, target); } else { return target; } } } return node; } // Passes // Eliminator aka Expressionizer // // The goal of this pass is to eliminate unneeded variables (which represent one of the infinite registers in the LLVM // model) and thus to generate complex expressions where possible, for example // // var x = a(10); // var y = HEAP[20]; // print(x+y); // // can be transformed into // // print(a(10)+HEAP[20]); // // The basic principle is to scan along the code in the order of parsing/execution, and keep a list of tracked // variables that are current contenders for elimination. We must untrack when we see something that we cannot // cross, for example, a write to memory means we must invalidate variables that depend on reading from // memory, since if we change the order then we do not preserve the computation. // // We rely on some assumptions about emscripten-generated code here, which means we can do a lot more than // a general JS optimization can. For example, we assume that SUB nodes (indexing like HEAP[..]) are // memory accesses or FUNCTION_TABLE accesses, and in both cases that the symbol cannot be replaced although // the contents can. So we assume FUNCTION_TABLE might have its contents changed but not be pointed to // a different object, which allows // // var x = f(); // FUNCTION_TABLE[x](); // // to be optimized (f could replace FUNCTION_TABLE, so in general JS eliminating x is not valid). // // In memSafe mode, we are more careful and assume functions can replace HEAP and FUNCTION_TABLE, which // can happen in ALLOW_MEMORY_GROWTH mode StringSet ELIMINATION_SAFE_NODES("assign call if toplevel do return label switch binary unary-prefix"); // do is checked carefully, however StringSet IGNORABLE_ELIMINATOR_SCAN_NODES("num toplevel string break continue dot"); // dot can only be STRING_TABLE.* StringSet ABORTING_ELIMINATOR_SCAN_NODES("new object function defun for while array throw"); // we could handle some of these, TODO, but nontrivial (e.g. for while, the condition is hit multiple times after the body) StringSet HEAP_NAMES("HEAP8 HEAP16 HEAP32 HEAPU8 HEAPU16 HEAPU32 HEAPF32 HEAPF64"); bool isTempDoublePtrAccess(Ref node) { // these are used in bitcasts; they are not really affecting memory, and should cause no invalidation assert(node[0] == SUB); return (node[2][0] == NAME && node[2][1] == TEMP_DOUBLE_PTR) || (node[2][0] == BINARY && ((node[2][2][0] == NAME && node[2][2][1] == TEMP_DOUBLE_PTR) || (node[2][3][0] == NAME && node[2][3][1] == TEMP_DOUBLE_PTR))); } class StringIntMap : public std::unordered_map { public: HASES }; class StringStringMap : public std::unordered_map { public: HASES }; class StringRefMap : public std::unordered_map { public: HASES }; class StringTypeMap : public std::unordered_map { public: HASES }; void eliminate(Ref ast, bool memSafe) { #ifdef PROFILING clock_t tasmdata = 0; clock_t tfnexamine = 0; clock_t tvarcheck = 0; clock_t tstmtelim = 0; clock_t tstmtscan = 0; clock_t tcleanvars = 0; clock_t treconstruct = 0; #endif // Find variables that have a single use, and if they can be eliminated, do so traverseFunctions(ast, [&](Ref func) { #ifdef PROFILING clock_t start = clock(); #endif AsmData asmData(func); #ifdef PROFILING tasmdata += clock() - start; start = clock(); #endif // First, find the potentially eliminatable functions: that have one definition and one use StringIntMap definitions; StringIntMap uses; StringIntMap namings; StringRefMap values; StringIntMap varsToRemove; // variables being removed, that we can eliminate all 'var x;' of (this refers to VAR nodes we should remove) // 1 means we should remove it, 2 means we successfully removed it StringSet varsToTryToRemove; // variables that have 0 uses, but have side effects - when we scan we can try to remove them // examine body and note locals traversePre(func, [&](Ref node) { Ref type = node[0]; if (type == NAME) { IString& name = node[1]->getIString(); uses[name]++; namings[name]++; } else if (type == ASSIGN) { Ref target = node[2]; if (target[0] == NAME) { IString& name = target[1]->getIString(); // values is only used if definitions is 1 if (definitions[name]++ == 0) { values[name] = node[3]; } assert(node[1]->isBool(true)); // not +=, -= etc., just = uses[name]--; // because the name node will show up by itself in the previous case } } }); #ifdef PROFILING tfnexamine += clock() - start; start = clock(); #endif StringSet potentials; // local variables with 1 definition and 1 use StringSet sideEffectFree; // whether a local variable has no side effects in its definition. Only relevant when there are no uses auto unprocessVariable = [&](IString name) { potentials.erase(name); varsToRemove.erase(name); sideEffectFree.erase(name); varsToTryToRemove.erase(name); }; std::function processVariable = [&](IString name) { if (definitions[name] == 1 && uses[name] == 1) { potentials.insert(name); } else if (uses[name] == 0 && definitions[name] <= 1) { // no uses, no def or 1 def (cannot operate on phis, and the llvm optimizer will remove unneeded phis anyhow) (no definition means it is a function parameter, or a local with just |var x;| but no defining assignment) bool sideEffects = false; auto val = values.find(name); Ref value; if (val != values.end()) { value = val->second; // TODO: merge with other side effect code // First, pattern-match // (HEAP32[((tempDoublePtr)>>2)]=((HEAP32[(($_sroa_0_0__idx1)>>2)])|0),HEAP32[(((tempDoublePtr)+(4))>>2)]=((HEAP32[((($_sroa_0_0__idx1)+(4))>>2)])|0),(+(HEAPF64[(tempDoublePtr)>>3]))) // which has no side effects and is the special form of converting double to i64. if (!(value[0] == SEQ && value[1][0] == ASSIGN && value[1][2][0] == SUB && value[1][2][2][0] == BINARY && value[1][2][2][1] == RSHIFT && value[1][2][2][2][0] == NAME && value[1][2][2][2][1] == TEMP_DOUBLE_PTR)) { // If not that, then traverse and scan normally. sideEffects = hasSideEffects(value); } } if (!sideEffects) { varsToRemove[name] = !definitions[name] ? 2 : 1; // remove it normally sideEffectFree.insert(name); // Each time we remove a variable with 0 uses, if its value has no // side effects and vanishes too, then we can remove a use from variables // appearing in it, and possibly eliminate again if (!!value) { traversePre(value, [&](Ref node) { if (node[0] == NAME) { IString name = node[1]->getIString(); node[1]->setString(EMPTY); // we can remove this - it will never be shown, and should not be left to confuse us as we traverse if (asmData.isLocal(name)) { uses[name]--; // cannot be infinite recursion since we descend an energy function assert(uses[name] >= 0); unprocessVariable(name); processVariable(name); } } else if (node[0] == CALL) { // no side effects, so this must be a Math.* call or such. We can just ignore it and all children node[0]->setString(NAME); node[1]->setString(EMPTY); } }); } } else { varsToTryToRemove.insert(name); // try to remove it later during scanning } } }; for (auto name : asmData.locals) { processVariable(name.first); } #ifdef PROFILING tvarcheck += clock() - start; start = clock(); #endif //printErr('defs: ' + JSON.stringify(definitions)); //printErr('uses: ' + JSON.stringify(uses)); //printErr('values: ' + JSON.stringify(values)); //printErr('locals: ' + JSON.stringify(locals)); //printErr('varsToRemove: ' + JSON.stringify(varsToRemove)); //printErr('varsToTryToRemove: ' + JSON.stringify(varsToTryToRemove)); values.clear(); //printErr('potentials: ' + JSON.stringify(potentials)); // We can now proceed through the function. In each list of statements, we try to eliminate struct Tracking { bool usesGlobals, usesMemory, hasDeps; Ref defNode; bool doesCall; }; class Tracked : public std::unordered_map { public: HASES }; Tracked tracked; #define dumpTracked() { errv("tracking %d", tracked.size()); for (auto t : tracked) errv("... %s", t.first.c_str()); } // Although a set would be more appropriate, it would also be slower std::unordered_map depMap; bool globalsInvalidated = false; // do not repeat invalidations, until we track something new bool memoryInvalidated = false; bool callsInvalidated = false; auto track = [&](IString name, Ref value, Ref defNode) { // add a potential that has just been defined to the tracked list, we hope to eliminate it Tracking& track = tracked[name]; track.usesGlobals = false; track.usesMemory = false; track.hasDeps = false; track.defNode = defNode; track.doesCall = false; bool ignoreName = false; // one-time ignorings of names, as first op in sub and call traversePre(value, [&](Ref node) { Ref type = node[0]; if (type == NAME) { if (!ignoreName) { IString depName = node[1]->getIString(); if (!asmData.isLocal(depName)) { track.usesGlobals = true; } if (!potentials.has(depName)) { // deps do not matter for potentials - they are defined once, so no complexity depMap[depName].push_back(name); track.hasDeps = true; } } else { ignoreName = false; } } else if (type == SUB) { track.usesMemory = true; ignoreName = true; } else if (type == CALL) { track.usesGlobals = true; track.usesMemory = true; track.doesCall = true; ignoreName = true; } else { ignoreName = false; } }); if (track.usesGlobals) globalsInvalidated = false; if (track.usesMemory) memoryInvalidated = false; if (track.doesCall) callsInvalidated = false; }; // TODO: invalidate using a sequence number for each type (if you were tracked before the last invalidation, you are cancelled). remove for.in loops #define INVALIDATE(what, check) \ auto invalidate##what = [&]() { \ std::vector temp; \ for (auto t : tracked) { \ IString name = t.first; \ Tracking& info = tracked[name]; \ if (check) { \ temp.push_back(name); \ } \ } \ for (size_t i = 0; i < temp.size(); i++) { \ tracked.erase(temp[i]); \ } \ }; INVALIDATE(Globals, info.usesGlobals); INVALIDATE(Memory, info.usesMemory); INVALIDATE(Calls, info.doesCall); auto invalidateByDep = [&](IString dep) { for (auto name : depMap[dep]) { tracked.erase(name); } depMap.erase(dep); }; std::function doEliminate; // Generate the sequence of execution. This determines what is executed before what, so we know what can be reordered. Using // that, performs invalidations and eliminations auto scan = [&](Ref node) { bool abort = false; bool allowTracking = true; // false inside an if; also prevents recursing in an if std::function traverseInOrder = [&](Ref node, bool ignoreSub) { if (abort) return; Ref type = node[0]; if (type == ASSIGN) { Ref target = node[2]; Ref value = node[3]; bool nameTarget = target[0] == NAME; // If this is an assign to a name, handle it below rather than // traversing and treating as a read if (!nameTarget) { traverseInOrder(target, true); // evaluate left } traverseInOrder(value, false); // evaluate right // do the actual assignment if (nameTarget) { IString name = target[1]->getIString(); if (potentials.has(name) && allowTracking) { track(name, node[3], node); } else if (varsToTryToRemove.has(name)) { // replace it in-place safeCopy(node, value); varsToRemove[name] = 2; } else { // expensive check for invalidating specific tracked vars. This list is generally quite short though, because of // how we just eliminate in short spans and abort when control flow happens TODO: history numbers instead invalidateByDep(name); // can happen more than once per dep.. if (!asmData.isLocal(name) && !globalsInvalidated) { invalidateGlobals(); globalsInvalidated = true; } // if we can track this name (that we assign into), and it has 0 uses and we want to remove its VAR // definition - then remove it right now, there is no later chance if (allowTracking && varsToRemove.has(name) && uses[name] == 0) { track(name, node[3], node); doEliminate(name, node); } } } else if (target[0] == SUB) { if (isTempDoublePtrAccess(target)) { if (!globalsInvalidated) { invalidateGlobals(); globalsInvalidated = true; } } else if (!memoryInvalidated) { invalidateMemory(); memoryInvalidated = true; } } } else if (type == SUB) { // Only keep track of the global array names in memsafe mode i.e. // when they may change underneath us due to resizing if (node[1][0] != NAME || memSafe) { traverseInOrder(node[1], false); // evaluate inner } traverseInOrder(node[2], false); // evaluate outer // ignoreSub means we are a write (happening later), not a read if (!ignoreSub && !isTempDoublePtrAccess(node)) { // do the memory access if (!callsInvalidated) { invalidateCalls(); callsInvalidated = true; } } } else if (type == BINARY) { bool flipped = false; if (ASSOCIATIVE_BINARIES.has(node[1]) && !NAME_OR_NUM.has(node[2][0]) && NAME_OR_NUM.has(node[3][0])) { // TODO recurse here? // associatives like + and * can be reordered in the simple case of one of the sides being a name, since we assume they are all just numbers Ref temp = node[2]; node[2] = node[3]; node[3] = temp; flipped = true; } traverseInOrder(node[2], false); traverseInOrder(node[3], false); if (flipped && NAME_OR_NUM.has(node[2][0])) { // dunno if we optimized, but safe to flip back - and keeps the code closer to the original and more readable Ref temp = node[2]; node[2] = node[3]; node[3] = temp; } } else if (type == NAME) { IString name = node[1]->getIString(); if (tracked.has(name)) { doEliminate(name, node); } else if (!asmData.isLocal(name) && !callsInvalidated && (memSafe || !HEAP_NAMES.has(name))) { // ignore HEAP8 etc when not memory safe, these are ok to // access, e.g. SIMD_Int32x4_load(HEAP8, ...) invalidateCalls(); callsInvalidated = true; } } else if (type == UNARY_PREFIX || type == UNARY_POSTFIX) { traverseInOrder(node[2], false); } else if (IGNORABLE_ELIMINATOR_SCAN_NODES.has(type)) { } else if (type == CALL) { // Named functions never change and are therefore safe to not track if (node[1][0] != NAME) { traverseInOrder(node[1], false); } Ref args = node[2]; for (size_t i = 0; i < args->size(); i++) { traverseInOrder(args[i], false); } if (callHasSideEffects(node)) { // these two invalidations will also invalidate calls if (!globalsInvalidated) { invalidateGlobals(); globalsInvalidated = true; } if (!memoryInvalidated) { invalidateMemory(); memoryInvalidated = true; } } } else if (type == IF) { if (allowTracking) { traverseInOrder(node[1], false); // can eliminate into condition, but nowhere else if (!callsInvalidated) { // invalidate calls, since we cannot eliminate them into an if that may not execute! invalidateCalls(); callsInvalidated = true; } allowTracking = false; traverseInOrder(node[2], false); // 2 and 3 could be 'parallel', really.. if (!!node[3]) traverseInOrder(node[3], false); allowTracking = true; } else { tracked.clear(); } } else if (type == BLOCK) { Ref stats = getStatements(node); if (!!stats) { for (size_t i = 0; i < stats->size(); i++) { traverseInOrder(stats[i], false); } } } else if (type == STAT) { traverseInOrder(node[1], false); } else if (type == LABEL) { traverseInOrder(node[2], false); } else if (type == SEQ) { traverseInOrder(node[1], false); traverseInOrder(node[2], false); } else if (type == DO) { if (node[1][0] == NUM && node[1][1]->getNumber() == 0) { // one-time loop traverseInOrder(node[2], false); } else { tracked.clear(); } } else if (type == RETURN) { if (!!node[1]) traverseInOrder(node[1], false); } else if (type == CONDITIONAL) { if (!callsInvalidated) { // invalidate calls, since we cannot eliminate them into a branch of an LLVM select/JS conditional that does not execute invalidateCalls(); callsInvalidated = true; } traverseInOrder(node[1], false); traverseInOrder(node[2], false); traverseInOrder(node[3], false); } else if (type == SWITCH) { traverseInOrder(node[1], false); Tracked originalTracked = tracked; Ref cases = node[2]; for (size_t i = 0; i < cases->size(); i++) { Ref c = cases[i]; assert(c[0]->isNull() || c[0][0] == NUM || (c[0][0] == UNARY_PREFIX && c[0][2][0] == NUM)); Ref stats = c[1]; for (size_t j = 0; j < stats->size(); j++) { traverseInOrder(stats[j], false); } // We cannot track from one switch case into another if there are external dependencies, undo all new trackings // Otherwise we can track, e.g. a var used in a case before assignment in another case is UB in asm.js, so no need for the assignment // TODO: general framework here, use in if-else as well std::vector toDelete; for (auto t : tracked) { if (!originalTracked.has(t.first)) { Tracking& info = tracked[t.first]; if (info.usesGlobals || info.usesMemory || info.hasDeps) { toDelete.push_back(t.first); } } } for (auto t : toDelete) { tracked.erase(t); } } tracked.clear(); // do not track from inside the switch to outside } else { assert(ABORTING_ELIMINATOR_SCAN_NODES.has(type)); tracked.clear(); abort = true; } }; traverseInOrder(node, false); }; //var eliminationLimit = 0; // used to debugging purposes doEliminate = [&](IString name, Ref node) { //if (eliminationLimit == 0) return; //eliminationLimit--; //printErr('elim!!!!! ' + name); // yes, eliminate! varsToRemove[name] = 2; // both assign and var definitions can have other vars we must clean up assert(tracked.has(name)); Tracking& info = tracked[name]; Ref defNode = info.defNode; assert(!!defNode); if (!sideEffectFree.has(name)) { assert(defNode[0] != VAR); // assign Ref value = defNode[3]; // wipe out the assign safeCopy(defNode, makeEmpty()); // replace this node in-place safeCopy(node, value); } else { // This has no side effects and no uses, empty it out in-place safeCopy(node, makeEmpty()); } tracked.erase(name); }; traversePre(func, [&](Ref block) { // Look for statements, including while-switch pattern Ref stats = getStatements(block); if (!stats && (block[0] == WHILE && block[2][0] == SWITCH)) { stats = &(makeArray(1)->push_back(block[2])); } if (!stats) return; tracked.clear(); for (size_t i = 0; i < stats->size(); i++) { Ref node = deStat(stats[i]); Ref type = node[0]; if (type == RETURN && i+1 < stats->size()) { stats->setSize(i+1); // remove any code after a return } // Check for things that affect elimination if (ELIMINATION_SAFE_NODES.has(type)) { #ifdef PROFILING tstmtelim += clock() - start; start = clock(); #endif scan(node); #ifdef PROFILING tstmtscan += clock() - start; start = clock(); #endif } else if (type == VAR) { continue; // asm normalisation has reduced 'var' to just the names } else { tracked.clear(); // not a var or assign, break all potential elimination so far } } }); #ifdef PROFILING tstmtelim += clock() - start; start = clock(); #endif StringIntMap seenUses; StringStringMap helperReplacements; // for looper-helper optimization // clean up vars, and loop variable elimination traversePrePost(func, [&](Ref node) { // pre Ref type = node[0]; /*if (type == VAR) { node[1] = node[1].filter(function(pair) { return !varsToRemove[pair[0]] }); if (node[1]->size() == 0) { // wipe out an empty |var;| node[0] = TOPLEVEL; node[1] = []; } } else */ if (type == ASSIGN && node[1]->isBool(true) && node[2][0] == NAME && node[3][0] == NAME && node[2][1] == node[3][1]) { // elimination led to X = X, which we can just remove safeCopy(node, makeEmpty()); } }, [&](Ref node) { // post Ref type = node[0]; if (type == NAME) { IString name = node[1]->getIString(); if (helperReplacements.has(name)) { node[1]->setString(helperReplacements[name]); return; // no need to track this anymore, we can't loop-optimize more than once } // track how many uses we saw. we need to know when a variable is no longer used (hence we run this in the post) seenUses[name]++; } else if (type == WHILE) { // try to remove loop helper variables specifically Ref stats = node[2][1]; Ref last = stats->back(); if (!!last && last[0] == IF && last[2][0] == BLOCK && !!last[3] && last[3][0] == BLOCK) { Ref ifTrue = last[2]; Ref ifFalse = last[3]; clearEmptyNodes(ifTrue[1]); clearEmptyNodes(ifFalse[1]); bool flip = false; if (ifFalse[1]->size() > 0 && !!ifFalse[1][0] && !!ifFalse[1]->back() && ifFalse[1]->back()[0] == BREAK) { // canonicalize break in the if-true Ref temp = ifFalse; ifFalse = ifTrue; ifTrue = temp; flip = true; } if (ifTrue[1]->size() > 0 && !!ifTrue[1][0] && !!ifTrue[1]->back() && ifTrue[1]->back()[0] == BREAK) { Ref assigns = ifFalse[1]; clearEmptyNodes(assigns); std::vector loopers, helpers; for (size_t i = 0; i < assigns->size(); i++) { if (assigns[i][0] == STAT && assigns[i][1][0] == ASSIGN) { Ref assign = assigns[i][1]; if (assign[1]->isBool(true) && assign[2][0] == NAME && assign[3][0] == NAME) { IString looper = assign[2][1]->getIString(); IString helper = assign[3][1]->getIString(); if (definitions[helper] == 1 && seenUses[looper] == namings[looper] && !helperReplacements.has(helper) && !helperReplacements.has(looper)) { loopers.push_back(looper); helpers.push_back(helper); } } } } // remove loop vars that are used in the rest of the else for (size_t i = 0; i < assigns->size(); i++) { if (assigns[i][0] == STAT && assigns[i][1][0] == ASSIGN) { Ref assign = assigns[i][1]; if (!(assign[1]->isBool(true) && assign[2][0] == NAME && assign[3][0] == NAME) || indexOf(loopers, assign[2][1]->getIString()) < 0) { // this is not one of the loop assigns traversePre(assign, [&](Ref node) { if (node[0] == NAME) { int index = indexOf(loopers, node[1]->getIString()); if (index < 0) index = indexOf(helpers, node[1]->getIString()); if (index >= 0) { loopers.erase(loopers.begin() + index); helpers.erase(helpers.begin() + index); } } }); } } } // remove loop vars that are used in the if traversePre(ifTrue, [&](Ref node) { if (node[0] == NAME) { int index = indexOf(loopers, node[1]->getIString()); if (index < 0) index = indexOf(helpers, node[1]->getIString()); if (index >= 0) { loopers.erase(loopers.begin() + index); helpers.erase(helpers.begin() + index); } } }); if (loopers.size() == 0) return; for (size_t l = 0; l < loopers.size(); l++) { IString looper = loopers[l]; IString helper = helpers[l]; // the remaining issue is whether loopers are used after the assignment to helper and before the last line (where we assign to it) int found = -1; for (int i = (int)stats->size()-2; i >= 0; i--) { Ref curr = stats[i]; if (curr[0] == STAT && curr[1][0] == ASSIGN) { Ref currAssign = curr[1]; if (currAssign[1]->isBool(true) && currAssign[2][0] == NAME) { IString to = currAssign[2][1]->getIString(); if (to == helper) { found = i; break; } } } } if (found < 0) return; // if a loop variable is used after we assigned to the helper, we must save its value and use that. // (note that this can happen due to elimination, if we eliminate an expression containing the // loop var far down, past the assignment!) // first, see if the looper and helpers overlap. Note that we check for this looper, compared to // *ALL* the helpers. Helpers will be replaced by loopers as we eliminate them, potentially // causing conflicts, so any helper is a concern. int firstLooperUsage = -1; int lastLooperUsage = -1; int firstHelperUsage = -1; for (int i = found+1; i < (int)stats->size(); i++) { Ref curr = i < (int)stats->size()-1 ? stats[i] : last[1]; // on the last line, just look in the condition traversePre(curr, [&](Ref node) { if (node[0] == NAME) { if (node[1] == looper) { if (firstLooperUsage < 0) firstLooperUsage = i; lastLooperUsage = i; } else if (indexOf(helpers, node[1]->getIString()) >= 0) { if (firstHelperUsage < 0) firstHelperUsage = i; } } }); } if (firstLooperUsage >= 0) { // the looper is used, we cannot simply merge the two variables if ((firstHelperUsage < 0 || firstHelperUsage > lastLooperUsage) && lastLooperUsage+1 < (int)stats->size() && triviallySafeToMove(stats[found], asmData) && seenUses[helper] == namings[helper]) { // the helper is not used, or it is used after the last use of the looper, so they do not overlap, // and the last looper usage is not on the last line (where we could not append after it), and the // helper is not used outside of the loop. // just move the looper definition to after the looper's last use stats->insert(lastLooperUsage+1, stats[found]); stats->splice(found, 1); } else { // they overlap, we can still proceed with the loop optimization, but we must introduce a // loop temp helper variable IString temp(strdupe((std::string(looper.c_str()) + "$looptemp").c_str())); assert(!asmData.isLocal(temp)); for (int i = firstLooperUsage; i <= lastLooperUsage; i++) { Ref curr = i < (int)stats->size()-1 ? stats[i] : last[1]; // on the last line, just look in the condition std::function looperToLooptemp = [&](Ref node) { if (node[0] == NAME) { if (node[1] == looper) { node[1]->setString(temp); } } else if (node[0] == ASSIGN && node[2][0] == NAME) { // do not traverse the assignment target, phi assignments to the loop variable must remain traversePrePostConditional(node[3], looperToLooptemp, [](Ref node){}); return false; } return true; }; traversePrePostConditional(curr, looperToLooptemp, [](Ref node){}); } asmData.addVar(temp, asmData.getType(looper)); stats->insert(found, make1(STAT, make3(ASSIGN, makeBool(true), makeName(temp), makeName(looper)))); } } } for (size_t l = 0; l < helpers.size(); l++) { for (size_t k = 0; k < helpers.size(); k++) { if (l != k && helpers[l] == helpers[k]) return; // it is complicated to handle a shared helper, abort } } // hurrah! this is safe to do for (size_t l = 0; l < loopers.size(); l++) { IString looper = loopers[l]; IString helper = helpers[l]; varsToRemove[helper] = 2; traversePre(node, [&](Ref node) { // replace all appearances of helper with looper if (node[0] == NAME && node[1] == helper) node[1]->setString(looper); }); helperReplacements[helper] = looper; // replace all future appearances of helper with looper helperReplacements[looper] = looper; // avoid any further attempts to optimize looper in this manner (seenUses is wrong anyhow, too) } // simplify the if. we remove the if branch, leaving only the else if (flip) { last[1] = simplifyNotCompsDirect(make2(UNARY_PREFIX, L_NOT, last[1])); Ref temp = last[2]; last[2] = last[3]; last[3] = temp; } if (loopers.size() == assigns->size()) { last->pop_back(); } else { Ref elseStats = getStatements(last[3]); for (size_t i = 0; i < elseStats->size(); i++) { Ref stat = deStat(elseStats[i]); if (stat[0] == ASSIGN && stat[2][0] == NAME) { if (indexOf(loopers, stat[2][1]->getIString()) >= 0) { elseStats[i] = makeEmpty(); } } } } } } } }); #ifdef PROFILING tcleanvars += clock() - start; start = clock(); #endif for (auto v : varsToRemove) { if (v.second == 2 && asmData.isVar(v.first)) asmData.deleteVar(v.first); } asmData.denormalize(); #ifdef PROFILING treconstruct += clock() - start; start = clock(); #endif }); removeAllEmptySubNodes(ast); #ifdef PROFILING errv(" EL stages: a:%li fe:%li vc:%li se:%li (ss:%li) cv:%li r:%li", tasmdata, tfnexamine, tvarcheck, tstmtelim, tstmtscan, tcleanvars, treconstruct); #endif } void eliminateMemSafe(Ref ast) { eliminate(ast, true); } void simplifyExpressions(Ref ast) { // Simplify common expressions used to perform integer conversion operations // in cases where no conversion is needed. auto simplifyIntegerConversions = [](Ref ast) { traversePre(ast, [](Ref node) { Ref type = node[0]; if (type == BINARY && node[1] == RSHIFT && node[3][0] == NUM && node[2][0] == BINARY && node[2][1] == LSHIFT && node[2][3][0] == NUM && node[3][1]->getNumber() == node[2][3][1]->getNumber()) { // Transform (x&A)<>B to X&A. Ref innerNode = node[2][2]; double shifts = node[3][1]->getNumber(); if (innerNode[0] == BINARY && innerNode[1] == AND && innerNode[3][0] == NUM) { double mask = innerNode[3][1]->getNumber(); if (isInteger32(mask) && isInteger32(shifts) && ((jsD2I(mask) << jsD2I(shifts)) >> jsD2I(shifts)) == jsD2I(mask)) { safeCopy(node, innerNode); return; } } } else if (type == BINARY && BITWISE.has(node[1])) { for (int i = 2; i <= 3; i++) { Ref subNode = node[i]; if (subNode[0] == BINARY && subNode[1] == AND && subNode[3][0] == NUM && subNode[3][1]->getNumber() == 1) { // Rewrite (X < Y) & 1 to X < Y , when it is going into a bitwise operator. We could // remove even more (just replace &1 with |0, then subsequent passes could remove the |0) // but v8 issue #2513 means the code would then run very slowly in chrome. Ref input = subNode[2]; if (input[0] == BINARY && COMPARE_OPS.has(input[1])) { safeCopy(node[i], input); } } } } }); }; // When there is a bunch of math like (((8+5)|0)+12)|0, only the external |0 is needed, one correction is enough. // At each node, ((X|0)+Y)|0 can be transformed into (X+Y): The inner corrections are not needed // TODO: Is the same is true for 0xff, 0xffff? // Likewise, if we have |0 inside a block that will be >>'d, then the |0 is unnecessary because some // 'useful' mathops already |0 anyhow. auto simplifyOps = [](Ref ast) { auto removeMultipleOrZero = [&ast] { bool rerun = true; while (rerun) { rerun = false; std::vector stack; std::function process = [&stack, &rerun, &process, &ast](Ref node) { Ref type = node[0]; if (type == BINARY && node[1] == OR) { if (node[2][0] == NUM && node[3][0] == NUM) { node[2][1]->setNumber(jsD2I(node[2][1]->getNumber()) | jsD2I(node[3][1]->getNumber())); stack.push_back(0); safeCopy(node, node[2]); return; } bool go = false; if (node[2][0] == NUM && node[2][1]->getNumber() == 0) { // canonicalize order Ref temp = node[3]; node[3] = node[2]; node[2] = temp; go = true; } else if (node[3][0] == NUM && node[3][1]->getNumber() == 0) { go = true; } if (!go) { stack.push_back(1); return; } // We might be able to remove this correction for (int i = stack.size()-1; i >= 0; i--) { if (stack[i] >= 1) { if (stack.back() < 2 && node[2][0] == CALL) break; // we can only remove multiple |0s on these if (stack.back() < 1 && (COERCION_REQUIRING_OPS.has(node[2][0]) || (node[2][0] == BINARY && COERCION_REQUIRING_BINARIES.has(node[2][1])))) break; // we can remove |0 or >>2 // we will replace ourselves with the non-zero side. Recursively process that node. Ref result = node[2][0] == NUM && node[2][1]->getNumber() == 0 ? node[3] : node[2], other; // replace node in-place safeCopy(node, result); rerun = true; process(result); return; } else if (stack[i] == -1) { break; // Too bad, we can't } } stack.push_back(2); // From here on up, no need for this kind of correction, it's done at the top // (Add this at the end, so it is only added if we did not remove it) } else if (type == BINARY && USEFUL_BINARY_OPS.has(node[1])) { stack.push_back(1); } else if ((type == BINARY && SAFE_BINARY_OPS.has(node[1])) || type == NUM || type == NAME) { stack.push_back(0); // This node is safe in that it does not interfere with this optimization } else if (type == UNARY_PREFIX && node[1] == B_NOT) { stack.push_back(1); } else { stack.push_back(-1); // This node is dangerous! Give up if you see this before you see '1' } }; traversePrePost(ast, process, [&stack](Ref node) { assert(!stack.empty()); stack.pop_back(); }); } }; removeMultipleOrZero(); // & and heap-related optimizations bool hasTempDoublePtr = false, rerunOrZeroPass = false; traversePrePostConditional(ast, [](Ref node) { // Detect trees which should not // be simplified. if (node[0] == SUB && node[1][0] == NAME && isFunctionTable(node[1][1])) { return false; // do not traverse subchildren here, we should not collapse 55 & 126. } return true; }, [&hasTempDoublePtr, &rerunOrZeroPass](Ref node) { // Simplifications are done now so // that we simplify a node's operands before the node itself. This allows // optimizations to cascade. Ref type = node[0]; if (type == NAME) { if (node[1] == TEMP_DOUBLE_PTR) hasTempDoublePtr = true; } else if (type == BINARY && node[1] == AND && node[3][0] == NUM) { if (node[2][0] == NUM) { safeCopy(node, makeNum(jsD2I(node[2][1]->getNumber()) & jsD2I(node[3][1]->getNumber()))); return; } Ref input = node[2]; double amount = node[3][1]->getNumber(); if (input[0] == BINARY && input[1] == AND && input[3][0] == NUM) { // Collapse X & 255 & 1 node[3][1]->setNumber(jsD2I(amount) & jsD2I(input[3][1]->getNumber())); node[2] = input[2]; } else if (input[0] == SUB && input[1][0] == NAME) { // HEAP8[..] & 255 => HEAPU8[..] HeapInfo hi = parseHeap(input[1][1]->getCString()); if (hi.valid) { if (isInteger32(amount) && amount == powl(2, hi.bits)-1) { if (!hi.unsign) { input[1][1]->setString(getHeapStr(hi.bits, true)); // make unsigned } // we cannot return HEAPU8 without a coercion, but at least we do HEAP8 & 255 => HEAPU8 | 0 node[1]->setString(OR); node[3][1]->setNumber(0); return; } } } else if (input[0] == BINARY && input[1] == RSHIFT && input[2][0] == BINARY && input[2][1] == LSHIFT && input[2][3][0] == NUM && input[3][0] == NUM && input[2][3][1]->getInteger() == input[3][1]->getInteger() && (~(0xFFFFFFFFu >> input[3][1]->getInteger()) & jsD2I(amount)) == 0) { // x << 24 >> 24 & 255 => x & 255 return safeCopy(node, make3(BINARY, AND, input[2][2], node[3])); } } else if (type == BINARY && node[1] == XOR) { // LLVM represents bitwise not as xor with -1. Translate it back to an actual bitwise not. if (node[3][0] == UNARY_PREFIX && node[3][1] == MINUS && node[3][2][0] == NUM && node[3][2][1]->getNumber() == 1 && !(node[2][0] == UNARY_PREFIX && node[2][1] == B_NOT)) { // avoid creating ~~~ which is confusing for asm given the role of ~~ safeCopy(node, make2(UNARY_PREFIX, B_NOT, node[2])); return; } } else if (type == BINARY && node[1] == RSHIFT && node[3][0] == NUM && node[2][0] == BINARY && node[2][1] == LSHIFT && node[2][3][0] == NUM && node[2][2][0] == SUB && node[2][2][1][0] == NAME) { // collapse HEAPU?8[..] << 24 >> 24 etc. into HEAP8[..] | 0 double amount = node[3][1]->getNumber(); if (amount == node[2][3][1]->getNumber()) { HeapInfo hi = parseHeap(node[2][2][1][1]->getCString()); if (hi.valid && hi.bits == 32 - amount) { node[2][2][1][1]->setString(getHeapStr(hi.bits, false)); node[1]->setString(OR); node[2] = node[2][2]; node[3][1]->setNumber(0); rerunOrZeroPass = true; return; } } } else if (type == ASSIGN) { // optimizations for assigning into HEAP32 specifically if (node[1]->isBool(true) && node[2][0] == SUB && node[2][1][0] == NAME) { if (node[2][1][1] == HEAP32) { // HEAP32[..] = x | 0 does not need the | 0 (unless it is a mandatory |0 of a call) if (node[3][0] == BINARY && node[3][1] == OR) { if (node[3][2][0] == NUM && node[3][2][1]->getNumber() == 0 && node[3][3][0] != CALL) { node[3] = node[3][3]; } else if (node[3][3][0] == NUM && node[3][3][1]->getNumber() == 0 && node[3][2][0] != CALL) { node[3] = node[3][2]; } } } else if (node[2][1][1] == HEAP8) { // HEAP8[..] = x & 0xff does not need the & 0xff if (node[3][0] == BINARY && node[3][1] == AND && node[3][3][0] == NUM && node[3][3][1]->getNumber() == 0xff) { node[3] = node[3][2]; } } else if (node[2][1][1] == HEAP16) { // HEAP16[..] = x & 0xffff does not need the & 0xffff if (node[3][0] == BINARY && node[3][1] == AND && node[3][3][0] == NUM && node[3][3][1]->getNumber() == 0xffff) { node[3] = node[3][2]; } } } Ref value = node[3]; if (value[0] == BINARY && value[1] == OR) { // canonicalize order of |0 to end if (value[2][0] == NUM && value[2][1]->getNumber() == 0) { Ref temp = value[2]; value[2] = value[3]; value[3] = temp; } // if a seq ends in an |0, remove an external |0 // note that it is only safe to do this in assigns, like we are doing here (return (x, y|0); is not valid) if (value[2][0] == SEQ && value[2][2][0] == BINARY && USEFUL_BINARY_OPS.has(value[2][2][1])) { node[3] = value[2]; } } } else if (type == BINARY && node[1] == RSHIFT && node[2][0] == NUM && node[3][0] == NUM) { // optimize num >> num, in asm we need this since we do not optimize shifts in asm.js node[0]->setString(NUM); node[1]->setNumber(jsD2I(node[2][1]->getNumber()) >> jsD2I(node[3][1]->getNumber())); node->setSize(2); return; } else if (type == BINARY && node[1] == PLUS) { // The most common mathop is addition, e.g. in getelementptr done repeatedly. We can join all of those, // by doing (num+num) ==> newnum. if (node[2][0] == NUM && node[3][0] == NUM) { node[2][1]->setNumber(jsD2I(node[2][1]->getNumber()) + jsD2I(node[3][1]->getNumber())); safeCopy(node, node[2]); return; } } }); if (rerunOrZeroPass) removeMultipleOrZero(); if (hasTempDoublePtr) { AsmData asmData(ast); traversePre(ast, [](Ref node) { Ref type = node[0]; if (type == ASSIGN) { if (node[1]->isBool(true) && node[2][0] == SUB && node[2][1][0] == NAME && node[2][1][1] == HEAP32) { // remove bitcasts that are now obviously pointless, e.g. // HEAP32[$45 >> 2] = HEAPF32[tempDoublePtr >> 2] = ($14 < $28 ? $14 : $28) - $42, HEAP32[tempDoublePtr >> 2] | 0; Ref value = node[3]; if (value[0] == SEQ && value[1][0] == ASSIGN && value[1][2][0] == SUB && value[1][2][1][0] == NAME && value[1][2][1][1] == HEAPF32 && value[1][2][2][0] == BINARY && value[1][2][2][2][0] == NAME && value[1][2][2][2][1] == TEMP_DOUBLE_PTR) { // transform to HEAPF32[$45 >> 2] = ($14 < $28 ? $14 : $28) - $42; node[2][1][1]->setString(HEAPF32); node[3] = value[1][3]; } } } else if (type == SEQ) { // (HEAP32[tempDoublePtr >> 2] = HEAP32[$37 >> 2], +HEAPF32[tempDoublePtr >> 2]) // ==> // +HEAPF32[$37 >> 2] if (node[0] == SEQ && node[1][0] == ASSIGN && node[1][2][0] == SUB && node[1][2][1][0] == NAME && (node[1][2][1][1] == HEAP32 || node[1][2][1][1] == HEAPF32) && node[1][2][2][0] == BINARY && node[1][2][2][2][0] == NAME && node[1][2][2][2][1] == TEMP_DOUBLE_PTR && node[1][3][0] == SUB && node[1][3][1][0] == NAME && (node[1][3][1][1] == HEAP32 || node[1][3][1][1] == HEAPF32) && node[2][0] != SEQ) { // avoid (x, y, z) which can be used for tempDoublePtr on doubles for alignment fixes if (node[1][2][1][1] == HEAP32) { node[1][3][1][1]->setString(HEAPF32); safeCopy(node, makeAsmCoercion(node[1][3], detectType(node[2]))); return; } else { node[1][3][1][1]->setString(HEAP32); safeCopy(node, make3(BINARY, OR, node[1][3], makeNum(0))); return; } } } }); // finally, wipe out remaining ones by finding cases where all assignments to X are bitcasts, and all uses are writes to // the other heap type, then eliminate the bitcast struct BitcastData { int define_HEAP32, define_HEAPF32, use_HEAP32, use_HEAPF32, namings; bool ok; std::vector defines, uses; BitcastData() : define_HEAP32(0), define_HEAPF32(0), use_HEAP32(0), use_HEAPF32(0), namings(0), ok(false) {} }; std::unordered_map bitcastVars; traversePre(ast, [&bitcastVars](Ref node) { if (node[0] == ASSIGN && node[1]->isBool(true) && node[2][0] == NAME) { Ref value = node[3]; if (value[0] == SEQ && value[1][0] == ASSIGN && value[1][2][0] == SUB && value[1][2][1][0] == NAME && (value[1][2][1][1] == HEAP32 || value[1][2][1][1] == HEAPF32) && value[1][2][2][0] == BINARY && value[1][2][2][2][0] == NAME && value[1][2][2][2][1] == TEMP_DOUBLE_PTR) { IString name = node[2][1]->getIString(); IString heap = value[1][2][1][1]->getIString(); if (heap == HEAP32) { bitcastVars[name].define_HEAP32++; } else { assert(heap == HEAPF32); bitcastVars[name].define_HEAPF32++; } bitcastVars[name].defines.push_back(node); bitcastVars[name].ok = true; } } }); traversePre(ast, [&bitcastVars](Ref node) { Ref type = node[0]; if (type == NAME && bitcastVars[node[1]->getCString()].ok) { bitcastVars[node[1]->getCString()].namings++; } else if (type == ASSIGN && node[1]->isBool(true)) { Ref value = node[3]; if (value[0] == NAME) { IString name = value[1]->getIString(); if (bitcastVars[name].ok) { Ref target = node[2]; if (target[0] == SUB && target[1][0] == NAME && (target[1][1] == HEAP32 || target[1][1] == HEAPF32)) { if (target[1][1] == HEAP32) { bitcastVars[name].use_HEAP32++; } else { bitcastVars[name].use_HEAPF32++; } bitcastVars[name].uses.push_back(node); } } } } }); for (auto iter : bitcastVars) { const IString& v = iter.first; BitcastData& info = iter.second; // good variables define only one type, use only one type, have definitions and uses, and define as a different type than they use if (info.define_HEAP32*info.define_HEAPF32 == 0 && info.use_HEAP32*info.use_HEAPF32 == 0 && info.define_HEAP32+info.define_HEAPF32 > 0 && info.use_HEAP32+info.use_HEAPF32 > 0 && info.define_HEAP32*info.use_HEAP32 == 0 && info.define_HEAPF32*info.use_HEAPF32 == 0 && asmData.isLocal(v.c_str()) && info.namings == info.define_HEAP32+info.define_HEAPF32+info.use_HEAP32+info.use_HEAPF32) { IString& correct = info.use_HEAP32 ? HEAPF32 : HEAP32; for (auto define : info.defines) { define[3] = define[3][1][3]; if (correct == HEAP32) { define[3] = make3(BINARY, OR, define[3], makeNum(0)); } else { assert(correct == HEAPF32); define[3] = makeAsmCoercion(define[3], preciseF32 ? ASM_FLOAT : ASM_DOUBLE); } // do we want a simplifybitops on the new values here? } for (auto use : info.uses) { use[2][1][1]->setString(correct.c_str()); } AsmType correctType; switch(asmData.getType(v.c_str())) { case ASM_INT: correctType = preciseF32 ? ASM_FLOAT : ASM_DOUBLE; break; case ASM_FLOAT: case ASM_DOUBLE: correctType = ASM_INT; break; default: assert(0); } asmData.setType(v.c_str(), correctType); } } asmData.denormalize(); } }; std::function emitsBoolean = [&emitsBoolean](Ref node) { Ref type = node[0]; if (type == NUM) { return node[1]->getNumber() == 0 || node[1]->getNumber() == 1; } if (type == BINARY) return COMPARE_OPS.has(node[1]); if (type == UNARY_PREFIX) return node[1] == L_NOT; if (type == CONDITIONAL) return emitsBoolean(node[2]) && emitsBoolean(node[3]); return false; }; // expensive | expensive can be turned into expensive ? 1 : expensive, and // expensive | cheap can be turned into cheap ? 1 : expensive, // so that we can avoid the expensive computation, if it has no side effects. auto conditionalize = [&emitsBoolean](Ref ast) { traversePre(ast, [&emitsBoolean](Ref node) { const int MIN_COST = 7; if (node[0] == BINARY && (node[1] == OR || node[1] == AND) && node[3][0] != NUM && node[2][0] != NUM) { // logical operator on two non-numerical values Ref left = node[2]; Ref right = node[3]; if (!emitsBoolean(left) || !emitsBoolean(right)) return; bool leftEffects = hasSideEffects(left); bool rightEffects = hasSideEffects(right); if (leftEffects && rightEffects) return; // both must execute // canonicalize with side effects, if any, happening on the left if (rightEffects) { if (measureCost(left) < MIN_COST) return; // avoidable code is too cheap Ref temp = left; left = right; right = temp; } else if (leftEffects) { if (measureCost(right) < MIN_COST) return; // avoidable code is too cheap } else { // no side effects, reorder based on cost estimation int leftCost = measureCost(left); int rightCost = measureCost(right); if (std::max(leftCost, rightCost) < MIN_COST) return; // avoidable code is too cheap // canonicalize with expensive code on the right if (leftCost > rightCost) { Ref temp = left; left = right; right = temp; } } // worth it, perform conditionalization Ref ret; if (node[1] == OR) { ret = make3(CONDITIONAL, left, makeNum(1), right); } else { // & ret = make3(CONDITIONAL, left, right, makeNum(0)); } if (left[0] == UNARY_PREFIX && left[1] == L_NOT) { ret[1] = flipCondition(left); Ref temp = ret[2]; ret[2] = ret[3]; ret[3] = temp; } safeCopy(node, ret); return; } }); }; traverseFunctions(ast, [&](Ref func) { simplifyIntegerConversions(func); simplifyOps(func); traversePre(func, [](Ref node) { Ref ret = simplifyNotCompsDirect(node); if (ret.get() != node.get()) { // if we received a different pointer in return, then we need to copy the new value safeCopy(node, ret); } }); conditionalize(func); }); } void simplifyIfs(Ref ast) { traverseFunctions(ast, [](Ref func) { bool simplifiedAnElse = false; traversePre(func, [&simplifiedAnElse](Ref node) { // simplify if (x) { if (y) { .. } } to if (x ? y : 0) { .. } if (node[0] == IF) { Ref body = node[2]; // recurse to handle chains while (body[0] == BLOCK) { Ref stats = body[1]; if (stats->size() == 0) break; Ref other = stats->back(); if (other[0] != IF) { // our if block does not end with an if. perhaps if have an else we can flip if (node->size() > 3 && !!node[3] && node[3][0] == BLOCK) { stats = node[3][1]; if (stats->size() == 0) break; other = stats->back(); if (other[0] == IF) { // flip node node[1] = flipCondition(node[1]); node[2] = node[3]; node[3] = body; body = node[2]; } else break; } else break; } // we can handle elses, but must be fully identical if (!!node[3] || !!other[3]) { if (!node[3]) break; if (!node[3]->deepCompare(other[3])) { // the elses are different, but perhaps if we flipped a condition we can do better if (node[3]->deepCompare(other[2])) { // flip other. note that other may not have had an else! add one if so; we will eliminate such things later if (!other[3]) other[3] = makeBlock(); other[1] = flipCondition(other[1]); Ref temp = other[2]; other[2] = other[3]; other[3] = temp; } else break; } } if (stats->size() > 1) { // try to commaify - turn everything between the ifs into a comma operator inside the second if bool ok = true; for (size_t i = 0; i+1 < stats->size(); i++) { Ref curr = deStat(stats[i]); if (!commable(curr)) ok = false; } if (!ok) break; for (int i = stats->size()-2; i >= 0; i--) { Ref curr = deStat(stats[i]); other[1] = make2(SEQ, curr, other[1]); } Ref temp = makeArray(1); temp->push_back(other); stats = body[1] = temp; } if (stats->size() != 1) break; if (!!node[3]) simplifiedAnElse = true; node[1] = make3(CONDITIONAL, node[1], other[1], makeNum(0)); body = node[2] = other[2]; } } }); if (simplifiedAnElse) { // there may be fusing opportunities // we can only fuse if we remove all uses of the label. if there are // other ones - if the label check can be reached from elsewhere - // we must leave it bool abort = false; std::unordered_map labelAssigns; traversePre(func, [&labelAssigns, &abort](Ref node) { if (node[0] == ASSIGN && node[2][0] == NAME && node[2][1] == LABEL) { if (node[3][0] == NUM) { int value = node[3][1]->getInteger(); labelAssigns[value] = labelAssigns[value] + 1; } else { // label is assigned a dynamic value (like from indirectbr), we cannot do anything abort = true; } } }); if (abort) return; std::unordered_map labelChecks; traversePre(func, [&labelChecks, &abort](Ref node) { if (node[0] == BINARY && node[1] == EQ && node[2][0] == BINARY && node[2][1] == OR && node[2][2][0] == NAME && node[2][2][1] == LABEL) { if (node[3][0] == NUM) { int value = node[3][1]->getInteger(); labelChecks[value] = labelChecks[value] + 1; } else { // label is checked vs a dynamic value (like from indirectbr), we cannot do anything abort = true; } } }); if (abort) return; int inLoop = 0; // when in a loop, we do not emit label = 0; in the relooper as there is no need traversePrePost(func, [&inLoop, &labelAssigns, &labelChecks](Ref node) { if (node[0] == WHILE) inLoop++; Ref stats = getStatements(node); if (!!stats && stats->size() > 0) { for (int i = 0; i < (int)stats->size()-1; i++) { Ref pre = stats[i]; Ref post = stats[i+1]; if (pre[0] == IF && pre->size() > 3 && !!pre[3] && post[0] == IF && (post->size() <= 3 || !post[3])) { Ref postCond = post[1]; if (postCond[0] == BINARY && postCond[1] == EQ && postCond[2][0] == BINARY && postCond[2][1] == OR && postCond[2][2][0] == NAME && postCond[2][2][1] == LABEL && postCond[2][3][0] == NUM && postCond[2][3][1]->getNumber() == 0 && postCond[3][0] == NUM) { int postValue = postCond[3][1]->getInteger(); Ref preElse = pre[3]; if (labelAssigns[postValue] == 1 && labelChecks[postValue] == 1 && preElse[0] == BLOCK && preElse->size() >= 2 && preElse[1]->size() == 1) { Ref preStat = preElse[1][0]; if (preStat[0] == STAT && preStat[1][0] == ASSIGN && preStat[1][1]->isBool(true) && preStat[1][2][0] == NAME && preStat[1][2][1] == LABEL && preStat[1][3][0] == NUM && preStat[1][3][1]->getNumber() == postValue) { // Conditions match, just need to make sure the post clears label if (post[2][0] == BLOCK && post[2]->size() >= 2 && post[2][1]->size() > 0) { Ref postStat = post[2][1][0]; bool haveClear = postStat[0] == STAT && postStat[1][0] == ASSIGN && postStat[1][1]->isBool(true) && postStat[1][2][0] == NAME && postStat[1][2][1] == LABEL && postStat[1][3][0] == NUM && postStat[1][3][1]->getNumber() == 0; if (!inLoop || haveClear) { // Everything lines up, do it pre[3] = post[2]; if (haveClear) pre[3][1]->splice(0, 1); // remove the label clearing stats->splice(i+1, 1); // remove the post entirely } } } } } } } } }, [&inLoop](Ref node) { if (node[0] == WHILE) inLoop--; }); assert(inLoop == 0); } }); } void optimizeFrounds(Ref ast) { // collapse fround(fround(..)), which can happen due to elimination // also emit f0 instead of fround(0) (except in returns) int inReturn = 0; traversePrePost(ast, [&](Ref node) { if (node[0] == RETURN) { inReturn++; } }, [&](Ref node) { if (node[0] == RETURN) { inReturn--; } if (node[0] == CALL && node[1][0] == NAME && node[1][1] == MATH_FROUND) { Ref arg = node[2][0]; if (arg[0] == NUM) { if (!inReturn && arg[1]->getInteger() == 0) { safeCopy(node, makeName(F0)); } } else if (arg[0] == CALL && arg[1][0] == NAME && arg[1][1] == MATH_FROUND) { safeCopy(node, arg); } } }); } // Very simple 'registerization', coalescing of variables into a smaller number. const char* getRegPrefix(AsmType type) { switch (type) { case ASM_INT: return "i"; break; case ASM_DOUBLE: return "d"; break; case ASM_FLOAT: return "f"; break; case ASM_FLOAT32X4: return "F4"; break; case ASM_FLOAT64X2: return "F2"; break; case ASM_INT8X16: return "I16"; break; case ASM_INT16X8: return "I8"; break; case ASM_INT32X4: return "I4"; break; case ASM_NONE: return "Z"; break; default: assert(0); // type doesn't have a name yet } return nullptr; } IString getRegName(AsmType type, int num) { const char* str = getRegPrefix(type); const int size = 256; char temp[size]; int written = sprintf(temp, "%s%d", str, num); assert(written < size); temp[written] = 0; IString ret; ret.set(temp, false); return ret; } void registerize(Ref ast) { traverseFunctions(ast, [](Ref fun) { AsmData asmData(fun); // Add parameters as a first (fake) var (with assignment), so they get taken into consideration // note: params are special, they can never share a register between them (see later) Ref fake; if (!!fun[2] && fun[2]->size()) { Ref assign = makeNum(0); // TODO: will be an isEmpty here, can reuse it. fun[3]->insert(0, make1(VAR, fun[2]->map([&assign](Ref param) { return &(makeArray(2)->push_back(param).push_back(assign)); }))); } // Replace all var definitions with assignments; we will add var definitions at the top after we registerize StringSet allVars; traversePre(fun, [&](Ref node) { Ref type = node[0]; if (type == VAR) { Ref vars = node[1]->filter([](Ref varr) { return varr->size() > 1; }); if (vars->size() >= 1) { safeCopy(node, unVarify(vars)); } else { safeCopy(node, makeEmpty()); } } else if (type == NAME) { allVars.insert(node[1]->getIString()); } }); removeAllUselessSubNodes(fun); // vacuum? StringTypeMap regTypes; // reg name -> type auto getNewRegName = [&](int num, IString name) { AsmType type = asmData.getType(name); IString ret = getRegName(type, num); assert(!allVars.has(ret) || asmData.isLocal(ret)); // register must not shadow non-local name regTypes[ret] = type; return ret; }; // Find the # of uses of each variable. // While doing so, check if all a variable's uses are dominated in a simple // way by a simple assign, if so, then we can assign its register to it // just for its definition to its last use, and not to the entire toplevel loop, // we call such variables "optimizable" StringIntMap varUses; int level = 1; std::unordered_map levelDominations; // level => set of dominated variables XXX vector? StringIntMap varLevels; StringSet possibles; StringSet unoptimizables; auto purgeLevel = [&]() { // Invalidate all dominating on this level, further users make it unoptimizable for (auto name : levelDominations[level]) { varLevels[name] = 0; } levelDominations[level].clear(); level--; }; std::function possibilifier = [&](Ref node) { Ref type = node[0]; if (type == NAME) { IString name = node[1]->getIString(); if (asmData.isLocal(name)) { varUses[name]++; if (possibles.has(name) && !varLevels[name]) unoptimizables.insert(name); // used outside of simple domination } } else if (type == ASSIGN && node[1]->isBool(true)) { if (!!node[2] && node[2][0] == NAME) { IString name = node[2][1]->getIString(); // if local and not yet used, this might be optimizable if we dominate // all other uses if (asmData.isLocal(name) && !varUses[name] && !varLevels[name]) { possibles.insert(name); varLevels[name] = level; levelDominations[level].insert(name); } } } else if (CONTROL_FLOW.has(type)) { // recurse children, in the context of a loop if (type == WHILE || type == DO) { traversePrePostConditional(node[1], possibilifier, [](Ref node){}); level++; traversePrePostConditional(node[2], possibilifier, [](Ref node){}); purgeLevel(); } else if (type == FOR) { traversePrePostConditional(node[1], possibilifier, [](Ref node){}); for (int i = 2; i <= 4; i++) { level++; traversePrePostConditional(node[i], possibilifier, [](Ref node){}); purgeLevel(); } } else if (type == IF) { traversePrePostConditional(node[1], possibilifier, [](Ref node){}); level++; traversePrePostConditional(node[2], possibilifier, [](Ref node){}); purgeLevel(); if (node->size() > 3 && !!node[3]) { level++; traversePrePostConditional(node[3], possibilifier, [](Ref node){}); purgeLevel(); } } else if (type == SWITCH) { traversePrePostConditional(node[1], possibilifier, [](Ref node){}); Ref cases = node[2]; for (size_t i = 0; i < cases->size(); i++) { level++; traversePrePostConditional(cases[i][1], possibilifier, [](Ref node){}); purgeLevel(); } } else assert(0);; return false; // prevent recursion into children, which we already did } return true; }; traversePrePostConditional(fun, possibilifier, [](Ref node){}); StringSet optimizables; for (auto possible : possibles) { if (!unoptimizables.has(possible)) optimizables.insert(possible); } // Go through the function's code, assigning 'registers'. // The only tricky bit is to keep variables locked on a register through loops, // since they can potentially be returned to. Optimizable variables lock onto // loops that they enter, unoptimizable variables lock in a conservative way // into the topmost loop. // Note that we cannot lock onto a variable in a loop if it was used and free'd // before! (then they could overwrite us in the early part of the loop). For now // we just use a fresh register to make sure we avoid this, but it could be // optimized to check for safe registers (free, and not used in this loop level). StringStringMap varRegs; // maps variables to the register they will use all their life std::vector freeRegsClasses; freeRegsClasses.resize(ASM_NONE); int nextReg = 1; StringVec fullNames; fullNames.push_back(EMPTY); // names start at 1 std::vector loopRegs; // for each loop nesting level, the list of bound variables int loops = 0; // 0 is toplevel, 1 is first loop, etc StringSet activeOptimizables; StringIntMap optimizableLoops; StringSet paramRegs; // true if the register is used by a parameter (and so needs no def at start of function; also cannot // be shared with another param, each needs its own) auto decUse = [&](IString name) { if (!varUses[name]) return false; // no uses left, or not a relevant variable if (optimizables.has(name)) activeOptimizables.insert(name); IString reg = varRegs[name]; assert(asmData.isLocal(name)); StringVec& freeRegs = freeRegsClasses[asmData.getType(name)]; if (!reg) { // acquire register if (optimizables.has(name) && freeRegs.size() > 0 && !(asmData.isParam(name) && paramRegs.has(freeRegs.back()))) { // do not share registers between parameters reg = freeRegs.back(); freeRegs.pop_back(); } else { assert(fullNames.size() == nextReg); reg = getNewRegName(nextReg++, name); fullNames.push_back(reg); if (asmData.isParam(name)) paramRegs.insert(reg); } varRegs[name] = reg; } varUses[name]--; assert(varUses[name] >= 0); if (varUses[name] == 0) { if (optimizables.has(name)) activeOptimizables.erase(name); // If we are not in a loop, or we are optimizable and not bound to a loop // (we might have been in one but left it), we can free the register now. if (loops == 0 || (optimizables.has(name) && !optimizableLoops.has(name))) { // free register freeRegs.push_back(reg); } else { // when the relevant loop is exited, we will free the register int relevantLoop = optimizables.has(name) ? (optimizableLoops[name] ? optimizableLoops[name] : 1) : 1; if ((int)loopRegs.size() <= relevantLoop+1) loopRegs.resize(relevantLoop+1); loopRegs[relevantLoop].push_back(reg); } } return true; }; traversePrePost(fun, [&](Ref node) { // XXX we rely on traversal order being the same as execution order here Ref type = node[0]; if (type == NAME) { IString name = node[1]->getIString(); if (decUse(name)) { node[1]->setString(varRegs[name]); } } else if (LOOP.has(type)) { loops++; // Active optimizables lock onto this loop, if not locked onto one that encloses this one for (auto name : activeOptimizables) { if (!optimizableLoops[name]) { optimizableLoops[name] = loops; } } } }, [&](Ref node) { Ref type = node[0]; if (LOOP.has(type)) { // Free registers that were locked to this loop if ((int)loopRegs.size() > loops && loopRegs[loops].size() > 0) { for (auto loopReg : loopRegs[loops]) { freeRegsClasses[regTypes[loopReg]].push_back(loopReg); } loopRegs[loops].clear(); } loops--; } }); if (!!fun[2] && fun[2]->size()) { fun[2]->setSize(0); // clear params, we will fill with registers fun[3]->splice(0, 1); // remove fake initial var } asmData.locals.clear(); asmData.params.clear(); asmData.vars.clear(); for (int i = 1; i < nextReg; i++) { IString reg = fullNames[i]; AsmType type = regTypes[reg]; if (!paramRegs.has(reg)) { asmData.addVar(reg, type); } else { asmData.addParam(reg, type); fun[2]->push_back(makeString(reg)); } } asmData.denormalize(); }); } // Assign variables to 'registers', coalescing them onto a smaller number of shared // variables. // // This does the same job as 'registerize' above, but burns a lot more cycles trying // to reduce the total number of register variables. Key points about the operation: // // * we decompose the AST into a flow graph and perform a full liveness // analysis, to determine which variables are live at each point. // // * variables that are live concurrently are assigned to different registers. // // * variables that are linked via 'x=y' style statements are assigned the same // register if possible, so that the redundant assignment can be removed. // (e.g. assignments used to pass state around through loops). // // * any code that cannot be reached through the flow-graph is removed. // (e.g. redundant break statements like 'break L123; break;'). // // * any assignments that we can prove are not subsequently used are removed. // (e.g. unnecessary assignments to the 'label' variable). // void registerizeHarder(Ref ast) { #ifdef PROFILING clock_t tasmdata = 0; clock_t tflowgraph = 0; clock_t tlabelfix = 0; clock_t tbackflow = 0; clock_t tjuncvaruniqassign = 0; clock_t tjuncvarsort = 0; clock_t tregassign = 0; clock_t tblockproc = 0; clock_t treconstruct = 0; #endif traverseFunctions(ast, [&](Ref fun) { #ifdef PROFILING clock_t start = clock(); #endif // Do not try to process non-validating methods, like the heap replacer bool abort = false; traversePre(fun, [&abort](Ref node) { if (node[0] == NEW) abort = true; }); if (abort) return; AsmData asmData(fun); #ifdef PROFILING tasmdata += clock() - start; start = clock(); #endif // Utilities for allocating register variables. // We need distinct register pools for each type of variable. typedef std::map IntStringMap; std::vector allRegsByType; allRegsByType.resize(ASM_NONE+1); int nextReg = 1; auto createReg = [&](IString forName) { // Create a new register of type suitable for the given variable name. AsmType type = asmData.getType(forName); IntStringMap& allRegs = allRegsByType[type]; int reg = nextReg++; allRegs[reg] = getRegName(type, reg); return reg; }; // Traverse the tree in execution order and synthesize a basic flow-graph. // It's convenient to build a kind of "dual" graph where the nodes identify // the junctions between blocks at which control-flow may branch, and each // basic block is an edge connecting two such junctions. // For each junction we store: // * set of blocks that originate at the junction // * set of blocks that terminate at the junction // For each block we store: // * a single entry junction // * a single exit junction // * a 'use' and 'kill' set of names for the block // * full sequence of NAME and ASSIGN nodes in the block // * whether each such node appears as part of a larger expression // (and therefore cannot be safely eliminated) // * set of labels that can be used to jump to this block struct Junction { int id; std::set inblocks, outblocks; IOrderedStringSet live; Junction(int id_) : id(id_) {} }; struct Node { }; struct Block { int id, entry, exit; std::set labels; std::vector nodes; std::vector isexpr; StringIntMap use; StringSet kill; StringStringMap link; StringIntMap lastUseLoc; StringIntMap firstDeadLoc; StringIntMap firstKillLoc; StringIntMap lastKillLoc; Block() : id(-1), entry(-1), exit(-1) {} }; struct ContinueBreak { int co, br; ContinueBreak() : co(-1), br(-1) {} ContinueBreak(int co_, int br_) : co(co_), br(br_) {} }; typedef std::unordered_map LabelState; std::vector junctions; std::vector blocks; int currEntryJunction = -1; Block* nextBasicBlock = nullptr; int isInExpr = 0; std::vector activeLabels; activeLabels.resize(1); IString nextLoopLabel; const int ENTRY_JUNCTION = 0; const int EXIT_JUNCTION = 1; const int ENTRY_BLOCK = 0; auto addJunction = [&]() { // Create a new junction, without inserting it into the graph. // This is useful for e.g. pre-allocating an exit node. int id = junctions.size(); junctions.push_back(Junction(id)); return id; }; std::function joinJunction; auto markJunction = [&](int id) { // Mark current traversal location as a junction. // This makes a new basic block exiting at this position. if (id < 0) { id = addJunction(); } joinJunction(id, true); return id; }; auto setJunction = [&](int id, bool force) { // Set the next entry junction to the given id. // This can be used to enter at a previously-declared point. // You can't return to a junction with no incoming blocks // unless the 'force' parameter is specified. assert(nextBasicBlock->nodes.size() == 0); // refusing to abandon an in-progress basic block if (force || junctions[id].inblocks.size() > 0) { currEntryJunction = id; } else { currEntryJunction = -1; } }; joinJunction = [&](int id, bool force) { // Complete the pending basic block by exiting at this position. // This can be used to exit at a previously-declared point. if (currEntryJunction >= 0) { assert(nextBasicBlock); nextBasicBlock->id = blocks.size(); nextBasicBlock->entry = currEntryJunction; nextBasicBlock->exit = id; junctions[currEntryJunction].outblocks.insert(nextBasicBlock->id); junctions[id].inblocks.insert(nextBasicBlock->id); blocks.push_back(nextBasicBlock); } nextBasicBlock = new Block(); setJunction(id, force); return id; }; auto pushActiveLabels = [&](int onContinue, int onBreak) { // Push the target junctions for continuing/breaking a loop. // This should be called before traversing into a loop. assert(activeLabels.size() > 0); LabelState& prevLabels = activeLabels.back(); LabelState newLabels = prevLabels; newLabels[EMPTY] = ContinueBreak(onContinue, onBreak); if (!!nextLoopLabel) { newLabels[nextLoopLabel] = ContinueBreak(onContinue, onBreak); nextLoopLabel = EMPTY; } // An unlabelled CONTINUE should jump to innermost loop, // ignoring any nested SWITCH statements. if (onContinue < 0 && prevLabels.count(EMPTY) > 0) { newLabels[EMPTY].co = prevLabels[EMPTY].co; } activeLabels.push_back(newLabels); }; auto popActiveLabels = [&]() { // Pop the target junctions for continuing/breaking a loop. // This should be called after traversing into a loop. activeLabels.pop_back(); }; auto markNonLocalJump = [&](IString type, IString label) { // Complete a block via RETURN, BREAK or CONTINUE. // This joins the targetted junction and then sets the current junction to null. // Any code traversed before we get back to an existing junction is dead code. if (type == RETURN) { joinJunction(EXIT_JUNCTION, false); } else { assert(activeLabels.size() > 0); assert(activeLabels.back().count(label) > 0); // 'jump to unknown label'); auto targets = activeLabels.back()[label]; if (type == CONTINUE) { joinJunction(targets.co, false); } else if (type == BREAK) { joinJunction(targets.br, false); } else { assert(0); // 'unknown jump node type'); } } currEntryJunction = -1; }; auto addUseNode = [&](Ref node) { // Mark a use of the given name node in the current basic block. assert(node[0] == NAME); // 'not a use node'); IString name = node[1]->getIString(); if (asmData.isLocal(name)) { nextBasicBlock->nodes.push_back(node); nextBasicBlock->isexpr.push_back(isInExpr != 0); if (nextBasicBlock->kill.count(name) == 0) { nextBasicBlock->use[name] = 1; } } }; auto addKillNode = [&](Ref node) { // Mark an assignment to the given name node in the current basic block. assert(node[0] == ASSIGN); //, 'not a kill node'); assert(node[1]->isBool(true)); // 'not a kill node'); assert(node[2][0] == NAME); //, 'not a kill node'); IString name = node[2][1]->getIString(); if (asmData.isLocal(name)) { nextBasicBlock->nodes.push_back(node); nextBasicBlock->isexpr.push_back(isInExpr != 0); nextBasicBlock->kill.insert(name); } }; std::function lookThroughCasts = [&](Ref node) { // Look through value-preserving casts, like "x | 0" => "x" if (node[0] == BINARY && node[1] == OR) { if (node[3][0] == NUM && node[3][1]->getNumber() == 0) { return lookThroughCasts(node[2]); } } return node; }; auto addBlockLabel = [&](Ref node) { assert(nextBasicBlock->nodes.size() == 0); // 'cant add label to an in-progress basic block') if (node[0] == NUM) { nextBasicBlock->labels.insert(node[1]->getInteger()); } }; auto isTrueNode = [&](Ref node) { // Check if the given node is statically truthy. return (node[0] == NUM && node[1]->getNumber() != 0); }; auto isFalseNode = [&](Ref node) { // Check if the given node is statically falsy. return (node[0] == NUM && node[1]->getNumber() == 0); }; std::function buildFlowGraph = [&](Ref node) { // Recursive function to build up the flow-graph. // It walks the tree in execution order, calling the above state-management // functions at appropriate points in the traversal. Ref type = node[0]; // Any code traversed without an active entry junction must be dead, // as the resulting block could never be entered. Let's remove it. if (currEntryJunction < 0 && junctions.size() > 0) { safeCopy(node, makeEmpty()); return; } // Traverse each node type according to its particular control-flow semantics. // TODO: switchify this if (type == DEFUN) { int jEntry = markJunction(-1); assert(jEntry == ENTRY_JUNCTION); int jExit = addJunction(); assert(jExit == EXIT_JUNCTION); for (size_t i = 0; i < node[3]->size(); i++) { buildFlowGraph(node[3][i]); } joinJunction(jExit, false); } else if (type == IF) { isInExpr++; buildFlowGraph(node[1]); isInExpr--; int jEnter = markJunction(-1); int jExit = addJunction(); if (!!node[2]) { // Detect and mark "if (label == N) { }". if (node[1][0] == BINARY && node[1][1] == EQ) { Ref lhs = lookThroughCasts(node[1][2]); if (lhs[0] == NAME && lhs[1] == LABEL) { addBlockLabel(lookThroughCasts(node[1][3])); } } buildFlowGraph(node[2]); } joinJunction(jExit, false); setJunction(jEnter, false); if (node->size() > 3 && !!node[3]) { buildFlowGraph(node[3]); } joinJunction(jExit, false); } else if (type == CONDITIONAL) { isInExpr++; // If the conditional has no side-effects, we can treat it as a single // block, which might open up opportunities to remove it entirely. if (!hasSideEffects(node)) { buildFlowGraph(node[1]); if (!!node[2]) { buildFlowGraph(node[2]); } if (!!node[3]) { buildFlowGraph(node[3]); } } else { buildFlowGraph(node[1]); int jEnter = markJunction(-1); int jExit = addJunction(); if (!!node[2]) { buildFlowGraph(node[2]); } joinJunction(jExit, false); setJunction(jEnter, false); if (!!node[3]) { buildFlowGraph(node[3]); } joinJunction(jExit, false); } isInExpr--; } else if (type == WHILE) { // Special-case "while (1) {}" to use fewer junctions, // since emscripten generates a lot of these. if (isTrueNode(node[1])) { int jLoop = markJunction(-1); int jExit = addJunction(); pushActiveLabels(jLoop, jExit); buildFlowGraph(node[2]); popActiveLabels(); joinJunction(jLoop, false); setJunction(jExit, false); } else { int jCond = markJunction(-1); int jLoop = addJunction(); int jExit = addJunction(); isInExpr++; buildFlowGraph(node[1]); isInExpr--; joinJunction(jLoop, false); pushActiveLabels(jCond, jExit); buildFlowGraph(node[2]); popActiveLabels(); joinJunction(jCond, false); // An empty basic-block linking condition exit to loop exit. setJunction(jLoop, false); joinJunction(jExit, false); } } else if (type == DO) { // Special-case "do {} while (1)" and "do {} while (0)" to use // fewer junctions, since emscripten generates a lot of these. if (isFalseNode(node[1])) { int jExit = addJunction(); pushActiveLabels(jExit, jExit); buildFlowGraph(node[2]); popActiveLabels(); joinJunction(jExit, false); } else if (isTrueNode(node[1])) { int jLoop = markJunction(-1); int jExit = addJunction(); pushActiveLabels(jLoop, jExit); buildFlowGraph(node[2]); popActiveLabels(); joinJunction(jLoop, false); setJunction(jExit, false); } else { int jLoop = markJunction(-1); int jCond = addJunction(); int jCondExit = addJunction(); int jExit = addJunction(); pushActiveLabels(jCond, jExit); buildFlowGraph(node[2]); popActiveLabels(); joinJunction(jCond, false); isInExpr++; buildFlowGraph(node[1]); isInExpr--; joinJunction(jCondExit, false); joinJunction(jLoop, false); setJunction(jCondExit, false); joinJunction(jExit, false); } } else if (type == FOR) { int jTest = addJunction(); int jBody = addJunction(); int jStep = addJunction(); int jExit = addJunction(); buildFlowGraph(node[1]); joinJunction(jTest, false); isInExpr++; buildFlowGraph(node[2]); isInExpr--; joinJunction(jBody, false); pushActiveLabels(jStep, jExit); buildFlowGraph(node[4]); popActiveLabels(); joinJunction(jStep, false); buildFlowGraph(node[3]); joinJunction(jTest, false); setJunction(jBody, false); joinJunction(jExit, false); } else if (type == LABEL) { assert(BREAK_CAPTURERS.has(node[2][0])); // 'label on non-loop, non-switch statement') nextLoopLabel = node[1]->getIString(); buildFlowGraph(node[2]); } else if (type == SWITCH) { // Emscripten generates switch statements of a very limited // form: all case clauses are numeric literals, and all // case bodies end with a (maybe implicit) break. So it's // basically equivalent to a multi-way IF statement. isInExpr++; buildFlowGraph(node[1]); isInExpr--; Ref condition = lookThroughCasts(node[1]); int jCheckExit = markJunction(-1); int jExit = addJunction(); pushActiveLabels(-1, jExit); bool hasDefault = false; for (size_t i = 0; i < node[2]->size(); i++) { setJunction(jCheckExit, false); // All case clauses are either 'default' or a numeric literal. if (!node[2][i][0]) { hasDefault = true; } else { // Detect switches dispatching to labelled blocks. if (condition[0] == NAME && condition[1] == LABEL) { addBlockLabel(lookThroughCasts(node[2][i][0])); } } for (size_t j = 0; j < node[2][i][1]->size(); j++) { buildFlowGraph(node[2][i][1][j]); } // Control flow will never actually reach the end of the case body. // If there's live code here, assume it jumps to case exit. if (currEntryJunction >= 0 && nextBasicBlock->nodes.size() > 0) { if (!!node[2][i][0]) { markNonLocalJump(RETURN, EMPTY); } else { joinJunction(jExit, false); } } } // If there was no default case, we also need an empty block // linking straight from the test evaluation to the exit. if (!hasDefault) { setJunction(jCheckExit, false); } joinJunction(jExit, false); popActiveLabels(); } else if (type == RETURN) { if (!!node[1]) { isInExpr++; buildFlowGraph(node[1]); isInExpr--; } markNonLocalJump(type->getIString(), EMPTY); } else if (type == BREAK || type == CONTINUE) { markNonLocalJump(type->getIString(), !!node[1] ? node[1]->getIString() : EMPTY); } else if (type == ASSIGN) { isInExpr++; buildFlowGraph(node[3]); isInExpr--; if (node[1]->isBool(true) && node[2][0] == NAME) { addKillNode(node); } else { buildFlowGraph(node[2]); } } else if (type == NAME) { addUseNode(node); } else if (type == BLOCK || type == TOPLEVEL) { if (!!node[1]) { for (size_t i = 0; i < node[1]->size(); i++) { buildFlowGraph(node[1][i]); } } } else if (type == STAT) { buildFlowGraph(node[1]); } else if (type == UNARY_PREFIX || type == UNARY_POSTFIX) { isInExpr++; buildFlowGraph(node[2]); isInExpr--; } else if (type == BINARY) { isInExpr++; buildFlowGraph(node[2]); buildFlowGraph(node[3]); isInExpr--; } else if (type == CALL) { isInExpr++; buildFlowGraph(node[1]); if (!!node[2]) { for (size_t i = 0; i < node[2]->size(); i++) { buildFlowGraph(node[2][i]); } } isInExpr--; // If the call is statically known to throw, // treat it as a jump to function exit. if (!isInExpr && node[1][0] == NAME) { if (FUNCTIONS_THAT_ALWAYS_THROW.has(node[1][1])) { markNonLocalJump(RETURN, EMPTY); } } } else if (type == SEQ || type == SUB) { isInExpr++; buildFlowGraph(node[1]); buildFlowGraph(node[2]); isInExpr--; } else if (type == DOT || type == THROW) { isInExpr++; buildFlowGraph(node[1]); isInExpr--; } else if (type == NUM || type == STRING || type == VAR) { // nada } else { assert(0); // 'unsupported node type: ' + type); } }; buildFlowGraph(fun); #ifdef PROFILING tflowgraph += clock() - start; start = clock(); #endif assert(junctions[ENTRY_JUNCTION].inblocks.size() == 0); // 'function entry must have no incoming blocks'); assert(junctions[EXIT_JUNCTION].outblocks.size() == 0); // 'function exit must have no outgoing blocks'); assert(blocks[ENTRY_BLOCK]->entry == ENTRY_JUNCTION); //, 'block zero must be the initial block'); // Fix up implicit jumps done by assigning to the LABEL variable. // If a block ends with an assignment to LABEL and there's another block // with that value of LABEL as precondition, we tweak the flow graph so // that the former jumps straight to the later. std::map labelledBlocks; typedef std::pair Jump; std::vector labelledJumps; for (size_t i = 0; i < blocks.size(); i++) { Block* block = blocks[i]; // Does it have any labels as preconditions to its entry? for (auto labelVal : block->labels) { // If there are multiple blocks with the same label, all bets are off. // This seems to happen sometimes for short blocks that end with a return. // TODO: it should be safe to merge the duplicates if they're identical. if (labelledBlocks.count(labelVal) > 0) { labelledBlocks.clear(); labelledJumps.clear(); goto AFTER_FINDLABELLEDBLOCKS; } labelledBlocks[labelVal] = block; } // Does it assign a specific label value at exit? if (block->kill.has(LABEL)) { Ref finalNode = block->nodes.back(); if (finalNode[0] == ASSIGN && finalNode[2][1] == LABEL) { // If labels are computed dynamically then all bets are off. // This can happen due to indirect branching in llvm output. if (finalNode[3][0] != NUM) { labelledBlocks.clear(); labelledJumps.clear(); goto AFTER_FINDLABELLEDBLOCKS; } labelledJumps.push_back(Jump(finalNode[3][1], block)); } else { // If label is assigned a non-zero value elsewhere in the block // then all bets are off. This can happen e.g. due to outlining // saving/restoring label to the stack. for (size_t j = 0; j < block->nodes.size() - 1; j++) { if (block->nodes[j][0] == ASSIGN && block->nodes[j][2][1] == LABEL) { if (block->nodes[j][3][0] != NUM || block->nodes[j][3][1]->getNumber() != 0) { labelledBlocks.clear(); labelledJumps.clear(); goto AFTER_FINDLABELLEDBLOCKS; } } } } } } AFTER_FINDLABELLEDBLOCKS: for (auto labelVal : labelledBlocks) { Block* block = labelVal.second; // Disconnect it from the graph, and create a // new junction for jumps targetting this label. junctions[block->entry].outblocks.erase(block->id); block->entry = addJunction(); junctions[block->entry].outblocks.insert(block->id); // Add a fake use of LABEL to keep it alive in predecessor. block->use[LABEL] = 1; block->nodes.insert(block->nodes.begin(), makeName(LABEL)); block->isexpr.insert(block->isexpr.begin(), 1); } for (size_t i = 0; i < labelledJumps.size(); i++) { auto labelVal = labelledJumps[i].first; auto block = labelledJumps[i].second; Block* targetBlock = labelledBlocks[labelVal->getInteger()]; if (targetBlock) { // Redirect its exit to entry of the target block. junctions[block->exit].inblocks.erase(block->id); block->exit = targetBlock->entry; junctions[block->exit].inblocks.insert(block->id); } } #ifdef PROFILING tlabelfix += clock() - start; start = clock(); #endif // Do a backwards data-flow analysis to determine the set of live // variables at each junction, and to use this information to eliminate // any unused assignments. // We run two nested phases. The inner phase builds the live set for each // junction. The outer phase uses this to try to eliminate redundant // stores in each basic block, which might in turn affect liveness info. auto analyzeJunction = [&](Junction& junc) { // Update the live set for this junction. IOrderedStringSet live; for (auto b : junc.outblocks) { Block* block = blocks[b]; IOrderedStringSet& liveSucc = junctions[block->exit].live; for (auto name : liveSucc) { if (!block->kill.has(name)) { live.insert(name); } } for (auto name : block->use) { live.insert(name.first); } } junc.live = live; }; auto analyzeBlock = [&](Block* block) { // Update information about the behaviour of the block. // This includes the standard 'use' and 'kill' information, // plus a 'link' set naming values that flow through from entry // to exit, possibly changing names via simple 'x=y' assignments. // As we go, we eliminate assignments if the variable is not // subsequently used. auto live = junctions[block->exit].live; StringIntMap use; StringSet kill; StringStringMap link; StringIntMap lastUseLoc; StringIntMap firstDeadLoc; StringIntMap firstKillLoc; StringIntMap lastKillLoc; for (auto name : live) { link[name] = name; lastUseLoc[name] = block->nodes.size(); firstDeadLoc[name] = block->nodes.size(); } for (int j = block->nodes.size() - 1; j >= 0 ; j--) { Ref node = block->nodes[j]; if (node[0] == NAME) { IString name = node[1]->getIString(); live.insert(name); use[name] = j; if (lastUseLoc.count(name) == 0) { lastUseLoc[name] = j; firstDeadLoc[name] = j; } } else { IString name = node[2][1]->getIString(); // We only keep assignments if they will be subsequently used. if (live.has(name)) { kill.insert(name); use.erase(name); live.erase(name); firstDeadLoc[name] = j; firstKillLoc[name] = j; if (lastUseLoc.count(name) == 0) { lastUseLoc[name] = j; } if (lastKillLoc.count(name) == 0) { lastKillLoc[name] = j; } // If it's an "x=y" and "y" is not live, then we can create a // flow-through link from "y" to "x". If not then there's no // flow-through link for "x". if (link.has(name)) { IString oldLink = link[name]; link.erase(name); if (node[3][0] == NAME) { if (asmData.isLocal(node[3][1]->getIString())) { link[node[3][1]->getIString()] = oldLink; } } } } else { // The result of this assignment is never used, so delete it. // We may need to keep the RHS for its value or its side-effects. auto removeUnusedNodes = [&](int j, int n) { for (auto pair : lastUseLoc) { pair.second -= n; } for (auto pair : firstKillLoc) { pair.second -= n; } for (auto pair : lastKillLoc) { pair.second -= n; } for (auto pair : firstDeadLoc) { pair.second -= n; } block->nodes.erase(block->nodes.begin() + j, block->nodes.begin() + j + n); block->isexpr.erase(block->isexpr.begin() + j, block->isexpr.begin() + j + n); }; if (block->isexpr[j] || hasSideEffects(node[3])) { safeCopy(node, node[3]); removeUnusedNodes(j, 1); } else { int numUsesInExpr = 0; traversePre(node[3], [&](Ref node) { if (node[0] == NAME && asmData.isLocal(node[1]->getIString())) { numUsesInExpr++; } }); safeCopy(node, makeEmpty()); j = j - numUsesInExpr; removeUnusedNodes(j, 1 + numUsesInExpr); } } } } // XXX efficiency block->use = use; block->kill = kill; block->link = link; block->lastUseLoc = lastUseLoc; block->firstDeadLoc = firstDeadLoc; block->firstKillLoc = firstKillLoc; block->lastKillLoc = lastKillLoc; }; // Ordered map to work in approximate reverse order of junction appearance std::set jWorkSet; std::set bWorkSet; // Be sure to visit every junction at least once. // This avoids missing some vars because we disconnected them // when processing the labelled jumps. for (size_t i = EXIT_JUNCTION; i < junctions.size(); i++) { jWorkSet.insert(i); for (auto b : junctions[i].inblocks) { bWorkSet.insert(b); } } // Exit junction never has any live variable changes to propagate jWorkSet.erase(EXIT_JUNCTION); do { // Iterate on just the junctions until we get stable live sets. // The first run of this loop will grow the live sets to their maximal size. // Subsequent runs will shrink them based on eliminated in-block uses. while (jWorkSet.size() > 0) { auto last = jWorkSet.end(); --last; Junction& junc = junctions[*last]; jWorkSet.erase(last); IOrderedStringSet oldLive = junc.live; // copy it here, to check for changes later analyzeJunction(junc); if (oldLive != junc.live) { // Live set changed, updated predecessor blocks and junctions. for (auto b : junc.inblocks) { bWorkSet.insert(b); jWorkSet.insert(blocks[b]->entry); } } } // Now update the blocks based on the calculated live sets. while (bWorkSet.size() > 0) { auto last = bWorkSet.end(); --last; Block* block = blocks[*last]; bWorkSet.erase(last); auto oldUse = block->use; analyzeBlock(block); if (oldUse != block->use) { // The use set changed, re-process the entry junction. jWorkSet.insert(block->entry); } } } while (jWorkSet.size() > 0); #ifdef PROFILING tbackflow += clock() - start; start = clock(); #endif // Insist that all function parameters are alive at function entry. // This ensures they will be assigned independent registers, even // if they happen to be unused. for (auto name : asmData.params) { junctions[ENTRY_JUNCTION].live.insert(name); } // For variables that are live at one or more junctions, we assign them // a consistent register for the entire scope of the function. Find pairs // of variable that cannot use the same register (the "conflicts") as well // as pairs of variables that we'd like to have share the same register // (the "links"). struct JuncVar { std::vector conf; IOrderedStringSet link; std::unordered_set excl; int reg; bool used; JuncVar() : reg(-1), used(false) {} }; size_t numLocals = asmData.locals.size(); std::unordered_map nameToNum; std::vector numToName; nameToNum.reserve(numLocals); numToName.reserve(numLocals); for (auto kv : asmData.locals) { nameToNum[kv.first] = numToName.size(); numToName.push_back(kv.first); } std::vector juncVars(numLocals); for (Junction& junc : junctions) { for (IString name : junc.live) { JuncVar& jVar = juncVars[nameToNum[name]]; jVar.used = true; jVar.conf.assign(numLocals, false); } } std::map> possibleBlockConflictsMap; std::vector>> possibleBlockConflicts; std::unordered_map> possibleBlockLinks; possibleBlockConflicts.reserve(numLocals); possibleBlockLinks.reserve(numLocals); for (Junction& junc : junctions) { // Pre-compute the possible conflicts and links for each block rather // than checking potentially impossible options for each var possibleBlockConflictsMap.clear(); possibleBlockConflicts.clear(); possibleBlockLinks.clear(); for (auto b : junc.outblocks) { Block* block = blocks[b]; Junction& jSucc = junctions[block->exit]; for (auto name : jSucc.live) { possibleBlockConflictsMap[name].push_back(block); } for (auto name_linkname : block->link) { if (name_linkname.first != name_linkname.second) { possibleBlockLinks[name_linkname.first].push_back(block); } } } // Find the live variables in this block, mark them as unnecessary to // check for conflicts (we mark all live vars as conflicting later) std::vector liveJVarNums; liveJVarNums.reserve(junc.live.size()); for (auto name : junc.live) { size_t jVarNum = nameToNum[name]; liveJVarNums.push_back(jVarNum); possibleBlockConflictsMap.erase(name); } // Extract just the variables we might want to check for conflicts for (auto kv : possibleBlockConflictsMap) { possibleBlockConflicts.push_back(std::make_pair(nameToNum[kv.first], kv.second)); } for (size_t jVarNum : liveJVarNums) { JuncVar& jvar = juncVars[jVarNum]; IString name = numToName[jVarNum]; // It conflicts with all other names live at this junction. for (size_t liveJVarNum : liveJVarNums) { jvar.conf[liveJVarNum] = true; } jvar.conf[jVarNum] = false; // except for itself, of course // It conflicts with any output vars of successor blocks, // if they're assigned before it goes dead in that block. for (auto jvarnum_blocks : possibleBlockConflicts) { size_t otherJVarNum = jvarnum_blocks.first; IString otherName = numToName[otherJVarNum]; for (auto block : jvarnum_blocks.second) { if (block->lastKillLoc[otherName] < block->firstDeadLoc[name]) { jvar.conf[otherJVarNum] = true; juncVars[otherJVarNum].conf[jVarNum] = true; break; } } } // It links with any linkages in the outgoing blocks. for (auto block: possibleBlockLinks[name]) { IString linkName = block->link[name]; jvar.link.insert(linkName); juncVars[nameToNum[linkName]].link.insert(name); } } } #ifdef PROFILING tjuncvaruniqassign += clock() - start; start = clock(); #endif // Attempt to sort the junction variables to heuristically reduce conflicts. // Simple starting point: handle the most-conflicted variables first. // This seems to work pretty well. std::vector sortedJVarNums; sortedJVarNums.reserve(juncVars.size()); std::vector jVarConfCounts(numLocals); for (size_t jVarNum = 0; jVarNum < juncVars.size(); jVarNum++) { JuncVar& jVar = juncVars[jVarNum]; if (!jVar.used) continue; jVarConfCounts[jVarNum] = std::count(jVar.conf.begin(), jVar.conf.end(), true); sortedJVarNums.push_back(jVarNum); } std::sort(sortedJVarNums.begin(), sortedJVarNums.end(), [&](const size_t vi1, const size_t vi2) { // sort by # of conflicts if (jVarConfCounts[vi1] < jVarConfCounts[vi2]) return true; if (jVarConfCounts[vi1] == jVarConfCounts[vi2]) return numToName[vi1] < numToName[vi2]; return false; }); #ifdef PROFILING tjuncvarsort += clock() - start; start = clock(); #endif // We can now assign a register to each junction variable. // Process them in order, trying available registers until we find // one that works, and propagating the choice to linked/conflicted // variables as we go. std::function tryAssignRegister = [&](IString name, int reg) { // Try to assign the given register to the given variable, // and propagate that choice throughout the graph. // Returns true if successful, false if there was a conflict. JuncVar& jv = juncVars[nameToNum[name]]; if (jv.reg > 0) { return jv.reg == reg; } if (jv.excl.count(reg) > 0) { return false; } jv.reg = reg; // Exclude use of this register at all conflicting variables. for (size_t confNameNum = 0; confNameNum < jv.conf.size(); confNameNum++) { if (jv.conf[confNameNum]) { juncVars[confNameNum].excl.insert(reg); } } // Try to propagate it into linked variables. // It's not an error if we can't. for (auto linkName : jv.link) { tryAssignRegister(linkName, reg); } return true; }; for (size_t jVarNum : sortedJVarNums) { // It may already be assigned due to linked-variable propagation. if (juncVars[jVarNum].reg > 0) { continue; } IString name = numToName[jVarNum]; // Try to use existing registers first. auto& allRegs = allRegsByType[asmData.getType(name)]; bool moar = false; for (auto reg : allRegs) { if (tryAssignRegister(name, reg.first)) { moar = true; break; } } if (moar) continue; // They're all taken, create a new one. tryAssignRegister(name, createReg(name)); } #ifdef PROFILING tregassign += clock() - start; start = clock(); #endif // Each basic block can now be processed in turn. // There may be internal-use-only variables that still need a register // assigned, but they can be treated just for this block. We know // that all inter-block variables are in a good state thanks to // junction variable consistency. for (size_t i = 0; i < blocks.size(); i++) { Block* block = blocks[i]; if (block->nodes.size() == 0) continue; Junction& jEnter = junctions[block->entry]; Junction& jExit = junctions[block->exit]; // Mark the point at which each input reg becomes dead. // Variables alive before this point must not be assigned // to that register. StringSet inputVars; std::unordered_map inputDeadLoc; std::unordered_map inputVarsByReg; for (auto name : jExit.live) { if (!block->kill.has(name)) { inputVars.insert(name); int reg = juncVars[nameToNum[name]].reg; assert(reg > 0); // 'input variable doesnt have a register'); inputDeadLoc[reg] = block->firstDeadLoc[name]; inputVarsByReg[reg] = name; } } for (auto pair : block->use) { IString name = pair.first; if (!inputVars.has(name)) { inputVars.insert(name); int reg = juncVars[nameToNum[name]].reg; assert(reg > 0); // 'input variable doesnt have a register'); inputDeadLoc[reg] = block->firstDeadLoc[name]; inputVarsByReg[reg] = name; } } // TODO assert(setSize(setSub(inputVars, jEnter.live)) == 0); // Scan through backwards, allocating registers on demand. // Be careful to avoid conflicts with the input registers. // We consume free registers in last-used order, which helps to // eliminate "x=y" assignments that are the last use of "y". StringIntMap assignedRegs; auto freeRegsByTypePre = allRegsByType; // XXX copy // Begin with all live vars assigned per the exit junction. for (auto name : jExit.live) { int reg = juncVars[nameToNum[name]].reg; assert(reg > 0); // 'output variable doesnt have a register'); assignedRegs[name] = reg; freeRegsByTypePre[asmData.getType(name)].erase(reg); // XXX assert? } std::vector> freeRegsByType; freeRegsByType.resize(freeRegsByTypePre.size()); for (size_t j = 0; j < freeRegsByTypePre.size(); j++) { for (auto pair : freeRegsByTypePre[j]) { freeRegsByType[j].push_back(pair.first); } } // Scan through the nodes in sequence, modifying each node in-place // and grabbing/freeing registers as needed. std::vector> maybeRemoveNodes; for (int j = block->nodes.size() - 1; j >= 0; j--) { Ref node = block->nodes[j]; IString name = (node[0] == ASSIGN ? node[2][1] : node[1])->getIString(); IntStringMap& allRegs = allRegsByType[asmData.getType(name)]; std::vector& freeRegs = freeRegsByType[asmData.getType(name)]; int reg = assignedRegs[name]; // XXX may insert a zero if (node[0] == NAME) { // A use. Grab a register if it doesn't have one. if (reg <= 0) { if (inputVars.has(name) && j <= block->firstDeadLoc[name]) { // Assignment to an input variable, must use pre-assigned reg. reg = juncVars[nameToNum[name]].reg; assignedRegs[name] = reg; for (int k = freeRegs.size() - 1; k >= 0; k--) { if (freeRegs[k] == reg) { freeRegs.erase(freeRegs.begin() + k); break; } } } else { // Try to use one of the existing free registers. // It must not conflict with an input register. for (int k = freeRegs.size() - 1; k >= 0; k--) { reg = freeRegs[k]; // Check for conflict with input registers. if (inputDeadLoc.count(reg) > 0) { if (block->firstKillLoc[name] <= inputDeadLoc[reg]) { if (name != inputVarsByReg[reg]) { continue; } } } // Found one! assignedRegs[name] = reg; assert(reg > 0); freeRegs.erase(freeRegs.begin() + k); break; } // If we didn't find a suitable register, create a new one. if (assignedRegs[name] <= 0) { reg = createReg(name); assignedRegs[name] = reg; } } } node[1]->setString(allRegs[reg]); } else { // A kill. This frees the assigned register. assert(reg > 0); //, 'live variable doesnt have a reg?') node[2][1]->setString(allRegs[reg]); freeRegs.push_back(reg); assignedRegs.erase(name); if (node[3][0] == NAME && asmData.isLocal(node[3][1]->getIString())) { maybeRemoveNodes.push_back(std::pair(j, node)); } } } // If we managed to create any "x=x" assignments, remove them. for (size_t j = 0; j < maybeRemoveNodes.size(); j++) { Ref node = maybeRemoveNodes[j].second; if (node[2][1] == node[3][1]) { if (block->isexpr[maybeRemoveNodes[j].first]) { safeCopy(node, node[2]); } else { safeCopy(node, makeEmpty()); } } } } #ifdef PROFILING tblockproc += clock() - start; start = clock(); #endif // Assign registers to function params based on entry junction StringSet paramRegs; if (!!fun[2]) { for (size_t i = 0; i < fun[2]->size(); i++) { auto& allRegs = allRegsByType[asmData.getType(fun[2][i]->getIString())]; fun[2][i]->setString(allRegs[juncVars[nameToNum[fun[2][i]->getIString()]].reg]); paramRegs.insert(fun[2][i]->getIString()); } } // That's it! // Re-construct the function with appropriate variable definitions. asmData.locals.clear(); asmData.params.clear(); asmData.vars.clear(); for (int i = 1; i < nextReg; i++) { for (size_t type = 0; type < allRegsByType.size(); type++) { if (allRegsByType[type].count(i) > 0) { IString reg = allRegsByType[type][i]; if (!paramRegs.has(reg)) { asmData.addVar(reg, intToAsmType(type)); } else { asmData.addParam(reg, intToAsmType(type)); } break; } } } asmData.denormalize(); removeAllUselessSubNodes(fun); // XXX vacuum? vacuum(fun); #ifdef PROFILING treconstruct += clock() - start; start = clock(); #endif }); #ifdef PROFILING errv(" RH stages: a:%li fl:%li lf:%li bf:%li jvua:%li jvs:%li jra:%li bp:%li r:%li", tasmdata, tflowgraph, tlabelfix, tbackflow, tjuncvaruniqassign, tjuncvarsort, tregassign, tblockproc, treconstruct); #endif } // end registerizeHarder // minified names generation StringSet RESERVED("do if in for new try var env let"); const char *VALID_MIN_INITS = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ_$"; const char *VALID_MIN_LATERS = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ_$0123456789"; StringVec minifiedNames; std::vector minifiedState; void ensureMinifiedNames(int n) { // make sure the nth index in minifiedNames exists. done 100% deterministically static int VALID_MIN_INITS_LEN = strlen(VALID_MIN_INITS); static int VALID_MIN_LATERS_LEN = strlen(VALID_MIN_LATERS); while ((int)minifiedNames.size() < n+1) { // generate the current name std::string name; name += VALID_MIN_INITS[minifiedState[0]]; for (size_t i = 1; i < minifiedState.size(); i++) { name += VALID_MIN_LATERS[minifiedState[i]]; } IString str(strdupe(name.c_str())); // leaked! if (!RESERVED.has(str)) minifiedNames.push_back(str); // increment the state size_t i = 0; while (1) { minifiedState[i]++; if (minifiedState[i] < (i == 0 ? VALID_MIN_INITS_LEN : VALID_MIN_LATERS_LEN)) break; // overflow minifiedState[i] = 0; i++; if (i == minifiedState.size()) minifiedState.push_back(-1); // will become 0 after increment in next loop head } } } void minifyLocals(Ref ast) { assert(!!extraInfo); IString GLOBALS("globals"); assert(extraInfo->has(GLOBALS)); Ref globals = extraInfo[GLOBALS]; if (minifiedState.size() == 0) minifiedState.push_back(0); traverseFunctions(ast, [&globals](Ref fun) { // Analyse the asmjs to figure out local variable names, // but operate on the original source tree so that we don't // miss any global names in e.g. variable initializers. AsmData asmData(fun); asmData.denormalize(); // TODO: we can avoid modifying at all here - we just need a list of local vars+params StringStringMap newNames; StringSet usedNames; // Find all the globals that we need to minify using // pre-assigned names. Don't actually minify them yet // as that might interfere with local variable names. traversePre(fun, [&](Ref node) { if (node[0] == NAME) { IString name = node[1]->getIString(); if (!asmData.isLocal(name)) { if (globals->has(name)) { IString minified = globals[name]->getIString(); assert(!!minified); newNames[name] = minified; usedNames.insert(minified); } } } }); // The first time we encounter a local name, we assign it a // minified name that's not currently in use. Allocating on // demand means they're processed in a predictable order, // which is very handy for testing/debugging purposes. int nextMinifiedName = 0; auto getNextMinifiedName = [&]() { IString minified; while (1) { ensureMinifiedNames(nextMinifiedName); minified = minifiedNames[nextMinifiedName++]; // TODO: we can probably remove !isLocalName here if (!usedNames.has(minified) && !asmData.isLocal(minified)) { return minified; } } }; // We can also minify loop labels, using a separate namespace // to the variable declarations. StringStringMap newLabels; int nextMinifiedLabel = 0; auto getNextMinifiedLabel = [&]() { ensureMinifiedNames(nextMinifiedLabel); return minifiedNames[nextMinifiedLabel++]; }; // Traverse and minify all names. if (globals->has(fun[1]->getIString())) { fun[1]->setString(globals[fun[1]->getIString()]->getIString()); assert(!!fun[1]); } if (!!fun[2]) { for (size_t i = 0; i < fun[2]->size(); i++) { IString minified = getNextMinifiedName(); newNames[fun[2][i]->getIString()] = minified; fun[2][i]->setString(minified); } } traversePre(fun[3], [&](Ref node) { Ref type = node[0]; if (type == NAME) { IString name = node[1]->getIString(); IString minified = newNames[name]; if (!!minified) { node[1]->setString(minified); } else if (asmData.isLocal(name)) { minified = getNextMinifiedName(); newNames[name] = minified; node[1]->setString(minified); } } else if (type == VAR) { for (size_t i = 0; i < node[1]->size(); i++) { Ref defn = node[1][i]; IString name = defn[0]->getIString(); if (!(newNames.has(name))) { newNames[name] = getNextMinifiedName(); } defn[0]->setString(newNames[name]); } } else if (type == LABEL) { IString name = node[1]->getIString(); if (!newLabels.has(name)) { newLabels[name] = getNextMinifiedLabel(); } node[1]->setString(newLabels[name]); } else if (type == BREAK || type == CONTINUE) { if (node->size() > 1 && !!node[1]) { node[1]->setString(newLabels[node[1]->getIString()]); } } }); }); } void asmLastOpts(Ref ast) { std::vector statsStack; traverseFunctions(ast, [&](Ref fun) { traversePrePost(fun, [&](Ref node) { Ref type = node[0]; Ref stats = getStatements(node); if (!!stats) statsStack.push_back(stats); if (CONDITION_CHECKERS.has(type)) { node[1] = simplifyCondition(node[1]); } if (type == WHILE && node[1][0] == NUM && node[1][1]->getNumber() == 1 && node[2][0] == BLOCK && node[2]->size() == 2) { // This is at the end of the pipeline, we can assume all other optimizations are done, and we modify loops // into shapes that might confuse other passes // while (1) { .. if (..) { break } } ==> do { .. } while(..) Ref stats = node[2][1]; Ref last = stats->back(); if (!!last && last[0] == IF && (last->size() < 4 || !last[3]) && last[2][0] == BLOCK && !!last[2][1][0]) { Ref lastStats = last[2][1]; int lastNum = lastStats->size(); Ref lastLast = lastStats[lastNum-1]; if (!(lastLast[0] == BREAK && !lastLast[1])) return;// if not a simple break, dangerous for (int i = 0; i < lastNum; i++) { if (lastStats[i][0] != STAT && lastStats[i][0] != BREAK) return; // something dangerous } // ok, a bunch of statements ending in a break bool abort = false; int stack = 0; int breaks = 0; traversePrePost(stats, [&](Ref node) { Ref type = node[0]; if (type == CONTINUE) { if (stack == 0 || !!node[1]) { // abort if labeled (we do not analyze labels here yet), or a continue directly on us abort = true; } } else if (type == BREAK) { if (stack == 0 || !!node[1]) { // relevant if labeled (we do not analyze labels here yet), or a break directly on us breaks++; } } else if (LOOP.has(type)) { stack++; } }, [&](Ref node) { if (LOOP.has(node[0])) { stack--; } }); if (abort) return; assert(breaks > 0); if (lastStats->size() > 1 && breaks != 1) return; // if we have code aside from the break, we can only move it out if there is just one break if (statsStack.size() < 1) return; // no chance we have this stats on hand // start to optimize if (lastStats->size() > 1) { Ref parent = statsStack.back(); int me = parent->indexOf(node); if (me < 0) return; // not always directly on a stats, could be in a label for example parent->insert(me+1, lastStats->size()-1); for (size_t i = 0; i+1 < lastStats->size(); i++) { parent[me+1+i] = lastStats[i]; } } Ref conditionToBreak = last[1]; stats->pop_back(); node[0]->setString(DO); node[1] = simplifyNotCompsDirect(make2(UNARY_PREFIX, L_NOT, conditionToBreak)); } } else if (type == BINARY) { if (node[1] == AND) { if (node[3][0] == UNARY_PREFIX && node[3][1] == MINUS && node[3][2][0] == NUM && node[3][2][1]->getNumber() == 1) { // Change &-1 into |0, at this point the hint is no longer needed node[1]->setString(OR); node[3] = node[3][2]; node[3][1]->setNumber(0); } } else if (node[1] == MINUS && node[3][0] == UNARY_PREFIX) { // avoid X - (-Y) because some minifiers buggily emit X--Y which is invalid as -- can be a unary. Transform to // X + Y if (node[3][1] == MINUS) { // integer node[1]->setString(PLUS); node[3] = node[3][2]; } else if (node[3][1] == PLUS) { // float if (node[3][2][0] == UNARY_PREFIX && node[3][2][1] == MINUS) { node[1]->setString(PLUS); node[3][2] = node[3][2][2]; } } } } }, [&](Ref node) { if (statsStack.size() > 0) { Ref stats = getStatements(node); if (!!stats) statsStack.pop_back(); } }); // convert { singleton } into singleton traversePre(fun, [](Ref node) { if (node[0] == BLOCK && !!getStatements(node) && node[1]->size() == 1) { safeCopy(node, node[1][0]); } }); // convert L: do { .. } while(0) into L: { .. } traversePre(fun, [](Ref node) { if (node[0] == LABEL && node[1]->isString() /* careful of var label = 5 */ && node[2][0] == DO && node[2][1][0] == NUM && node[2][1][1]->getNumber() == 0 && node[2][2][0] == BLOCK) { // there shouldn't be any continues on this, not direct break or continue IString label = node[1]->getIString(); bool abort = false; int breakCaptured = 0, continueCaptured = 0; traversePrePost(node[2][2], [&](Ref node) { if (node[0] == CONTINUE) { if (!node[1] && !continueCaptured) { abort = true; } else if (node[1]->isString() && node[1]->getIString() == label) { abort = true; } } if (node[0] == BREAK && !node[1] && !breakCaptured) { abort = true; } if (BREAK_CAPTURERS.has(node[0])) { breakCaptured++; } if (CONTINUE_CAPTURERS.has(node[0])) { continueCaptured++; } }, [&](Ref node) { if (BREAK_CAPTURERS.has(node[0])) { breakCaptured--; } if (CONTINUE_CAPTURERS.has(node[0])) { continueCaptured--; } }); if (abort) return; safeCopy(node[2], node[2][2]); } }); }); } // Contrary to the name this does not eliminate actual dead functions, only // those marked as such with DEAD_FUNCTIONS void eliminateDeadFuncs(Ref ast) { assert(!!extraInfo); IString DEAD_FUNCTIONS("dead_functions"); IString ABORT("abort"); assert(extraInfo->has(DEAD_FUNCTIONS)); StringSet deadFunctions; for (size_t i = 0; i < extraInfo[DEAD_FUNCTIONS]->size(); i++) { deadFunctions.insert(extraInfo[DEAD_FUNCTIONS][i]->getIString()); } traverseFunctions(ast, [&](Ref fun) { if (!deadFunctions.has(fun[1].get()->getIString())) { return; } AsmData asmData(fun); fun[3]->setSize(1); fun[3][0] = make1(STAT, make2(CALL, makeName(ABORT), &(makeArray(1))->push_back(makeNum(-1)))); asmData.vars.clear(); asmData.denormalize(); }); }