/* * Copyright 2017 WebAssembly Community Group participants * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef wasm_ir_branch_h #define wasm_ir_branch_h #include "ir/iteration.h" #include "wasm-traversal.h" #include "wasm.h" namespace wasm { namespace BranchUtils { // Some branches are obviously not actually reachable (e.g. (br $out // (unreachable))) inline bool isBranchReachable(Break* br) { return !(br->value && br->value->type == Type::unreachable) && !(br->condition && br->condition->type == Type::unreachable); } inline bool isBranchReachable(Switch* sw) { return !(sw->value && sw->value->type == Type::unreachable) && sw->condition->type != Type::unreachable; } inline bool isBranchReachable(BrOnExn* br) { return br->exnref->type != Type::unreachable; } inline bool isBranchReachable(Expression* expr) { if (auto* br = expr->dynCast()) { return isBranchReachable(br); } else if (auto* sw = expr->dynCast()) { return isBranchReachable(sw); } else if (auto* br = expr->dynCast()) { return isBranchReachable(br); } WASM_UNREACHABLE("unexpected expression type"); } using NameSet = std::set; inline NameSet getUniqueTargets(Break* br) { return {br->name}; } inline NameSet getUniqueTargets(Switch* sw) { NameSet ret; for (auto target : sw->targets) { ret.insert(target); } ret.insert(sw->default_); return ret; } inline NameSet getUniqueTargets(BrOnExn* br) { return {br->name}; } inline NameSet getUniqueTargets(Expression* expr) { if (auto* br = expr->dynCast()) { return getUniqueTargets(br); } if (auto* br = expr->dynCast()) { return getUniqueTargets(br); } if (auto* br = expr->dynCast()) { return getUniqueTargets(br); } return {}; } // If we branch to 'from', change that to 'to' instead. inline bool replacePossibleTarget(Expression* branch, Name from, Name to) { bool worked = false; if (auto* br = branch->dynCast()) { if (br->name == from) { br->name = to; worked = true; } } else if (auto* sw = branch->dynCast()) { for (auto& target : sw->targets) { if (target == from) { target = to; worked = true; } } if (sw->default_ == from) { sw->default_ = to; worked = true; } } else if (auto* br = branch->dynCast()) { if (br->name == from) { br->name = to; worked = true; } } else { WASM_UNREACHABLE("unexpected expression type"); } return worked; } // returns the set of targets to which we branch that are // outside of a node inline NameSet getExitingBranches(Expression* ast) { struct Scanner : public PostWalker { NameSet targets; void visitBreak(Break* curr) { targets.insert(curr->name); } void visitSwitch(Switch* curr) { for (auto target : curr->targets) { targets.insert(target); } targets.insert(curr->default_); } void visitBrOnExn(BrOnExn* curr) { targets.insert(curr->name); } void visitBlock(Block* curr) { if (curr->name.is()) { targets.erase(curr->name); } } void visitLoop(Loop* curr) { if (curr->name.is()) { targets.erase(curr->name); } } }; Scanner scanner; scanner.walk(ast); // anything not erased is a branch out return scanner.targets; } // returns the list of all branch targets in a node inline NameSet getBranchTargets(Expression* ast) { struct Scanner : public PostWalker { NameSet targets; void visitBlock(Block* curr) { if (curr->name.is()) { targets.insert(curr->name); } } void visitLoop(Loop* curr) { if (curr->name.is()) { targets.insert(curr->name); } } }; Scanner scanner; scanner.walk(ast); return scanner.targets; } // Finds if there are branches targeting a name. Note that since names are // unique in our IR, we just need to look for the name, and do not need // to analyze scoping. struct BranchSeeker : public PostWalker { Name target; Index found = 0; Type valueType; BranchSeeker(Name target) : target(target) {} void noteFound(Expression* value) { noteFound(value ? value->type : Type::none); } void noteFound(Type type) { found++; if (found == 1) { valueType = Type::unreachable; } if (type != Type::unreachable) { valueType = type; } } void visitBreak(Break* curr) { // check the break if (curr->name == target) { noteFound(curr->value); } } void visitSwitch(Switch* curr) { // check the switch for (auto name : curr->targets) { if (name == target) { noteFound(curr->value); } } if (curr->default_ == target) { noteFound(curr->value); } } void visitBrOnExn(BrOnExn* curr) { // check the br_on_exn if (curr->name == target) { noteFound(curr->sent); } } static bool has(Expression* tree, Name target) { if (!target.is()) { return false; } BranchSeeker seeker(target); seeker.walk(tree); return seeker.found > 0; } static Index count(Expression* tree, Name target) { if (!target.is()) { return 0; } BranchSeeker seeker(target); seeker.walk(tree); return seeker.found; } }; // Accumulates all the branches in an entire tree. struct BranchAccumulator : public PostWalker> { NameSet branches; void visitExpression(Expression* curr) { auto selfBranches = getUniqueTargets(curr); branches.insert(selfBranches.begin(), selfBranches.end()); } }; // A helper structure for the common case of post-walking some IR while querying // whether a branch is present. We can cache results for children in order to // avoid quadratic time searches. // We assume that a node will be scanned *once* here. That means that if we // scan a node, we can discard all information for its children. This avoids // linearly increasing memory usage over time. class BranchSeekerCache { // Maps all the branches present in an expression and all its nested children. std::unordered_map branches; public: const NameSet& getBranches(Expression* curr) { auto iter = branches.find(curr); if (iter != branches.end()) { return iter->second; } NameSet currBranches; auto add = [&](NameSet& moreBranches) { // Make sure to do a fast swap for the first set of branches to arrive. // This helps the case of the first child being a block with a very large // set of names. if (currBranches.empty()) { currBranches.swap(moreBranches); } else { currBranches.insert(moreBranches.begin(), moreBranches.end()); } }; // Add from the children, which are hopefully cached. for (auto child : ChildIterator(curr)) { auto iter = branches.find(child); if (iter != branches.end()) { add(iter->second); // We are scanning the parent, which means we assume the child will // never be visited again. branches.erase(iter); } else { // The child was not cached. Scan it manually. BranchAccumulator childBranches; childBranches.walk(child); add(childBranches.branches); // Don't bother caching anything - we are scanning the parent, so the // child will presumably not be scanned again. } } // Finish with the parent's own branches. auto selfBranches = getUniqueTargets(curr); add(selfBranches); return branches[curr] = std::move(currBranches); } bool hasBranch(Expression* curr, Name target) { bool result = getBranches(curr).count(target); #ifdef BRANCH_UTILS_DEBUG assert(bresult == BranchSeeker::has(curr, target)); #endif return result; } }; } // namespace BranchUtils } // namespace wasm #endif // wasm_ir_branch_h