/* * Copyright 2017 WebAssembly Community Group participants * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef wasm_ir_effects_h #define wasm_ir_effects_h #include "pass.h" #include "wasm-traversal.h" namespace wasm { // Look for side effects, including control flow // TODO: optimize struct EffectAnalyzer : public PostWalker> { EffectAnalyzer(const PassOptions& passOptions, Expression* ast = nullptr) { ignoreImplicitTraps = passOptions.ignoreImplicitTraps; debugInfo = passOptions.debugInfo; if (ast) { analyze(ast); } } bool ignoreImplicitTraps; bool debugInfo; void analyze(Expression* ast) { breakNames.clear(); walk(ast); // if we are left with breaks, they are external if (breakNames.size() > 0) { branches = true; } } // Core effect tracking // branches out of this expression, returns, infinite loops, etc bool branches = false; bool calls = false; std::set localsRead; std::set localsWritten; std::set globalsRead; std::set globalsWritten; bool readsMemory = false; bool writesMemory = false; // a load or div/rem, which may trap. we ignore trap differences, so it is ok // to reorder these, but we can't remove them, as they count as side effects, // and we can't move them in a way that would cause other noticeable (global) // side effects bool implicitTrap = false; // An atomic load/store/RMW/Cmpxchg or an operator that has a defined ordering // wrt atomics (e.g. memory.grow) bool isAtomic = false; // Helper functions to check for various effect types bool accessesLocal() const { return localsRead.size() + localsWritten.size() > 0; } bool accessesGlobal() const { return globalsRead.size() + globalsWritten.size() > 0; } bool accessesMemory() const { return calls || readsMemory || writesMemory; } bool hasGlobalSideEffects() const { return calls || globalsWritten.size() > 0 || writesMemory || isAtomic; } bool hasSideEffects() const { return hasGlobalSideEffects() || localsWritten.size() > 0 || branches || implicitTrap; } bool hasAnything() const { return branches || calls || accessesLocal() || readsMemory || writesMemory || accessesGlobal() || implicitTrap || isAtomic; } bool noticesGlobalSideEffects() { return calls || readsMemory || isAtomic || globalsRead.size(); } // check if we break to anything external from ourselves bool hasExternalBreakTargets() { return !breakNames.empty(); } // checks if these effects would invalidate another set (e.g., if we write, we // invalidate someone that reads, they can't be moved past us) bool invalidates(const EffectAnalyzer& other) { if ((branches && other.hasSideEffects()) || (other.branches && hasSideEffects()) || ((writesMemory || calls) && other.accessesMemory()) || (accessesMemory() && (other.writesMemory || other.calls))) { return true; } // All atomics are sequentially consistent for now, and ordered wrt other // memory references. if ((isAtomic && other.accessesMemory()) || (other.isAtomic && accessesMemory())) { return true; } for (auto local : localsWritten) { if (other.localsWritten.count(local) || other.localsRead.count(local)) { return true; } } for (auto local : localsRead) { if (other.localsWritten.count(local)) { return true; } } if ((accessesGlobal() && other.calls) || (other.accessesGlobal() && calls)) { return true; } for (auto global : globalsWritten) { if (other.globalsWritten.count(global) || other.globalsRead.count(global)) { return true; } } for (auto global : globalsRead) { if (other.globalsWritten.count(global)) { return true; } } // we are ok to reorder implicit traps, but not conditionalize them if ((implicitTrap && other.branches) || (other.implicitTrap && branches)) { return true; } // we can't reorder an implicit trap in a way that alters global state if ((implicitTrap && other.hasGlobalSideEffects()) || (other.implicitTrap && hasGlobalSideEffects())) { return true; } return false; } void mergeIn(EffectAnalyzer& other) { branches = branches || other.branches; calls = calls || other.calls; readsMemory = readsMemory || other.readsMemory; writesMemory = writesMemory || other.writesMemory; implicitTrap = implicitTrap || other.implicitTrap; isAtomic = isAtomic || other.isAtomic; for (auto i : other.localsRead) { localsRead.insert(i); } for (auto i : other.localsWritten) { localsWritten.insert(i); } for (auto i : other.globalsRead) { globalsRead.insert(i); } for (auto i : other.globalsWritten) { globalsWritten.insert(i); } } // the checks above happen after the node's children were processed, in the // order of execution we must also check for control flow that happens before // the children, i.e., loops bool checkPre(Expression* curr) { if (curr->is()) { branches = true; return true; } return false; } bool checkPost(Expression* curr) { visit(curr); if (curr->is()) { branches = true; } return hasAnything(); } std::set breakNames; void visitBlock(Block* curr) { if (curr->name.is()) { breakNames.erase(curr->name); // these were internal breaks } } void visitIf(If* curr) {} void visitLoop(Loop* curr) { if (curr->name.is()) { breakNames.erase(curr->name); // these were internal breaks } // if the loop is unreachable, then there is branching control flow: // (1) if the body is unreachable because of a (return), uncaught (br) // etc., then we already noted branching, so it is ok to mark it again // (if we have *caught* (br)s, then they did not lead to the loop body // being unreachable). (same logic applies to blocks) // (2) if the loop is unreachable because it only has branches up to the // loop top, but no way to get out, then it is an infinite loop, and we // consider that a branching side effect (note how the same logic does // not apply to blocks). if (curr->type == unreachable) { branches = true; } } void visitBreak(Break* curr) { breakNames.insert(curr->name); } void visitSwitch(Switch* curr) { for (auto name : curr->targets) { breakNames.insert(name); } breakNames.insert(curr->default_); } void visitCall(Call* curr) { calls = true; if (curr->isReturn) { branches = true; } if (debugInfo) { // debugInfo call imports must be preserved very strongly, do not // move code around them // FIXME: we could check if the call is to an import branches = true; } } void visitCallIndirect(CallIndirect* curr) { calls = true; if (curr->isReturn) { branches = true; } } void visitLocalGet(LocalGet* curr) { localsRead.insert(curr->index); } void visitLocalSet(LocalSet* curr) { localsWritten.insert(curr->index); } void visitGlobalGet(GlobalGet* curr) { globalsRead.insert(curr->name); } void visitGlobalSet(GlobalSet* curr) { globalsWritten.insert(curr->name); } void visitLoad(Load* curr) { readsMemory = true; isAtomic |= curr->isAtomic; if (!ignoreImplicitTraps) { implicitTrap = true; } } void visitStore(Store* curr) { writesMemory = true; isAtomic |= curr->isAtomic; if (!ignoreImplicitTraps) { implicitTrap = true; } } void visitAtomicRMW(AtomicRMW* curr) { readsMemory = true; writesMemory = true; isAtomic = true; if (!ignoreImplicitTraps) { implicitTrap = true; } } void visitAtomicCmpxchg(AtomicCmpxchg* curr) { readsMemory = true; writesMemory = true; isAtomic = true; if (!ignoreImplicitTraps) { implicitTrap = true; } } void visitAtomicWait(AtomicWait* curr) { readsMemory = true; // AtomicWait doesn't strictly write memory, but it does modify the waiters // list associated with the specified address, which we can think of as a // write. writesMemory = true; isAtomic = true; if (!ignoreImplicitTraps) { implicitTrap = true; } } void visitAtomicNotify(AtomicNotify* curr) { // AtomicNotify doesn't strictly write memory, but it does modify the // waiters list associated with the specified address, which we can think of // as a write. readsMemory = true; writesMemory = true; isAtomic = true; if (!ignoreImplicitTraps) { implicitTrap = true; } } void visitAtomicFence(AtomicFence* curr) { // AtomicFence should not be reordered with any memory operations, so we set // these to true. readsMemory = true; writesMemory = true; isAtomic = true; } void visitSIMDExtract(SIMDExtract* curr) {} void visitSIMDReplace(SIMDReplace* curr) {} void visitSIMDShuffle(SIMDShuffle* curr) {} void visitSIMDTernary(SIMDTernary* curr) {} void visitSIMDShift(SIMDShift* curr) {} void visitSIMDLoad(SIMDLoad* curr) { readsMemory = true; if (!ignoreImplicitTraps) { implicitTrap = true; } } void visitMemoryInit(MemoryInit* curr) { writesMemory = true; if (!ignoreImplicitTraps) { implicitTrap = true; } } void visitDataDrop(DataDrop* curr) { // prevent reordering with memory.init readsMemory = true; if (!ignoreImplicitTraps) { implicitTrap = true; } } void visitMemoryCopy(MemoryCopy* curr) { readsMemory = true; writesMemory = true; if (!ignoreImplicitTraps) { implicitTrap = true; } } void visitMemoryFill(MemoryFill* curr) { writesMemory = true; if (!ignoreImplicitTraps) { implicitTrap = true; } } void visitConst(Const* curr) {} void visitUnary(Unary* curr) { if (!ignoreImplicitTraps) { switch (curr->op) { case TruncSFloat32ToInt32: case TruncSFloat32ToInt64: case TruncUFloat32ToInt32: case TruncUFloat32ToInt64: case TruncSFloat64ToInt32: case TruncSFloat64ToInt64: case TruncUFloat64ToInt32: case TruncUFloat64ToInt64: { implicitTrap = true; break; } default: {} } } } void visitBinary(Binary* curr) { if (!ignoreImplicitTraps) { switch (curr->op) { case DivSInt32: case DivUInt32: case RemSInt32: case RemUInt32: case DivSInt64: case DivUInt64: case RemSInt64: case RemUInt64: { implicitTrap = true; break; } default: {} } } } void visitSelect(Select* curr) {} void visitDrop(Drop* curr) {} void visitReturn(Return* curr) { branches = true; } void visitHost(Host* curr) { calls = true; // memory.grow modifies the set of valid addresses, and thus can be modeled // as modifying memory writesMemory = true; // Atomics are also sequentially consistent with memory.grow. isAtomic = true; } void visitTry(Try* curr) {} // We safely model throws as branches void visitThrow(Throw* curr) { branches = true; } void visitRethrow(Rethrow* curr) { branches = true; } void visitBrOnExn(BrOnExn* curr) { breakNames.insert(curr->name); } void visitNop(Nop* curr) {} void visitUnreachable(Unreachable* curr) { branches = true; } void visitPush(Push* curr) { calls = true; } void visitPop(Pop* curr) { calls = true; } // Helpers static bool canReorder(const PassOptions& passOptions, Expression* a, Expression* b) { EffectAnalyzer aEffects(passOptions, a); EffectAnalyzer bEffects(passOptions, b); return !aEffects.invalidates(bEffects); } }; } // namespace wasm #endif // wasm_ir_effects_h