/* * Copyright 2022 WebAssembly Community Group participants * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "module-utils.h" #include "ir/debuginfo.h" #include "ir/intrinsics.h" #include "ir/manipulation.h" #include "ir/properties.h" #include "support/insert_ordered.h" #include "support/topological_sort.h" namespace wasm::ModuleUtils { // Update the file name indices when moving a set of debug locations from one // module to another. static void updateLocation(std::optional& location, std::vector& fileIndexMap) { if (location) { location->fileIndex = fileIndexMap[location->fileIndex]; } } // Update the symbol name indices when moving a set of debug locations from one // module to another. static void updateSymbol(std::optional& location, std::vector& symbolIndexMap) { if (location && location->symbolNameIndex) { location->symbolNameIndex = symbolIndexMap[*location->symbolNameIndex]; } } // Copies a function into a module. If newName is provided it is used as the // name of the function (otherwise the original name is copied). If fileIndexMap // is specified, it is used to rename source map filename indices when copying // the function from one module to another one. If symbolNameIndexMap is // specified, it is used to rename source map symbol name indices when copying // the function from one module to another one. Function* copyFunction(Function* func, Module& out, Name newName, std::optional> fileIndexMap, std::optional> symbolNameIndexMap) { auto ret = copyFunctionWithoutAdd( func, out, newName, fileIndexMap, symbolNameIndexMap); return out.addFunction(std::move(ret)); } std::unique_ptr copyFunctionWithoutAdd(Function* func, Module& out, Name newName, std::optional> fileIndexMap, std::optional> symbolNameIndexMap) { auto ret = std::make_unique(); ret->name = newName.is() ? newName : func->name; ret->hasExplicitName = func->hasExplicitName; ret->type = func->type; ret->vars = func->vars; ret->localNames = func->localNames; ret->localIndices = func->localIndices; ret->body = ExpressionManipulator::copy(func->body, out); debuginfo::copyBetweenFunctions(func->body, ret->body, func, ret.get()); ret->prologLocation = func->prologLocation; ret->epilogLocation = func->epilogLocation; // Update file indices if needed if (fileIndexMap) { for (auto& iter : ret->debugLocations) { if (iter.second) { iter.second->fileIndex = (*fileIndexMap)[iter.second->fileIndex]; } } updateLocation(ret->prologLocation, *fileIndexMap); updateLocation(ret->epilogLocation, *fileIndexMap); } if (symbolNameIndexMap) { for (auto& iter : ret->debugLocations) { if (iter.second) { if (iter.second->symbolNameIndex.has_value()) { iter.second->symbolNameIndex = (*symbolNameIndexMap)[*(iter.second->symbolNameIndex)]; } } updateSymbol(ret->prologLocation, *symbolNameIndexMap); updateSymbol(ret->epilogLocation, *symbolNameIndexMap); } } ret->module = func->module; ret->base = func->base; ret->noFullInline = func->noFullInline; ret->noPartialInline = func->noPartialInline; return ret; } Global* copyGlobal(Global* global, Module& out) { auto* ret = new Global(); ret->name = global->name; ret->hasExplicitName = global->hasExplicitName; ret->type = global->type; ret->mutable_ = global->mutable_; ret->module = global->module; ret->base = global->base; if (global->imported()) { ret->init = nullptr; } else { ret->init = ExpressionManipulator::copy(global->init, out); } out.addGlobal(ret); return ret; } Tag* copyTag(Tag* tag, Module& out) { auto* ret = new Tag(); ret->name = tag->name; ret->hasExplicitName = tag->hasExplicitName; ret->sig = tag->sig; ret->module = tag->module; ret->base = tag->base; out.addTag(ret); return ret; } ElementSegment* copyElementSegment(const ElementSegment* segment, Module& out) { auto copy = [&](std::unique_ptr&& ret) { ret->name = segment->name; ret->hasExplicitName = segment->hasExplicitName; ret->type = segment->type; ret->data.reserve(segment->data.size()); for (auto* item : segment->data) { ret->data.push_back(ExpressionManipulator::copy(item, out)); } return out.addElementSegment(std::move(ret)); }; if (segment->table.isNull()) { return copy(std::make_unique()); } else { auto offset = ExpressionManipulator::copy(segment->offset, out); return copy(std::make_unique(segment->table, offset)); } } Table* copyTable(const Table* table, Module& out) { auto ret = std::make_unique(); ret->name = table->name; ret->hasExplicitName = table->hasExplicitName; ret->type = table->type; ret->module = table->module; ret->base = table->base; ret->initial = table->initial; ret->max = table->max; ret->addressType = table->addressType; return out.addTable(std::move(ret)); } Memory* copyMemory(const Memory* memory, Module& out) { auto ret = Builder::makeMemory(memory->name); ret->hasExplicitName = memory->hasExplicitName; ret->initial = memory->initial; ret->max = memory->max; ret->shared = memory->shared; ret->addressType = memory->addressType; ret->module = memory->module; ret->base = memory->base; return out.addMemory(std::move(ret)); } DataSegment* copyDataSegment(const DataSegment* segment, Module& out) { auto ret = Builder::makeDataSegment(); ret->name = segment->name; ret->hasExplicitName = segment->hasExplicitName; ret->memory = segment->memory; ret->isPassive = segment->isPassive; if (!segment->isPassive) { auto offset = ExpressionManipulator::copy(segment->offset, out); ret->offset = offset; } ret->data = segment->data; return out.addDataSegment(std::move(ret)); } // Copies named toplevel module items (things of kind ModuleItemKind). See // copyModule() for something that also copies exports, the start function, etc. void copyModuleItems(const Module& in, Module& out) { // If the source module has some debug information, we first compute how // to map file name indices from this modules to file name indices in // the target module. std::optional> fileIndexMap; if (!in.debugInfoFileNames.empty()) { std::unordered_map debugInfoFileIndices; for (Index i = 0; i < out.debugInfoFileNames.size(); i++) { debugInfoFileIndices[out.debugInfoFileNames[i]] = i; } fileIndexMap.emplace(); for (Index i = 0; i < in.debugInfoFileNames.size(); i++) { std::string file = in.debugInfoFileNames[i]; auto iter = debugInfoFileIndices.find(file); if (iter == debugInfoFileIndices.end()) { Index index = out.debugInfoFileNames.size(); out.debugInfoFileNames.push_back(file); debugInfoFileIndices[file] = index; } fileIndexMap->push_back(debugInfoFileIndices[file]); } } std::optional> symbolNameIndexMap; if (!in.debugInfoSymbolNames.empty()) { std::unordered_map debugInfoSymbolNameIndices; for (Index i = 0; i < out.debugInfoSymbolNames.size(); i++) { debugInfoSymbolNameIndices[out.debugInfoSymbolNames[i]] = i; } symbolNameIndexMap.emplace(); for (Index i = 0; i < in.debugInfoSymbolNames.size(); i++) { std::string file = in.debugInfoSymbolNames[i]; auto iter = debugInfoSymbolNameIndices.find(file); if (iter == debugInfoSymbolNameIndices.end()) { Index index = out.debugInfoSymbolNames.size(); out.debugInfoSymbolNames.push_back(file); debugInfoSymbolNameIndices[file] = index; } symbolNameIndexMap->push_back(debugInfoSymbolNameIndices[file]); } } for (auto& curr : in.functions) { copyFunction(curr.get(), out, Name(), fileIndexMap, symbolNameIndexMap); } for (auto& curr : in.globals) { copyGlobal(curr.get(), out); } for (auto& curr : in.tags) { copyTag(curr.get(), out); } for (auto& curr : in.elementSegments) { copyElementSegment(curr.get(), out); } for (auto& curr : in.tables) { copyTable(curr.get(), out); } for (auto& curr : in.memories) { copyMemory(curr.get(), out); } for (auto& curr : in.dataSegments) { copyDataSegment(curr.get(), out); } for (auto& [type, names] : in.typeNames) { if (!out.typeNames.count(type)) { out.typeNames[type] = names; } } } // TODO: merge this with copyModuleItems, and add options for copying // exports and other things that are currently different between them, // if we still need those differences. void copyModule(const Module& in, Module& out) { // we use names throughout, not raw pointers, so simple copying is fine // for everything *but* expressions for (auto& curr : in.exports) { out.addExport(std::make_unique(*curr)); } copyModuleItems(in, out); out.start = in.start; out.customSections = in.customSections; out.debugInfoFileNames = in.debugInfoFileNames; out.debugInfoSymbolNames = in.debugInfoSymbolNames; out.features = in.features; } void clearModule(Module& wasm) { wasm.~Module(); new (&wasm) Module; } // Renaming // Rename functions along with all their uses. // Note that for this to work the functions themselves don't necessarily need // to exist. For example, it is possible to remove a given function and then // call this to redirect all of its uses. template void renameFunctions(Module& wasm, T& map) { // Update the function itself. for (auto& [oldName, newName] : map) { if (Function* func = wasm.getFunctionOrNull(oldName)) { assert(!wasm.getFunctionOrNull(newName) || func->name == newName); func->name = newName; } } wasm.updateMaps(); // Update all references to it. struct Updater : public WalkerPass> { bool isFunctionParallel() override { return true; } T& map; void maybeUpdate(Name& name) { if (auto iter = map.find(name); iter != map.end()) { name = iter->second; } } Updater(T& map) : map(map) {} std::unique_ptr create() override { return std::make_unique(map); } void visitCall(Call* curr) { maybeUpdate(curr->target); } void visitRefFunc(RefFunc* curr) { maybeUpdate(curr->func); } }; Updater updater(map); updater.maybeUpdate(wasm.start); PassRunner runner(&wasm); updater.run(&runner, &wasm); updater.runOnModuleCode(&runner, &wasm); } void renameFunction(Module& wasm, Name oldName, Name newName) { std::map map; map[oldName] = newName; renameFunctions(wasm, map); } namespace { // Helper for collecting HeapTypes and their frequencies. struct TypeInfos { InsertOrderedMap info; // Multivalue control flow structures need a function type, but the identity // of the function type (i.e. what recursion group it is in or whether it is // final) doesn't matter. Save them for the end to see if we can re-use an // existing function type with the necessary signature. InsertOrderedMap controlFlowSignatures; void note(HeapType type) { if (!type.isBasic()) { ++info[type].useCount; } } void note(Type type) { for (HeapType ht : type.getHeapTypeChildren()) { note(ht); } } // Ensure a type is included without increasing its count. void include(HeapType type) { if (!type.isBasic()) { info[type]; } } void include(Type type) { for (HeapType ht : type.getHeapTypeChildren()) { include(ht); } } void noteControlFlow(Signature sig) { // TODO: support control flow input parameters. assert(sig.params.size() == 0); if (sig.results.isTuple()) { // We have to use a function type. ++controlFlowSignatures[sig]; } else if (sig.results != Type::none) { // The result type can be emitted directly instead of using a function // type. note(sig.results); } } bool contains(HeapType type) { return info.count(type); } }; struct CodeScanner : PostWalker> { TypeInfos& info; TypeInclusion inclusion; CodeScanner(Module& wasm, TypeInfos& info, TypeInclusion inclusion) : info(info), inclusion(inclusion) { setModule(&wasm); } void visitExpression(Expression* curr) { if (auto* call = curr->dynCast()) { info.note(call->heapType); } else if (auto* call = curr->dynCast()) { info.note(call->target->type); } else if (curr->is()) { info.note(curr->type); } else if (curr->is