/* * Copyright 2015 WebAssembly Community Group participants * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef wasm_mixed_arena_h #define wasm_mixed_arena_h #include #include #include #include #include #include #include // // Arena allocation for mixed-type data. // // Arena-style bump allocation is important for two reasons: First, so that // allocation is quick, and second, so that allocated items are close together, // which is cache-friendy. Arena allocation is also useful for a minor third // reason which is to make freeing all the items in an arena very quick. // // Each WebAssembly Module has an arena allocator, which should be used // for all of its AST nodes and so forth. When the Module is destroyed, the // entire arena is cleaned up. // // When allocating an object in an arena, the object's proper constructor // is called. Note that destructors are not called, because to make the // arena simple and fast we do not track internal allocations inside it // (and we can also avoid the need for virtual destructors). // // In general, optimization passes avoid allocation as much as possible. // Many passes only remove or modify nodes anyhow, others can often // reuse nodes that are being optimized out. This keeps things // cache-friendly, and also makes the operations trivially thread-safe. // In the rare case that a pass does need to allocate, and it is a // parallel pass (so multiple threads might access the allocator), // the MixedArena instance will notice if it is on a different thread // than that arena's original thread, and will perform the allocation // in a side arena for that other thread. This is done in a transparent // way to the outside; as a result, it is always safe to allocate using // a MixedArena, no matter which thread you are on. Allocations will // of course be fastest on the original thread for the arena. // struct MixedArena { // fast bump allocation std::vector chunks; size_t chunkSize = 32768; size_t index; // in last chunk std::thread::id threadId; // multithreaded allocation - each arena is valid on a specific thread. // if we are on the wrong thread, we atomically look in the linked // list of next, adding an allocator if necessary std::atomic next; MixedArena() { threadId = std::this_thread::get_id(); next.store(nullptr); } void* allocSpace(size_t size) { // the bump allocator data should not be modified by multiple threads at once. auto myId = std::this_thread::get_id(); if (myId != threadId) { MixedArena* curr = this; MixedArena* allocated = nullptr; while (myId != curr->threadId) { auto seen = curr->next.load(); if (seen) { curr = seen; continue; } // there is a nullptr for next, so we may be able to place a new // allocator for us there. but carefully, as others may do so as // well. we may waste a few allocations here, but it doesn't matter // as this can only happen as the chain is built up, i.e., // O(# of cores) per allocator, and our allocatrs are long-lived. if (!allocated) { allocated = new MixedArena(); // has our thread id } if (curr->next.compare_exchange_weak(seen, allocated)) { // we replaced it, so we are the next in the chain // we can forget about allocated, it is owned by the chain now allocated = nullptr; break; } // otherwise, the cmpxchg updated seen, and we continue to loop curr = seen; } if (allocated) delete allocated; return curr->allocSpace(size); } size = (size + 7) & (-8); // same alignment as malloc TODO optimize? bool mustAllocate = false; while (chunkSize <= size) { chunkSize *= 2; mustAllocate = true; } if (chunks.size() == 0 || index + size >= chunkSize || mustAllocate) { chunks.push_back(new char[chunkSize]); index = 0; } auto* ret = chunks.back() + index; index += size; return static_cast(ret); } template T* alloc() { auto* ret = static_cast(allocSpace(sizeof(T))); new (ret) T(*this); // allocated objects receive the allocator, so they can allocate more later if necessary return ret; } void clear() { for (char* chunk : chunks) { delete[] chunk; } chunks.clear(); } ~MixedArena() { clear(); if (next.load()) delete next.load(); } }; // // A vector that allocates in an arena. // // TODO: specialize on the initial size of the array template class ArenaVectorBase { protected: T* data = nullptr; size_t usedElements = 0, allocatedElements = 0; void reallocate(size_t size) { T* old = data; static_cast(this)->allocate(size); for (size_t i = 0; i < usedElements; i++) { data[i] = old[i]; } } public: T& operator[](size_t index) const { assert(index < usedElements); return data[index]; } size_t size() const { return usedElements; } void resize(size_t size) { if (size > allocatedElements) { reallocate(size); } // construct new elements for (size_t i = usedElements; i < size; i++) { new (data + i) T(); } usedElements = size; } T& back() const { assert(usedElements > 0); return data[usedElements - 1]; } T& pop_back() { assert(usedElements > 0); usedElements--; return data[usedElements]; } void push_back(T item) { if (usedElements == allocatedElements) { reallocate((allocatedElements + 1) * 2); // TODO: optimize } data[usedElements] = item; usedElements++; } void clear() { usedElements = 0; } void reserve(size_t size) { if (size > allocatedElements) { reallocate(size); } } template void set(const ListType& list) { size_t size = list.size(); if (allocatedElements < size) { static_cast(this)->allocate(size); } for (size_t i = 0; i < size; i++) { data[i] = list[i]; } usedElements = size; } void operator=(SubType& other) { set(other); } void swap(SubType& other) { data = other.data; usedElements = other.usedElements; allocatedElements = other.allocatedElements; other.data = nullptr; other.usedElements = other.allocatedElements = 0; } // iteration struct Iterator { const SubType* parent; size_t index; Iterator(const SubType* parent, size_t index) : parent(parent), index(index) {} bool operator!=(const Iterator& other) const { return index != other.index || parent != other.parent; } void operator++() { index++; } T& operator*() { return (*parent)[index]; } }; Iterator begin() const { return Iterator(static_cast(this), 0); } Iterator end() const { return Iterator(static_cast(this), usedElements); } void allocate(size_t size) { abort(); // must be implemented in children } }; // A vector that has an allocator for arena allocation // // TODO: consider not saving the allocator, but requiring it be // passed in when needed, would make this (and thus Blocks etc. // smaller) template class ArenaVector : public ArenaVectorBase, T> { private: MixedArena& allocator; public: ArenaVector(MixedArena& allocator) : allocator(allocator) {} ArenaVector(ArenaVector&& other) : allocator(other.allocator) { *this = other; } void allocate(size_t size) { this->allocatedElements = size; this->data = static_cast(allocator.allocSpace(sizeof(T) * this->allocatedElements)); } }; #endif // wasm_mixed_arena_h