/* * Copyright 2016 WebAssembly Community Group participants * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // // Inlining. // // By default, this does a conservative inlining of all functions that have // exactly one use, and are fairly small. That should not increase code // size, and may have speed benefits. // // When opt level is 3+ (-O3 or above), we more aggressively inline // even functions with more than one use, that seem to be "lightweight" // (no loops or calls etc.), so inlining them may get rid of call overhead // that would be noticeable otherwise // #include #include #include #include #include #include #include namespace wasm { // A limit on how big a function to inline when being careful about size static const int CAREFUL_SIZE_LIMIT = 15; // A limit on how big a function to inline when being more flexible. In // particular it's nice that with this limit we can inline the clamp // functions (i32s-div, f64-to-int, etc.), that can affect perf. static const int FLEXIBLE_SIZE_LIMIT = 20; // Useful into on a function, helping us decide if we can inline it struct FunctionInfo { std::atomic calls; Index size; bool lightweight = true; bool usedGlobally = false; // in a table or export bool worthInlining(PassOptions& options, bool allowMultipleInliningsPerFunction) { // if it's big, it's just not worth doing (TODO: investigate more) if (size > FLEXIBLE_SIZE_LIMIT) return false; // if it has one use, then inlining it would likely reduce code size // since we are just moving code around, + optimizing, so worth it // if small enough that we are pretty sure its ok if (calls == 1 && !usedGlobally && size <= CAREFUL_SIZE_LIMIT) return true; if (!allowMultipleInliningsPerFunction) return false; // more than one use, so we can't eliminate it after inlining, // so only worth it if we really care about speed and don't care // about size, and if it's lightweight so a good candidate for // speeding us up return options.optimizeLevel >= 3 && options.shrinkLevel == 0 && lightweight; } }; typedef std::unordered_map NameInfoMap; struct FunctionInfoScanner : public WalkerPass> { bool isFunctionParallel() override { return true; } FunctionInfoScanner(NameInfoMap* infos) : infos(infos) {} FunctionInfoScanner* create() override { return new FunctionInfoScanner(infos); } void visitLoop(Loop* curr) { // having a loop is not lightweight (*infos)[getFunction()->name].lightweight = false; } void visitCall(Call* curr) { assert(infos->count(curr->target) > 0); // can't add a new element in parallel (*infos)[curr->target].calls++; // having a call is not lightweight (*infos)[getFunction()->name].lightweight = false; } void visitFunction(Function* curr) { (*infos)[curr->name].size = Measurer::measure(curr->body); } private: NameInfoMap* infos; }; struct InliningAction { Expression** callSite; Function* contents; InliningAction(Expression** callSite, Function* contents) : callSite(callSite), contents(contents) {} }; struct InliningState { std::unordered_set worthInlining; std::unordered_map> actionsForFunction; // function name => actions that can be performed in it }; struct Planner : public WalkerPass> { bool isFunctionParallel() override { return true; } Planner(InliningState* state) : state(state) {} Planner* create() override { return new Planner(state); } void visitCall(Call* curr) { // plan to inline if we know this is valid to inline, and if the call is // actually performed - if it is dead code, it's pointless to inline if (state->worthInlining.count(curr->target) && curr->type != unreachable) { // nest the call in a block. that way the location of the pointer to the call will not // change even if we inline multiple times into the same function, otherwise // call1(call2()) might be a problem auto* block = Builder(*getModule()).makeBlock(curr); replaceCurrent(block); assert(state->actionsForFunction.count(getFunction()->name) > 0); // can't add a new element in parallel state->actionsForFunction[getFunction()->name].emplace_back(&block->list[0], getModule()->getFunction(curr->target)); } } void doWalkFunction(Function* func) { // we shouldn't inline into us if we are to be inlined // ourselves - that has the risk of cycles if (state->worthInlining.count(func->name) == 0) { walk(func->body); } } private: InliningState* state; }; // Core inlining logic. Modifies the outside function (adding locals as // needed), and returns the inlined code. static Expression* doInlining(Module* module, Function* into, InliningAction& action) { Function* from = action.contents; auto* call = (*action.callSite)->cast(); Builder builder(*module); auto* block = Builder(*module).makeBlock(); block->name = Name(std::string("__inlined_func$") + from->name.str); *action.callSite = block; // set up a locals mapping struct Updater : public PostWalker { std::map localMapping; Name returnName; Builder* builder; void visitReturn(Return* curr) { replaceCurrent(builder->makeBreak(returnName, curr->value)); } void visitGetLocal(GetLocal* curr) { curr->index = localMapping[curr->index]; } void visitSetLocal(SetLocal* curr) { curr->index = localMapping[curr->index]; } } updater; updater.returnName = block->name; updater.builder = &builder; for (Index i = 0; i < from->getNumLocals(); i++) { updater.localMapping[i] = builder.addVar(into, from->getLocalType(i)); } // assign the operands into the params for (Index i = 0; i < from->params.size(); i++) { block->list.push_back(builder.makeSetLocal(updater.localMapping[i], call->operands[i])); } // zero out the vars (as we may be in a loop, and may depend on their zero-init value for (Index i = 0; i < from->vars.size(); i++) { block->list.push_back(builder.makeSetLocal(updater.localMapping[from->getVarIndexBase() + i], LiteralUtils::makeZero(from->vars[i], *module))); } // generate and update the inlined contents auto* contents = ExpressionManipulator::copy(from->body, *module); updater.walk(contents); block->list.push_back(contents); block->type = call->type; // if the function returned a value, we just set the block containing the // inlined code to have that type. or, if the function was void and // contained void, that is fine too. a bad case is a void function in which // we have unreachable code, so we would be replacing a void call with an // unreachable; we need to handle if (contents->type == unreachable && block->type == none) { // make the block reachable by adding a break to it block->list.push_back(builder.makeBreak(block->name)); } return block; } struct Inlining : public Pass { // whether to optimize where we inline bool optimize = false; NameInfoMap infos; bool firstIteration; void run(PassRunner* runner, Module* module) override { // keep going while we inline, to handle nesting. TODO: optimize firstIteration = true; while (1) { calculateInfos(module); if (!iteration(runner, module)) { return; } firstIteration = false; } } void calculateInfos(Module* module) { infos.clear(); // fill in info, as we operate on it in parallel (each function to its own entry) for (auto& func : module->functions) { infos[func->name]; } PassRunner runner(module); runner.setIsNested(true); runner.add(&infos); runner.run(); // fill in global uses // anything exported or used in a table should not be inlined for (auto& ex : module->exports) { if (ex->kind == ExternalKind::Function) { infos[ex->value].usedGlobally = true; } } for (auto& segment : module->table.segments) { for (auto name : segment.data) { if (module->getFunctionOrNull(name)) { infos[name].usedGlobally = true; } } } } bool iteration(PassRunner* runner, Module* module) { // decide which to inline InliningState state; for (auto& func : module->functions) { // on the first iteration, allow multiple inlinings per function if (infos[func->name].worthInlining(runner->options, firstIteration /* allowMultipleInliningsPerFunction */)) { state.worthInlining.insert(func->name); } } if (state.worthInlining.size() == 0) return false; // fill in actionsForFunction, as we operate on it in parallel (each function to its own entry) for (auto& func : module->functions) { state.actionsForFunction[func->name]; } // find and plan inlinings { PassRunner runner(module); runner.setIsNested(true); runner.add(&state); runner.run(); } // perform inlinings TODO: parallelize std::unordered_map inlinedUses; // how many uses we inlined std::unordered_set inlinedInto; // which functions were inlined into for (auto& func : module->functions) { for (auto& action : state.actionsForFunction[func->name]) { Name inlinedName = action.contents->name; doInlining(module, func.get(), action); inlinedUses[inlinedName]++; inlinedInto.insert(func.get()); assert(inlinedUses[inlinedName] <= infos[inlinedName].calls); } } // anything we inlined into may now have non-unique label names, fix it up for (auto func : inlinedInto) { wasm::UniqueNameMapper::uniquify(func->body); } if (optimize && inlinedInto.size() > 0) { doOptimize(inlinedInto, module, runner); } // remove functions that we no longer need after inlining auto& funcs = module->functions; funcs.erase(std::remove_if(funcs.begin(), funcs.end(), [&](const std::unique_ptr& curr) { auto name = curr->name; auto& info = infos[name]; return inlinedUses.count(name) && inlinedUses[name] == info.calls && !info.usedGlobally; }), funcs.end()); // return whether we did any work return inlinedUses.size() > 0; } // Run useful optimizations after inlining, things like removing // unnecessary new blocks, sharing variables, etc. void doOptimize(std::unordered_set& funcs, Module* module, PassRunner* parentRunner) { // save the full list of functions on the side std::vector> all; all.swap(module->functions); module->updateMaps(); for (auto& func : funcs) { module->addFunction(func); } PassRunner runner(module, parentRunner->options); runner.setIsNested(true); runner.setValidateGlobally(false); // not a full valid module runner.add("precompute-propagate"); runner.add("remove-unused-brs"); runner.add("remove-unused-names"); runner.add("coalesce-locals"); runner.add("simplify-locals"); runner.add("vacuum"); runner.add("reorder-locals"); runner.add("remove-unused-brs"); runner.add("merge-blocks"); runner.run(); // restore all the funcs for (auto& func : module->functions) { func.release(); } all.swap(module->functions); module->updateMaps(); } }; Pass *createInliningPass() { return new Inlining(); } Pass *createInliningOptimizingPass() { auto* ret = new Inlining(); ret->optimize = true; return ret; } } // namespace wasm