/* * Copyright 2016 WebAssembly Community Group participants * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // // Implementation of the shell interpreter execution environment // #include "shared-constants.h" #include "wasm.h" #include "wasm-interpreter.h" namespace wasm { struct ExitException {}; struct TrapException {}; struct ParseException {}; struct ShellExternalInterface : ModuleInstance::ExternalInterface { // The underlying memory can be accessed through unaligned pointers which // isn't well-behaved in C++. WebAssembly nonetheless expects it to behave // properly. Avoid emitting unaligned load/store by checking for alignment // explicitly, and performing memcpy if unaligned. // // The allocated memory tries to have the same alignment as the memory being // simulated. class Memory { // Use char because it doesn't run afoul of aliasing rules. std::vector memory; template static bool aligned(const char* address) { static_assert(!(sizeof(T) & (sizeof(T) - 1)), "must be a power of 2"); return 0 == (reinterpret_cast(address) & (sizeof(T) - 1)); } Memory(Memory&) = delete; Memory& operator=(const Memory&) = delete; public: Memory() {} void resize(size_t newSize) { // Ensure the smallest allocation is large enough that most allocators // will provide page-aligned storage. This hopefully allows the // interpreter's memory to be as aligned as the memory being simulated, // ensuring that the performance doesn't needlessly degrade. // // The code is optimistic this will work until WG21's p0035r0 happens. const size_t minSize = 1 << 12; size_t oldSize = memory.size(); memory.resize(std::max(minSize, newSize)); if (newSize < oldSize && newSize < minSize) { std::memset(&memory[newSize], 0, minSize - newSize); } } template void set(size_t address, T value) { if (aligned(&memory[address])) { *reinterpret_cast(&memory[address]) = value; } else { std::memcpy(&memory[address], &value, sizeof(T)); } } template T get(size_t address) { if (aligned(&memory[address])) { return *reinterpret_cast(&memory[address]); } else { T loaded; std::memcpy(&loaded, &memory[address], sizeof(T)); return loaded; } } } memory; ShellExternalInterface() : memory() {} void init(Module& wasm) override { memory.resize(wasm.memory.initial * wasm::Memory::kPageSize); // apply memory segments for (auto segment : wasm.memory.segments) { assert(segment.offset + segment.size <= wasm.memory.initial * wasm::Memory::kPageSize); for (size_t i = 0; i != segment.size; ++i) { memory.set(segment.offset + i, segment.data[i]); } } } Literal callImport(Import *import, ModuleInstance::LiteralList& arguments) override { if (import->module == SPECTEST && import->base == PRINT) { for (auto argument : arguments) { std::cout << argument << '\n'; } return Literal(); } else if (import->module == ENV && import->base == EXIT) { // XXX hack for torture tests std::cout << "exit()\n"; throw ExitException(); } std::cout << "callImport " << import->name.str << "\n"; abort(); } Literal load(Load* load, size_t addr) override { switch (load->type) { case i32: { switch (load->bytes) { case 1: return load->signed_ ? Literal((int32_t)memory.get(addr)) : Literal((int32_t)memory.get(addr)); case 2: return load->signed_ ? Literal((int32_t)memory.get(addr)) : Literal((int32_t)memory.get(addr)); case 4: return load->signed_ ? Literal((int32_t)memory.get(addr)) : Literal((int32_t)memory.get(addr)); default: abort(); } break; } case i64: { switch (load->bytes) { case 1: return load->signed_ ? Literal((int64_t)memory.get(addr)) : Literal((int64_t)memory.get(addr)); case 2: return load->signed_ ? Literal((int64_t)memory.get(addr)) : Literal((int64_t)memory.get(addr)); case 4: return load->signed_ ? Literal((int64_t)memory.get(addr)) : Literal((int64_t)memory.get(addr)); case 8: return load->signed_ ? Literal((int64_t)memory.get(addr)) : Literal((int64_t)memory.get(addr)); default: abort(); } break; } case f32: return Literal(memory.get(addr)); case f64: return Literal(memory.get(addr)); default: abort(); } } void store(Store* store, size_t addr, Literal value) override { switch (store->type) { case i32: { switch (store->bytes) { case 1: memory.set(addr, value.geti32()); break; case 2: memory.set(addr, value.geti32()); break; case 4: memory.set(addr, value.geti32()); break; default: abort(); } break; } case i64: { switch (store->bytes) { case 1: memory.set(addr, (int8_t)value.geti64()); break; case 2: memory.set(addr, (int16_t)value.geti64()); break; case 4: memory.set(addr, (int32_t)value.geti64()); break; case 8: memory.set(addr, value.geti64()); break; default: abort(); } break; } // write floats carefully, ensuring all bits reach memory case f32: memory.set(addr, value.reinterpreti32()); break; case f64: memory.set(addr, value.reinterpreti64()); break; default: abort(); } } void growMemory(size_t /*oldSize*/, size_t newSize) override { memory.resize(newSize); } void trap(const char* why) override { std::cerr << "[trap " << why << "]\n"; throw TrapException(); } }; }