/* * Copyright 2015 WebAssembly Community Group participants * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // // Parses and emits WebAssembly binary code // #ifndef wasm_wasm_binary_h #define wasm_wasm_binary_h #include #include #include #include #include "wasm.h" #include "wasm-traversal.h" #include "asmjs/shared-constants.h" #include "asm_v_wasm.h" #include "wasm-builder.h" #include "ast_utils.h" #include "parsing.h" #include "wasm-validator.h" namespace wasm { template struct LEB { static_assert(sizeof(MiniT) == 1, "MiniT must be a byte"); T value; LEB() {} LEB(T value) : value(value) {} bool hasMore(T temp, MiniT byte) { // for signed, we must ensure the last bit has the right sign, as it will zero extend return std::is_signed::value ? (temp != 0 && int32_t(temp) != -1) || (value >= 0 && (byte & 64)) || (value < 0 && !(byte & 64)): (temp != 0); } void write(std::vector* out) { T temp = value; bool more; do { uint8_t byte = temp & 127; temp >>= 7; more = hasMore(temp, byte); if (more) { byte = byte | 128; } out->push_back(byte); } while (more); } void writeAt(std::vector* out, size_t at, size_t minimum = 0) { T temp = value; size_t offset = 0; bool more; do { uint8_t byte = temp & 127; temp >>= 7; more = hasMore(temp, byte) || offset + 1 < minimum; if (more) { byte = byte | 128; } (*out)[at + offset] = byte; offset++; } while (more); } void read(std::function get) { value = 0; T shift = 0; MiniT byte; while (1) { byte = get(); bool last = !(byte & 128); T payload = byte & 127; typedef typename std::make_unsigned::type mask_type; auto shift_mask = 0 == shift ? ~mask_type(0) : ((mask_type(1) << (sizeof(T) * 8 - shift)) - 1u); T significant_payload = payload & shift_mask; if (significant_payload != payload) { assert(std::is_signed::value && last && "dropped bits only valid for signed LEB"); } value |= significant_payload << shift; if (last) break; shift += 7; assert(size_t(shift) < sizeof(T) * 8 && "LEB overflow"); } // If signed LEB, then we might need to sign-extend. (compile should // optimize this out if not needed). if (std::is_signed::value) { shift += 7; if ((byte & 64) && size_t(shift) < 8 * sizeof(T)) { size_t sext_bits = 8 * sizeof(T) - size_t(shift); value <<= sext_bits; value >>= sext_bits; assert(value < 0 && "sign-extend should produces a negative value"); } } } }; typedef LEB U32LEB; typedef LEB U64LEB; typedef LEB S32LEB; typedef LEB S64LEB; // // We mostly stream into a buffer as we create the binary format, however, // sometimes we need to backtrack and write to a location behind us - wasm // is optimized for reading, not writing. // class BufferWithRandomAccess : public std::vector { bool debug; public: BufferWithRandomAccess(bool debug) : debug(debug) {} BufferWithRandomAccess& operator<<(int8_t x) { if (debug) std::cerr << "writeInt8: " << (int)(uint8_t)x << " (at " << size() << ")" << std::endl; push_back(x); return *this; } BufferWithRandomAccess& operator<<(int16_t x) { if (debug) std::cerr << "writeInt16: " << x << " (at " << size() << ")" << std::endl; push_back(x & 0xff); push_back(x >> 8); return *this; } BufferWithRandomAccess& operator<<(int32_t x) { if (debug) std::cerr << "writeInt32: " << x << " (at " << size() << ")" << std::endl; push_back(x & 0xff); x >>= 8; push_back(x & 0xff); x >>= 8; push_back(x & 0xff); x >>= 8; push_back(x & 0xff); return *this; } BufferWithRandomAccess& operator<<(int64_t x) { if (debug) std::cerr << "writeInt64: " << x << " (at " << size() << ")" << std::endl; push_back(x & 0xff); x >>= 8; push_back(x & 0xff); x >>= 8; push_back(x & 0xff); x >>= 8; push_back(x & 0xff); x >>= 8; push_back(x & 0xff); x >>= 8; push_back(x & 0xff); x >>= 8; push_back(x & 0xff); x >>= 8; push_back(x & 0xff); return *this; } BufferWithRandomAccess& operator<<(U32LEB x) { if (debug) std::cerr << "writeU32LEB: " << x.value << " (at " << size() << ")" << std::endl; x.write(this); return *this; } BufferWithRandomAccess& operator<<(U64LEB x) { if (debug) std::cerr << "writeU64LEB: " << x.value << " (at " << size() << ")" << std::endl; x.write(this); return *this; } BufferWithRandomAccess& operator<<(S32LEB x) { if (debug) std::cerr << "writeS32LEB: " << x.value << " (at " << size() << ")" << std::endl; x.write(this); return *this; } BufferWithRandomAccess& operator<<(S64LEB x) { if (debug) std::cerr << "writeS64LEB: " << x.value << " (at " << size() << ")" << std::endl; x.write(this); return *this; } BufferWithRandomAccess& operator<<(uint8_t x) { return *this << (int8_t)x; } BufferWithRandomAccess& operator<<(uint16_t x) { return *this << (int16_t)x; } BufferWithRandomAccess& operator<<(uint32_t x) { return *this << (int32_t)x; } BufferWithRandomAccess& operator<<(uint64_t x) { return *this << (int64_t)x; } BufferWithRandomAccess& operator<<(float x) { if (debug) std::cerr << "writeFloat32: " << x << " (at " << size() << ")" << std::endl; return *this << Literal(x).reinterpreti32(); } BufferWithRandomAccess& operator<<(double x) { if (debug) std::cerr << "writeFloat64: " << x << " (at " << size() << ")" << std::endl; return *this << Literal(x).reinterpreti64(); } void writeAt(size_t i, uint16_t x) { if (debug) std::cerr << "backpatchInt16: " << x << " (at " << i << ")" << std::endl; (*this)[i] = x & 0xff; (*this)[i+1] = x >> 8; } void writeAt(size_t i, uint32_t x) { if (debug) std::cerr << "backpatchInt32: " << x << " (at " << i << ")" << std::endl; (*this)[i] = x & 0xff; x >>= 8; (*this)[i+1] = x & 0xff; x >>= 8; (*this)[i+2] = x & 0xff; x >>= 8; (*this)[i+3] = x & 0xff; } void writeAt(size_t i, U32LEB x) { if (debug) std::cerr << "backpatchU32LEB: " << x.value << " (at " << i << ")" << std::endl; x.writeAt(this, i, 5); // fill all 5 bytes, we have to do this when backpatching } template void writeTo(T& o) { for (auto c : *this) o << c; } }; namespace BinaryConsts { enum Meta { Magic = 0x6d736100, Version = 0x0c }; enum Section { User = 0, Type = 1, Import = 2, Function = 3, Table = 4, Memory = 5, Global = 6, Export = 7, Start = 8, Element = 9, Code = 10, Data = 11 }; enum ElementType { AnyFunc = 0x20 }; namespace UserSections { extern const char* Name; } enum ASTNodes { CurrentMemory = 0x3b, GrowMemory = 0x39, I32Add = 0x40, I32Sub = 0x41, I32Mul = 0x42, I32DivS = 0x43, I32DivU = 0x44, I32RemS = 0x45, I32RemU = 0x46, I32And = 0x47, I32Or = 0x48, I32Xor = 0x49, I32Shl = 0x4a, I32ShrU = 0x4b, I32ShrS = 0x4c, I32Eq = 0x4d, I32Ne = 0x4e, I32LtS = 0x4f, I32LeS = 0x50, I32LtU = 0x51, I32LeU = 0x52, I32GtS = 0x53, I32GeS = 0x54, I32GtU = 0x55, I32GeU = 0x56, I32Clz = 0x57, I32Ctz = 0x58, I32Popcnt = 0x59, I32EqZ = 0x5a, I64Add = 0x5b, I64Sub = 0x5c, I64Mul = 0x5d, I64DivS = 0x5e, I64DivU = 0x5f, I64RemS = 0x60, I64RemU = 0x61, I64And = 0x62, I64Or = 0x63, I64Xor = 0x64, I64Shl = 0x65, I64ShrU = 0x66, I64ShrS = 0x67, I64Eq = 0x68, I64Ne = 0x69, I64LtS = 0x6a, I64LeS = 0x6b, I64LtU = 0x6c, I64LeU = 0x6d, I64GtS = 0x6e, I64GeS = 0x6f, I64GtU = 0x70, I64GeU = 0x71, I64Clz = 0x72, I64Ctz = 0x73, I64Popcnt = 0x74, I64EqZ = 0xba, F32Add = 0x75, F32Sub = 0x76, F32Mul = 0x77, F32Div = 0x78, F32Min = 0x79, F32Max = 0x7a, F32Abs = 0x7b, F32Neg = 0x7c, F32CopySign = 0x7d, F32Ceil = 0x7e, F32Floor = 0x7f, F32Trunc = 0x80, F32NearestInt = 0x81, F32Sqrt = 0x82, F32Eq = 0x83, F32Ne = 0x84, F32Lt = 0x85, F32Le = 0x86, F32Gt = 0x87, F32Ge = 0x88, F64Add = 0x89, F64Sub = 0x8a, F64Mul = 0x8b, F64Div = 0x8c, F64Min = 0x8d, F64Max = 0x8e, F64Abs = 0x8f, F64Neg = 0x90, F64CopySign = 0x91, F64Ceil = 0x92, F64Floor = 0x93, F64Trunc = 0x94, F64NearestInt = 0x95, F64Sqrt = 0x96, F64Eq = 0x97, F64Ne = 0x98, F64Lt = 0x99, F64Le = 0x9a, F64Gt = 0x9b, F64Ge = 0x9c, I32STruncF32 = 0x9d, I32STruncF64 = 0x9e, I32UTruncF32 = 0x9f, I32UTruncF64 = 0xa0, I32ConvertI64 = 0xa1, I64STruncF32 = 0xa2, I64STruncF64 = 0xa3, I64UTruncF32 = 0xa4, I64UTruncF64 = 0xa5, I64STruncI32 = 0xa6, I64UTruncI32 = 0xa7, F32SConvertI32 = 0xa8, F32UConvertI32 = 0xa9, F32SConvertI64 = 0xaa, F32UConvertI64 = 0xab, F32ConvertF64 = 0xac, F32ReinterpretI32 = 0xad, F64SConvertI32 = 0xae, F64UConvertI32 = 0xaf, F64SConvertI64 = 0xb0, F64UConvertI64 = 0xb1, F64ConvertF32 = 0xb2, F64ReinterpretI64 = 0xb3, I32ReinterpretF32 = 0xb4, I64ReinterpretF64 = 0xb5, I32RotR = 0xb6, I32RotL = 0xb7, I64RotR = 0xb8, I64RotL = 0xb9, I32LoadMem8S = 0x20, I32LoadMem8U = 0x21, I32LoadMem16S = 0x22, I32LoadMem16U = 0x23, I64LoadMem8S = 0x24, I64LoadMem8U = 0x25, I64LoadMem16S = 0x26, I64LoadMem16U = 0x27, I64LoadMem32S = 0x28, I64LoadMem32U = 0x29, I32LoadMem = 0x2a, I64LoadMem = 0x2b, F32LoadMem = 0x2c, F64LoadMem = 0x2d, I32StoreMem8 = 0x2e, I32StoreMem16 = 0x2f, I64StoreMem8 = 0x30, I64StoreMem16 = 0x31, I64StoreMem32 = 0x32, I32StoreMem = 0x33, I64StoreMem = 0x34, F32StoreMem = 0x35, F64StoreMem = 0x36, I32Const = 0x10, I64Const = 0x11, F64Const = 0x12, F32Const = 0x13, GetLocal = 0x14, SetLocal = 0x15, CallFunction = 0x16, CallIndirect = 0x17, TeeLocal = 0x19, GetGlobal = 0x1a, SetGlobal = 0x1b, Unreachable = 0x00, Block = 0x01, Loop = 0x02, If = 0x03, Else = 0x04, Select = 0x05, Br = 0x06, BrIf = 0x07, TableSwitch = 0x08, Return = 0x09, Nop = 0x0a, Drop = 0x0b, End = 0x0f }; enum MemoryAccess { Offset = 0x10, // bit 4 Alignment = 0x80, // bit 7 NaturalAlignment = 0 }; enum TypeForms { Basic = 0x40 }; } // namespace BinaryConsts struct ArityChecker : public PostWalker> { std::unordered_map arities; ArityChecker(Expression* function) { walk(function); } void visitBreak(Break* curr) { // Assume the module has already beeen type-checked, and that all breaks have matching arity. if (curr->value) arities[curr->name] = true; } }; inline int8_t binaryWasmType(WasmType type) { switch (type) { case none: return 0; case i32: return 1; case i64: return 2; case f32: return 3; case f64: return 4; default: abort(); } } class WasmBinaryWriter : public Visitor { Module* wasm; BufferWithRandomAccess& o; bool debug; bool debugInfo = true; std::unordered_map brTargetArities; MixedArena allocator; void prepare() { // we need function types for all our functions for (auto& func : wasm->functions) { if (func->type.isNull()) { func->type = ensureFunctionType(getSig(func.get()), wasm)->name; } // TODO: depending on upstream flux https://github.com/WebAssembly/spec/pull/301 might want this: assert(!func->type.isNull()); } } public: WasmBinaryWriter(Module* input, BufferWithRandomAccess& o, bool debug) : wasm(input), o(o), debug(debug) { prepare(); } void setDebugInfo(bool set) { debugInfo = set; } void write() { writeHeader(); writeTypes(); writeImports(); writeFunctionSignatures(); writeFunctionTable(); writeMemory(); writeGlobals(); writeExports(); writeStart(); writeFunctions(); writeDataSegments(); if (debugInfo) writeNames(); finishUp(); } void writeHeader() { if (debug) std::cerr << "== writeHeader" << std::endl; o << int32_t(BinaryConsts::Magic); // magic number \0asm o << int32_t(BinaryConsts::Version); } int32_t writeU32LEBPlaceholder() { int32_t ret = o.size(); o << int32_t(0); o << int8_t(0); return ret; } void writeResizableLimits(Address initial, Address maximum) { uint32_t flags = maximum ? 1 : 0; o << U32LEB(flags); o << U32LEB(initial); if (flags) { o << U32LEB(maximum); } } int32_t startSection(BinaryConsts::Section code) { o << U32LEB(code); return writeU32LEBPlaceholder(); // section size to be filled in later } void finishSection(int32_t start) { int32_t size = o.size() - start - 6; // section size does not include the 6 bytes of the code and size field o.writeAt(start, U32LEB(size)); } void writeStart() { if (!wasm->start.is()) return; if (debug) std::cerr << "== writeStart" << std::endl; auto start = startSection(BinaryConsts::Section::Start); o << U32LEB(getFunctionIndex(wasm->start.str)); finishSection(start); } void writeMemory() { if (wasm->memory.max == 0) return; if (debug) std::cerr << "== writeMemory" << std::endl; auto start = startSection(BinaryConsts::Section::Memory); o << U32LEB(1); // Define 1 memory Address max = wasm->memory.max == Memory::kMaxSize ? Address(0) : wasm->memory.max; writeResizableLimits(wasm->memory.initial, max); finishSection(start); } void writeTypes() { if (wasm->functionTypes.size() == 0) return; if (debug) std::cerr << "== writeTypes" << std::endl; auto start = startSection(BinaryConsts::Section::Type); o << U32LEB(wasm->functionTypes.size()); for (auto& type : wasm->functionTypes) { if (debug) std::cerr << "write one" << std::endl; o << int8_t(BinaryConsts::TypeForms::Basic); o << U32LEB(type->params.size()); for (auto param : type->params) { o << binaryWasmType(param); } if (type->result == none) { o << U32LEB(0); } else { o << U32LEB(1); o << binaryWasmType(type->result); } } finishSection(start); } int32_t getFunctionTypeIndex(Name type) { // TODO: optimize for (size_t i = 0; i < wasm->functionTypes.size(); i++) { if (wasm->functionTypes[i]->name == type) return i; } abort(); } void writeImports() { if (wasm->imports.size() == 0) return; if (debug) std::cerr << "== writeImports" << std::endl; auto start = startSection(BinaryConsts::Section::Import); o << U32LEB(wasm->imports.size()); for (auto& import : wasm->imports) { if (debug) std::cerr << "write one" << std::endl; writeInlineString(import->module.str); writeInlineString(import->base.str); o << U32LEB(import->kind); switch (import->kind) { case Export::Function: o << U32LEB(getFunctionTypeIndex(import->functionType->name)); break; case Export::Table: { o << U32LEB(BinaryConsts::ElementType::AnyFunc); auto max = wasm->table.max == Table::kMaxSize ? Address(0) : wasm->table.max; writeResizableLimits(wasm->table.initial, max); break; } case Export::Memory: { auto max = wasm->memory.max == Memory::kMaxSize ? Address(0) : wasm->memory.max; writeResizableLimits(wasm->memory.initial, max); break; } case Export::Global: o << binaryWasmType(import->globalType); o << U32LEB(0); // Mutable global's can't be imported for now. break; default: WASM_UNREACHABLE(); } } finishSection(start); } std::map mappedLocals; // local index => index in compact form of [all int32s][all int64s]etc std::map numLocalsByType; // type => number of locals of that type in the compact form void mapLocals(Function* function) { for (Index i = 0; i < function->getNumParams(); i++) { size_t curr = mappedLocals.size(); mappedLocals[i] = curr; } for (auto type : function->vars) { numLocalsByType[type]++; } std::map currLocalsByType; for (Index i = function->getVarIndexBase(); i < function->getNumLocals(); i++) { size_t index = function->getVarIndexBase(); WasmType type = function->getLocalType(i); currLocalsByType[type]++; // increment now for simplicity, must decrement it in returns if (type == i32) { mappedLocals[i] = index + currLocalsByType[i32] - 1; continue; } index += numLocalsByType[i32]; if (type == i64) { mappedLocals[i] = index + currLocalsByType[i64] - 1; continue; } index += numLocalsByType[i64]; if (type == f32) { mappedLocals[i] = index + currLocalsByType[f32] - 1; continue; } index += numLocalsByType[f32]; if (type == f64) { mappedLocals[i] = index + currLocalsByType[f64] - 1; continue; } abort(); } } void writeFunctionSignatures() { if (wasm->functions.size() == 0) return; if (debug) std::cerr << "== writeFunctionSignatures" << std::endl; auto start = startSection(BinaryConsts::Section::Function); o << U32LEB(wasm->functions.size()); for (auto& curr : wasm->functions) { if (debug) std::cerr << "write one" << std::endl; o << U32LEB(getFunctionTypeIndex(curr->type)); } finishSection(start); } void writeExpression(Expression* curr) { assert(depth == 0); recurse(curr); assert(depth == 0); } void writeFunctions() { if (wasm->functions.size() == 0) return; if (debug) std::cerr << "== writeFunctions" << std::endl; auto start = startSection(BinaryConsts::Section::Code); size_t total = wasm->functions.size(); o << U32LEB(total); for (size_t i = 0; i < total; i++) { if (debug) std::cerr << "write one at" << o.size() << std::endl; size_t sizePos = writeU32LEBPlaceholder(); size_t start = o.size(); Function* function = wasm->functions[i].get(); mappedLocals.clear(); numLocalsByType.clear(); if (debug) std::cerr << "writing" << function->name << std::endl; mapLocals(function); o << U32LEB( (numLocalsByType[i32] ? 1 : 0) + (numLocalsByType[i64] ? 1 : 0) + (numLocalsByType[f32] ? 1 : 0) + (numLocalsByType[f64] ? 1 : 0) ); if (numLocalsByType[i32]) o << U32LEB(numLocalsByType[i32]) << binaryWasmType(i32); if (numLocalsByType[i64]) o << U32LEB(numLocalsByType[i64]) << binaryWasmType(i64); if (numLocalsByType[f32]) o << U32LEB(numLocalsByType[f32]) << binaryWasmType(f32); if (numLocalsByType[f64]) o << U32LEB(numLocalsByType[f64]) << binaryWasmType(f64); ArityChecker ar(function->body); brTargetArities = std::move(ar.arities); writeExpression(function->body); size_t size = o.size() - start; assert(size <= std::numeric_limits::max()); if (debug) std::cerr << "body size: " << size << ", writing at " << sizePos << ", next starts at " << o.size() << std::endl; o.writeAt(sizePos, U32LEB(size)); } finishSection(start); } void writeGlobals() { if (wasm->globals.size() == 0) return; if (debug) std::cerr << "== writeglobals" << std::endl; auto start = startSection(BinaryConsts::Section::Global); o << U32LEB(wasm->globals.size()); for (auto& curr : wasm->globals) { if (debug) std::cerr << "write one" << std::endl; o << binaryWasmType(curr->type); writeExpression(curr->init); o << int8_t(BinaryConsts::End); } finishSection(start); } void writeExports() { if (wasm->exports.size() == 0) return; if (debug) std::cerr << "== writeexports" << std::endl; auto start = startSection(BinaryConsts::Section::Export); o << U32LEB(wasm->exports.size()); for (auto& curr : wasm->exports) { if (debug) std::cerr << "write one" << std::endl; writeInlineString(curr->name.str); o << U32LEB(curr->kind); switch (curr->kind) { case Export::Function: o << U32LEB(getFunctionIndex(curr->value)); break; case Export::Table: o << U32LEB(0); break; case Export::Memory: o << U32LEB(0); break; case Export::Global: o << U32LEB(getGlobalIndex(curr->value)); break; default: WASM_UNREACHABLE(); } } finishSection(start); } void writeDataSegments() { if (wasm->memory.segments.size() == 0) return; uint32_t num = 0; for (auto& segment : wasm->memory.segments) { if (segment.data.size() > 0) num++; } auto start = startSection(BinaryConsts::Section::Data); o << U32LEB(num); for (auto& segment : wasm->memory.segments) { if (segment.data.size() == 0) continue; o << U32LEB(0); // Linear memory 0 in the MVP writeExpression(segment.offset); o << int8_t(BinaryConsts::End); writeInlineBuffer(&segment.data[0], segment.data.size()); } finishSection(start); } std::map mappedFunctions; // name of the Function => index. first imports, then internals uint32_t getFunctionIndex(Name name) { if (!mappedFunctions.size()) { // Create name => index mapping. for (auto& import : wasm->imports) { if (import->kind != Import::Function) continue; assert(mappedFunctions.count(import->name) == 0); auto index = mappedFunctions.size(); mappedFunctions[import->name] = index; } for (size_t i = 0; i < wasm->functions.size(); i++) { assert(mappedFunctions.count(wasm->functions[i]->name) == 0); auto index = mappedFunctions.size(); mappedFunctions[wasm->functions[i]->name] = index; } } assert(mappedFunctions.count(name)); return mappedFunctions[name]; } std::map mappedGlobals; // name of the Global => index. first imported globals, then internal globals uint32_t getGlobalIndex(Name name) { if (!mappedGlobals.size()) { // Create name => index mapping. for (auto& import : wasm->imports) { if (import->kind != Import::Global) continue; assert(mappedGlobals.count(import->name) == 0); auto index = mappedGlobals.size(); mappedGlobals[import->name] = index; } for (size_t i = 0; i < wasm->globals.size(); i++) { assert(mappedGlobals.count(wasm->globals[i]->name) == 0); auto index = mappedGlobals.size(); mappedGlobals[wasm->globals[i]->name] = index; } } assert(mappedGlobals.count(name)); return mappedGlobals[name]; } void writeFunctionTable() { if (wasm->table.segments.size() == 0) return; if (debug) std::cerr << "== writeFunctionTable" << std::endl; auto start = startSection(BinaryConsts::Section::Table); o << U32LEB(wasm->table.initial); o << U32LEB(wasm->table.max); o << U32LEB(wasm->table.segments.size()); for (auto& segment : wasm->table.segments) { writeExpression(segment.offset); o << int8_t(BinaryConsts::End); o << U32LEB(segment.data.size()); for (auto name : segment.data) { o << U32LEB(getFunctionIndex(name)); } } finishSection(start); } void writeNames() { if (wasm->functions.size() == 0) return; if (debug) std::cerr << "== writeNames" << std::endl; auto start = startSection(BinaryConsts::Section::User); writeInlineString(BinaryConsts::UserSections::Name); o << U32LEB(wasm->functions.size()); for (auto& curr : wasm->functions) { writeInlineString(curr->name.str); o << U32LEB(0); // TODO: locals } finishSection(start); } // helpers void writeInlineString(const char* name) { int32_t size = strlen(name); o << U32LEB(size); for (int32_t i = 0; i < size; i++) { o << int8_t(name[i]); } } void writeInlineBuffer(const char* data, size_t size) { o << U32LEB(size); for (size_t i = 0; i < size; i++) { o << int8_t(data[i]); } } struct Buffer { const char* data; size_t size; size_t pointerLocation; Buffer(const char* data, size_t size, size_t pointerLocation) : data(data), size(size), pointerLocation(pointerLocation) {} }; std::vector buffersToWrite; void emitBuffer(const char* data, size_t size) { assert(size > 0); buffersToWrite.emplace_back(data, size, o.size()); o << uint32_t(0); // placeholder, we'll fill in the pointer to the buffer later when we have it } void emitString(const char *str) { if (debug) std::cerr << "emitString " << str << std::endl; emitBuffer(str, strlen(str) + 1); } void finishUp() { if (debug) std::cerr << "finishUp" << std::endl; // finish buffers for (const auto& buffer : buffersToWrite) { if (debug) std::cerr << "writing buffer" << (int)buffer.data[0] << "," << (int)buffer.data[1] << " at " << o.size() << " and pointer is at " << buffer.pointerLocation << std::endl; o.writeAt(buffer.pointerLocation, (uint32_t)o.size()); for (size_t i = 0; i < buffer.size; i++) { o << (uint8_t)buffer.data[i]; } } } // AST writing via visitors int depth = 0; // only for debugging void recurse(Expression*& curr) { if (debug) std::cerr << "zz recurse into " << ++depth << " at " << o.size() << std::endl; visit(curr); if (debug) std::cerr << "zz recurse from " << depth-- << " at " << o.size() << std::endl; } std::vector breakStack; void visitBlock(Block *curr) { if (debug) std::cerr << "zz node: Block" << std::endl; o << int8_t(BinaryConsts::Block); int arity = curr->type != none && curr->type != unreachable; if (brTargetArities.count(curr->name)) { if (curr->type == unreachable) { arity = brTargetArities[curr->name]; } else { assert((curr->type != none) == brTargetArities[curr->name]); } } // For blocks with type unreachable but whose breaks have arity 1, encode i32 as their // signature so that the decoder knows to pop a value for the breaks' values. o << binaryWasmType(curr->type != unreachable ? curr->type : arity ? i32 : none); breakStack.push_back(curr->name); size_t i = 0; for (auto* child : curr->list) { if (debug) std::cerr << " " << size_t(curr) << "\n zz Block element " << i++ << std::endl; recurse(child); } breakStack.pop_back(); o << int8_t(BinaryConsts::End); } // emits a node, but if it is a block with no name, emit a list of its contents void recursePossibleBlockContents(Expression* curr) { auto* block = curr->dynCast(); if (!block || (block->name.is() && BreakSeeker::has(curr, block->name))) { recurse(curr); return; } for (auto* child : block->list) { recurse(child); } } void visitIf(If *curr) { if (debug) std::cerr << "zz node: If" << std::endl; recurse(curr->condition); o << int8_t(BinaryConsts::If); o << binaryWasmType(curr->type != unreachable ? curr->type : none); breakStack.push_back(IMPOSSIBLE_CONTINUE); // the binary format requires this; we have a block if we need one; TODO: optimize recursePossibleBlockContents(curr->ifTrue); // TODO: emit block contents directly, if possible breakStack.pop_back(); if (curr->ifFalse) { o << int8_t(BinaryConsts::Else); breakStack.push_back(IMPOSSIBLE_CONTINUE); // TODO ditto recursePossibleBlockContents(curr->ifFalse); breakStack.pop_back(); } o << int8_t(BinaryConsts::End); } void visitLoop(Loop *curr) { if (debug) std::cerr << "zz node: Loop" << std::endl; o << int8_t(BinaryConsts::Loop); o << binaryWasmType(curr->type != unreachable ? curr->type : none); breakStack.push_back(curr->name); recursePossibleBlockContents(curr->body); breakStack.pop_back(); o << int8_t(BinaryConsts::End); } int32_t getBreakIndex(Name name) { // -1 if not found for (int i = breakStack.size() - 1; i >= 0; i--) { if (breakStack[i] == name) { return breakStack.size() - 1 - i; } } std::cerr << "bad break: " << name << std::endl; abort(); } void visitBreak(Break *curr) { if (debug) std::cerr << "zz node: Break" << std::endl; if (curr->value) { recurse(curr->value); } if (curr->condition) recurse(curr->condition); o << int8_t(curr->condition ? BinaryConsts::BrIf : BinaryConsts::Br) << U32LEB(getBreakIndex(curr->name)); } void visitSwitch(Switch *curr) { if (debug) std::cerr << "zz node: Switch" << std::endl; if (curr->value) { recurse(curr->value); } recurse(curr->condition); o << int8_t(BinaryConsts::TableSwitch) << U32LEB(curr->targets.size()); for (auto target : curr->targets) { o << U32LEB(getBreakIndex(target)); } o << U32LEB(getBreakIndex(curr->default_)); } void visitCall(Call *curr) { if (debug) std::cerr << "zz node: Call" << std::endl; for (auto* operand : curr->operands) { recurse(operand); } o << int8_t(BinaryConsts::CallFunction) << U32LEB(getFunctionIndex(curr->target)); } void visitCallImport(CallImport *curr) { if (debug) std::cerr << "zz node: CallImport" << std::endl; for (auto* operand : curr->operands) { recurse(operand); } o << int8_t(BinaryConsts::CallFunction) << U32LEB(getFunctionIndex(curr->target)); } void visitCallIndirect(CallIndirect *curr) { if (debug) std::cerr << "zz node: CallIndirect" << std::endl; recurse(curr->target); for (auto* operand : curr->operands) { recurse(operand); } o << int8_t(BinaryConsts::CallIndirect) << U32LEB(curr->operands.size()) << U32LEB(getFunctionTypeIndex(curr->fullType)); } void visitGetLocal(GetLocal *curr) { if (debug) std::cerr << "zz node: GetLocal " << (o.size() + 1) << std::endl; o << int8_t(BinaryConsts::GetLocal) << U32LEB(mappedLocals[curr->index]); } void visitSetLocal(SetLocal *curr) { if (debug) std::cerr << "zz node: Set|TeeLocal" << std::endl; recurse(curr->value); o << int8_t(curr->isTee() ? BinaryConsts::TeeLocal : BinaryConsts::SetLocal) << U32LEB(mappedLocals[curr->index]); } void visitGetGlobal(GetGlobal *curr) { if (debug) std::cerr << "zz node: GetGlobal " << (o.size() + 1) << std::endl; o << int8_t(BinaryConsts::GetGlobal) << U32LEB(getGlobalIndex(curr->name)); } void visitSetGlobal(SetGlobal *curr) { if (debug) std::cerr << "zz node: SetGlobal" << std::endl; recurse(curr->value); o << int8_t(BinaryConsts::SetGlobal) << U32LEB(getGlobalIndex(curr->name)); } void emitMemoryAccess(size_t alignment, size_t bytes, uint32_t offset) { o << U32LEB(Log2(alignment ? alignment : bytes)); o << U32LEB(offset); } void visitLoad(Load *curr) { if (debug) std::cerr << "zz node: Load" << std::endl; recurse(curr->ptr); switch (curr->type) { case i32: { switch (curr->bytes) { case 1: o << int8_t(curr->signed_ ? BinaryConsts::I32LoadMem8S : BinaryConsts::I32LoadMem8U); break; case 2: o << int8_t(curr->signed_ ? BinaryConsts::I32LoadMem16S : BinaryConsts::I32LoadMem16U); break; case 4: o << int8_t(BinaryConsts::I32LoadMem); break; default: abort(); } break; } case i64: { switch (curr->bytes) { case 1: o << int8_t(curr->signed_ ? BinaryConsts::I64LoadMem8S : BinaryConsts::I64LoadMem8U); break; case 2: o << int8_t(curr->signed_ ? BinaryConsts::I64LoadMem16S : BinaryConsts::I64LoadMem16U); break; case 4: o << int8_t(curr->signed_ ? BinaryConsts::I64LoadMem32S : BinaryConsts::I64LoadMem32U); break; case 8: o << int8_t(BinaryConsts::I64LoadMem); break; default: abort(); } break; } case f32: o << int8_t(BinaryConsts::F32LoadMem); break; case f64: o << int8_t(BinaryConsts::F64LoadMem); break; default: abort(); } emitMemoryAccess(curr->align, curr->bytes, curr->offset); } void visitStore(Store *curr) { if (debug) std::cerr << "zz node: Store" << std::endl; recurse(curr->ptr); recurse(curr->value); switch (curr->valueType) { case i32: { switch (curr->bytes) { case 1: o << int8_t(BinaryConsts::I32StoreMem8); break; case 2: o << int8_t(BinaryConsts::I32StoreMem16); break; case 4: o << int8_t(BinaryConsts::I32StoreMem); break; default: abort(); } break; } case i64: { switch (curr->bytes) { case 1: o << int8_t(BinaryConsts::I64StoreMem8); break; case 2: o << int8_t(BinaryConsts::I64StoreMem16); break; case 4: o << int8_t(BinaryConsts::I64StoreMem32); break; case 8: o << int8_t(BinaryConsts::I64StoreMem); break; default: abort(); } break; } case f32: o << int8_t(BinaryConsts::F32StoreMem); break; case f64: o << int8_t(BinaryConsts::F64StoreMem); break; default: abort(); } emitMemoryAccess(curr->align, curr->bytes, curr->offset); } void visitConst(Const *curr) { if (debug) std::cerr << "zz node: Const" << curr << " : " << curr->type << std::endl; switch (curr->type) { case i32: { o << int8_t(BinaryConsts::I32Const) << S32LEB(curr->value.geti32()); break; } case i64: { o << int8_t(BinaryConsts::I64Const) << S64LEB(curr->value.geti64()); break; } case f32: { o << int8_t(BinaryConsts::F32Const) << curr->value.getf32(); break; } case f64: { o << int8_t(BinaryConsts::F64Const) << curr->value.getf64(); break; } default: abort(); } if (debug) std::cerr << "zz const node done.\n"; } void visitUnary(Unary *curr) { if (debug) std::cerr << "zz node: Unary" << std::endl; recurse(curr->value); switch (curr->op) { case ClzInt32: o << int8_t(BinaryConsts::I32Clz); break; case CtzInt32: o << int8_t(BinaryConsts::I32Ctz); break; case PopcntInt32: o << int8_t(BinaryConsts::I32Popcnt); break; case EqZInt32: o << int8_t(BinaryConsts::I32EqZ); break; case ClzInt64: o << int8_t(BinaryConsts::I64Clz); break; case CtzInt64: o << int8_t(BinaryConsts::I64Ctz); break; case PopcntInt64: o << int8_t(BinaryConsts::I64Popcnt); break; case EqZInt64: o << int8_t(BinaryConsts::I64EqZ); break; case NegFloat32: o << int8_t(BinaryConsts::F32Neg); break; case AbsFloat32: o << int8_t(BinaryConsts::F32Abs); break; case CeilFloat32: o << int8_t(BinaryConsts::F32Ceil); break; case FloorFloat32: o << int8_t(BinaryConsts::F32Floor); break; case TruncFloat32: o << int8_t(BinaryConsts::F32Trunc); break; case NearestFloat32: o << int8_t(BinaryConsts::F32NearestInt); break; case SqrtFloat32: o << int8_t(BinaryConsts::F32Sqrt); break; case NegFloat64: o << int8_t(BinaryConsts::F64Neg); break; case AbsFloat64: o << int8_t(BinaryConsts::F64Abs); break; case CeilFloat64: o << int8_t(BinaryConsts::F64Ceil); break; case FloorFloat64: o << int8_t(BinaryConsts::F64Floor); break; case TruncFloat64: o << int8_t(BinaryConsts::F64Trunc); break; case NearestFloat64: o << int8_t(BinaryConsts::F64NearestInt); break; case SqrtFloat64: o << int8_t(BinaryConsts::F64Sqrt); break; case ExtendSInt32: o << int8_t(BinaryConsts::I64STruncI32); break; case ExtendUInt32: o << int8_t(BinaryConsts::I64UTruncI32); break; case WrapInt64: o << int8_t(BinaryConsts::I32ConvertI64); break; case TruncUFloat32ToInt32: o << int8_t(BinaryConsts::I32UTruncF32); break; case TruncUFloat32ToInt64: o << int8_t(BinaryConsts::I64UTruncF32); break; case TruncSFloat32ToInt32: o << int8_t(BinaryConsts::I32STruncF32); break; case TruncSFloat32ToInt64: o << int8_t(BinaryConsts::I64STruncF32); break; case TruncUFloat64ToInt32: o << int8_t(BinaryConsts::I32UTruncF64); break; case TruncUFloat64ToInt64: o << int8_t(BinaryConsts::I64UTruncF64); break; case TruncSFloat64ToInt32: o << int8_t(BinaryConsts::I32STruncF64); break; case TruncSFloat64ToInt64: o << int8_t(BinaryConsts::I64STruncF64); break; case ConvertUInt32ToFloat32: o << int8_t(BinaryConsts::F32UConvertI32); break; case ConvertUInt32ToFloat64: o << int8_t(BinaryConsts::F64UConvertI32); break; case ConvertSInt32ToFloat32: o << int8_t(BinaryConsts::F32SConvertI32); break; case ConvertSInt32ToFloat64: o << int8_t(BinaryConsts::F64SConvertI32); break; case ConvertUInt64ToFloat32: o << int8_t(BinaryConsts::F32UConvertI64); break; case ConvertUInt64ToFloat64: o << int8_t(BinaryConsts::F64UConvertI64); break; case ConvertSInt64ToFloat32: o << int8_t(BinaryConsts::F32SConvertI64); break; case ConvertSInt64ToFloat64: o << int8_t(BinaryConsts::F64SConvertI64); break; case DemoteFloat64: o << int8_t(BinaryConsts::F32ConvertF64); break; case PromoteFloat32: o << int8_t(BinaryConsts::F64ConvertF32); break; case ReinterpretFloat32: o << int8_t(BinaryConsts::I32ReinterpretF32); break; case ReinterpretFloat64: o << int8_t(BinaryConsts::I64ReinterpretF64); break; case ReinterpretInt32: o << int8_t(BinaryConsts::F32ReinterpretI32); break; case ReinterpretInt64: o << int8_t(BinaryConsts::F64ReinterpretI64); break; default: abort(); } } void visitBinary(Binary *curr) { if (debug) std::cerr << "zz node: Binary" << std::endl; recurse(curr->left); recurse(curr->right); switch (curr->op) { case AddInt32: o << int8_t(BinaryConsts::I32Add); break; case SubInt32: o << int8_t(BinaryConsts::I32Sub); break; case MulInt32: o << int8_t(BinaryConsts::I32Mul); break; case DivSInt32: o << int8_t(BinaryConsts::I32DivS); break; case DivUInt32: o << int8_t(BinaryConsts::I32DivU); break; case RemSInt32: o << int8_t(BinaryConsts::I32RemS); break; case RemUInt32: o << int8_t(BinaryConsts::I32RemU); break; case AndInt32: o << int8_t(BinaryConsts::I32And); break; case OrInt32: o << int8_t(BinaryConsts::I32Or); break; case XorInt32: o << int8_t(BinaryConsts::I32Xor); break; case ShlInt32: o << int8_t(BinaryConsts::I32Shl); break; case ShrUInt32: o << int8_t(BinaryConsts::I32ShrU); break; case ShrSInt32: o << int8_t(BinaryConsts::I32ShrS); break; case RotLInt32: o << int8_t(BinaryConsts::I32RotL); break; case RotRInt32: o << int8_t(BinaryConsts::I32RotR); break; case EqInt32: o << int8_t(BinaryConsts::I32Eq); break; case NeInt32: o << int8_t(BinaryConsts::I32Ne); break; case LtSInt32: o << int8_t(BinaryConsts::I32LtS); break; case LtUInt32: o << int8_t(BinaryConsts::I32LtU); break; case LeSInt32: o << int8_t(BinaryConsts::I32LeS); break; case LeUInt32: o << int8_t(BinaryConsts::I32LeU); break; case GtSInt32: o << int8_t(BinaryConsts::I32GtS); break; case GtUInt32: o << int8_t(BinaryConsts::I32GtU); break; case GeSInt32: o << int8_t(BinaryConsts::I32GeS); break; case GeUInt32: o << int8_t(BinaryConsts::I32GeU); break; case AddInt64: o << int8_t(BinaryConsts::I64Add); break; case SubInt64: o << int8_t(BinaryConsts::I64Sub); break; case MulInt64: o << int8_t(BinaryConsts::I64Mul); break; case DivSInt64: o << int8_t(BinaryConsts::I64DivS); break; case DivUInt64: o << int8_t(BinaryConsts::I64DivU); break; case RemSInt64: o << int8_t(BinaryConsts::I64RemS); break; case RemUInt64: o << int8_t(BinaryConsts::I64RemU); break; case AndInt64: o << int8_t(BinaryConsts::I64And); break; case OrInt64: o << int8_t(BinaryConsts::I64Or); break; case XorInt64: o << int8_t(BinaryConsts::I64Xor); break; case ShlInt64: o << int8_t(BinaryConsts::I64Shl); break; case ShrUInt64: o << int8_t(BinaryConsts::I64ShrU); break; case ShrSInt64: o << int8_t(BinaryConsts::I64ShrS); break; case RotLInt64: o << int8_t(BinaryConsts::I64RotL); break; case RotRInt64: o << int8_t(BinaryConsts::I64RotR); break; case EqInt64: o << int8_t(BinaryConsts::I64Eq); break; case NeInt64: o << int8_t(BinaryConsts::I64Ne); break; case LtSInt64: o << int8_t(BinaryConsts::I64LtS); break; case LtUInt64: o << int8_t(BinaryConsts::I64LtU); break; case LeSInt64: o << int8_t(BinaryConsts::I64LeS); break; case LeUInt64: o << int8_t(BinaryConsts::I64LeU); break; case GtSInt64: o << int8_t(BinaryConsts::I64GtS); break; case GtUInt64: o << int8_t(BinaryConsts::I64GtU); break; case GeSInt64: o << int8_t(BinaryConsts::I64GeS); break; case GeUInt64: o << int8_t(BinaryConsts::I64GeU); break; case AddFloat32: o << int8_t(BinaryConsts::F32Add); break; case SubFloat32: o << int8_t(BinaryConsts::F32Sub); break; case MulFloat32: o << int8_t(BinaryConsts::F32Mul); break; case DivFloat32: o << int8_t(BinaryConsts::F32Div); break; case CopySignFloat32: o << int8_t(BinaryConsts::F32CopySign);break; case MinFloat32: o << int8_t(BinaryConsts::F32Min); break; case MaxFloat32: o << int8_t(BinaryConsts::F32Max); break; case EqFloat32: o << int8_t(BinaryConsts::F32Eq); break; case NeFloat32: o << int8_t(BinaryConsts::F32Ne); break; case LtFloat32: o << int8_t(BinaryConsts::F32Lt); break; case LeFloat32: o << int8_t(BinaryConsts::F32Le); break; case GtFloat32: o << int8_t(BinaryConsts::F32Gt); break; case GeFloat32: o << int8_t(BinaryConsts::F32Ge); break; case AddFloat64: o << int8_t(BinaryConsts::F64Add); break; case SubFloat64: o << int8_t(BinaryConsts::F64Sub); break; case MulFloat64: o << int8_t(BinaryConsts::F64Mul); break; case DivFloat64: o << int8_t(BinaryConsts::F64Div); break; case CopySignFloat64: o << int8_t(BinaryConsts::F64CopySign);break; case MinFloat64: o << int8_t(BinaryConsts::F64Min); break; case MaxFloat64: o << int8_t(BinaryConsts::F64Max); break; case EqFloat64: o << int8_t(BinaryConsts::F64Eq); break; case NeFloat64: o << int8_t(BinaryConsts::F64Ne); break; case LtFloat64: o << int8_t(BinaryConsts::F64Lt); break; case LeFloat64: o << int8_t(BinaryConsts::F64Le); break; case GtFloat64: o << int8_t(BinaryConsts::F64Gt); break; case GeFloat64: o << int8_t(BinaryConsts::F64Ge); break; default: abort(); } } void visitSelect(Select *curr) { if (debug) std::cerr << "zz node: Select" << std::endl; recurse(curr->ifTrue); recurse(curr->ifFalse); recurse(curr->condition); o << int8_t(BinaryConsts::Select); } void visitReturn(Return *curr) { if (debug) std::cerr << "zz node: Return" << std::endl; if (curr->value) { recurse(curr->value); } o << int8_t(BinaryConsts::Return) << U32LEB(curr->value ? 1 : 0); } void visitHost(Host *curr) { if (debug) std::cerr << "zz node: Host" << std::endl; switch (curr->op) { case CurrentMemory: { o << int8_t(BinaryConsts::CurrentMemory); break; } case GrowMemory: { recurse(curr->operands[0]); o << int8_t(BinaryConsts::GrowMemory); break; } default: abort(); } } void visitNop(Nop *curr) { if (debug) std::cerr << "zz node: Nop" << std::endl; o << int8_t(BinaryConsts::Nop); } void visitUnreachable(Unreachable *curr) { if (debug) std::cerr << "zz node: Unreachable" << std::endl; o << int8_t(BinaryConsts::Unreachable); } void visitDrop(Drop *curr) { if (debug) std::cerr << "zz node: Drop" << std::endl; recurse(curr->value); o << int8_t(BinaryConsts::Drop); } }; class WasmBinaryBuilder { Module& wasm; MixedArena& allocator; std::vector& input; bool debug; size_t pos = 0; Index startIndex = -1; public: WasmBinaryBuilder(Module& wasm, std::vector& input, bool debug) : wasm(wasm), allocator(wasm.allocator), input(input), debug(debug) {} void read() { readHeader(); // read sections until the end while (more()) { uint32_t sectionCode = getU32LEB(); uint32_t payloadLen = getU32LEB(); if (pos + payloadLen > input.size()) throw ParseException("Section extends beyond end of input"); switch (sectionCode) { case BinaryConsts::Section::Start: readStart(); break; case BinaryConsts::Section::Memory: readMemory(); break; case BinaryConsts::Section::Type: readSignatures(); break; case BinaryConsts::Section::Import: readImports(); break; case BinaryConsts::Section::Function: readFunctionSignatures(); break; case BinaryConsts::Section::Code: readFunctions(); break; case BinaryConsts::Section::Export: readExports(); break; case BinaryConsts::Section::Global: { readGlobals(); // imports can read global imports, so we run getGlobalName and create the mapping // but after we read globals, we need to add the internal globals too, so do that here mappedGlobals.clear(); // wipe the mapping getGlobalName(0); // force rebuild break; } case BinaryConsts::Section::Data: readDataSegments(); break; case BinaryConsts::Section::Table: readFunctionTable(); break; default: if (!readUserSection()) abort(); } } processFunctions(); } bool readUserSection() { Name sectionName = getInlineString(); if (sectionName.equals(BinaryConsts::UserSections::Name)) { readNames(); return true; } std::cerr << "unfamiliar section: " << sectionName << std::endl; return false; } bool more() { return pos < input.size(); } uint8_t getInt8() { if (!more()) throw ParseException("unexpected end of input"); if (debug) std::cerr << "getInt8: " << (int)(uint8_t)input[pos] << " (at " << pos << ")" << std::endl; return input[pos++]; } uint16_t getInt16() { if (debug) std::cerr << "<==" << std::endl; auto ret = uint16_t(getInt8()); ret |= uint16_t(getInt8()) << 8; if (debug) std::cerr << "getInt16: " << ret << "/0x" << std::hex << ret << std::dec << " ==>" << std::endl; return ret; } uint32_t getInt32() { if (debug) std::cerr << "<==" << std::endl; auto ret = uint32_t(getInt16()); ret |= uint32_t(getInt16()) << 16; if (debug) std::cerr << "getInt32: " << ret << "/0x" << std::hex << ret << std::dec <<" ==>" << std::endl; return ret; } uint64_t getInt64() { if (debug) std::cerr << "<==" << std::endl; auto ret = uint64_t(getInt32()); ret |= uint64_t(getInt32()) << 32; if (debug) std::cerr << "getInt64: " << ret << "/0x" << std::hex << ret << std::dec << " ==>" << std::endl; return ret; } float getFloat32() { if (debug) std::cerr << "<==" << std::endl; auto ret = Literal(getInt32()).reinterpretf32(); if (debug) std::cerr << "getFloat32: " << ret << " ==>" << std::endl; return ret; } double getFloat64() { if (debug) std::cerr << "<==" << std::endl; auto ret = Literal(getInt64()).reinterpretf64(); if (debug) std::cerr << "getFloat64: " << ret << " ==>" << std::endl; return ret; } uint32_t getU32LEB() { if (debug) std::cerr << "<==" << std::endl; U32LEB ret; ret.read([&]() { return getInt8(); }); if (debug) std::cerr << "getU32LEB: " << ret.value << " ==>" << std::endl; return ret.value; } uint64_t getU64LEB() { if (debug) std::cerr << "<==" << std::endl; U64LEB ret; ret.read([&]() { return getInt8(); }); if (debug) std::cerr << "getU64LEB: " << ret.value << " ==>" << std::endl; return ret.value; } int32_t getS32LEB() { if (debug) std::cerr << "<==" << std::endl; S32LEB ret; ret.read([&]() { return (int8_t)getInt8(); }); if (debug) std::cerr << "getU32LEB: " << ret.value << " ==>" << std::endl; return ret.value; } int64_t getS64LEB() { if (debug) std::cerr << "<==" << std::endl; S64LEB ret; ret.read([&]() { return (int8_t)getInt8(); }); if (debug) std::cerr << "getU64LEB: " << ret.value << " ==>" << std::endl; return ret.value; } WasmType getWasmType() { int8_t type = getInt8(); switch (type) { case 0: return none; case 1: return i32; case 2: return i64; case 3: return f32; case 4: return f64; default: abort(); } } Name getString() { if (debug) std::cerr << "<==" << std::endl; size_t offset = getInt32(); Name ret = cashew::IString((&input[0]) + offset, false); if (debug) std::cerr << "getString: " << ret << " ==>" << std::endl; return ret; } Name getInlineString() { if (debug) std::cerr << "<==" << std::endl; auto len = getU32LEB(); std::string str; for (size_t i = 0; i < len; i++) { str = str + char(getInt8()); } if (debug) std::cerr << "getInlineString: " << str << " ==>" << std::endl; return Name(str); } void verifyInt8(int8_t x) { int8_t y = getInt8(); if (x != y) throw ParseException("surprising value", 0, pos); } void verifyInt16(int16_t x) { int16_t y = getInt16(); if (x != y) throw ParseException("surprising value", 0, pos); } void verifyInt32(int32_t x) { int32_t y = getInt32(); if (x != y) throw ParseException("surprising value", 0, pos); } void verifyInt64(int64_t x) { int64_t y = getInt64(); if (x != y) throw ParseException("surprising value", 0, pos); } void verifyFloat32(float x) { float y = getFloat32(); if (x != y) throw ParseException("surprising value", 0, pos); } void verifyFloat64(double x) { double y = getFloat64(); if (x != y) throw ParseException("surprising value", 0, pos); } void ungetInt8() { assert(pos > 0); if (debug) std::cerr << "ungetInt8 (at " << pos << ")" << std::endl; pos--; } void readHeader() { if (debug) std::cerr << "== readHeader" << std::endl; verifyInt32(BinaryConsts::Magic); verifyInt32(BinaryConsts::Version); } void readStart() { if (debug) std::cerr << "== readStart" << std::endl; startIndex = getU32LEB(); } void readMemory() { if (debug) std::cerr << "== readMemory" << std::endl; auto numMemories = getU32LEB(); if (!numMemories) return; assert(numMemories == 1); getResizableLimits(wasm.memory.initial, &wasm.memory.max); } void readSignatures() { if (debug) std::cerr << "== readSignatures" << std::endl; size_t numTypes = getU32LEB(); if (debug) std::cerr << "num: " << numTypes << std::endl; for (size_t i = 0; i < numTypes; i++) { if (debug) std::cerr << "read one" << std::endl; auto curr = new FunctionType; auto form = getU32LEB(); WASM_UNUSED(form); assert(form == BinaryConsts::TypeForms::Basic); size_t numParams = getU32LEB(); if (debug) std::cerr << "num params: " << numParams << std::endl; for (size_t j = 0; j < numParams; j++) { curr->params.push_back(getWasmType()); } auto numResults = getU32LEB(); if (numResults == 0) { curr->result = none; } else { assert(numResults == 1); curr->result = getWasmType(); } curr->name = Name::fromInt(wasm.functionTypes.size()); wasm.addFunctionType(curr); } } std::vector functionImportIndexes; // index in function index space => name of function import // gets a name in the combined function import+defined function space Name getFunctionIndexName(Index i) { if (i < functionImportIndexes.size()) { auto* import = wasm.getImport(functionImportIndexes[i]); assert(import->kind == Import::Function); return import->name; } else { i -= functionImportIndexes.size(); return wasm.functions.at(i)->name; } } void getResizableLimits(Address& initial, Address* max) { auto flags = getU32LEB(); initial = getU32LEB(); bool hasMax = flags & 0x1; assert(max || !hasMax); if (hasMax) *max = getU32LEB(); } void readImports() { if (debug) std::cerr << "== readImports" << std::endl; size_t num = getU32LEB(); if (debug) std::cerr << "num: " << num << std::endl; for (size_t i = 0; i < num; i++) { if (debug) std::cerr << "read one" << std::endl; auto curr = new Import; curr->name = Name(std::string("import$") + std::to_string(i)); curr->module = getInlineString(); curr->base = getInlineString(); curr->kind = (Import::Kind)getU32LEB(); switch (curr->kind) { case Import::Function: { auto index = getU32LEB(); assert(index < wasm.functionTypes.size()); curr->functionType = wasm.functionTypes[index].get(); assert(curr->functionType->name.is()); functionImportIndexes.push_back(curr->name); break; } case Import::Table: { auto elementType = getU32LEB(); WASM_UNUSED(elementType); assert(elementType == BinaryConsts::ElementType::AnyFunc); getResizableLimits(wasm.table.initial, &wasm.table.max); break; } case Import::Memory: getResizableLimits(wasm.memory.initial, &wasm.memory.max); break; case Import::Global: { curr->globalType = getWasmType(); auto globalMutable = getU32LEB(); WASM_UNUSED(globalMutable); assert(!globalMutable); break; } default: WASM_UNREACHABLE(); } wasm.addImport(curr); } } std::vector functionTypes; // types of defined functions void readFunctionSignatures() { if (debug) std::cerr << "== readFunctionSignatures" << std::endl; size_t num = getU32LEB(); if (debug) std::cerr << "num: " << num << std::endl; for (size_t i = 0; i < num; i++) { if (debug) std::cerr << "read one" << std::endl; auto index = getU32LEB(); functionTypes.push_back(wasm.functionTypes[index].get()); } } size_t nextLabel; Name getNextLabel() { return cashew::IString(("label$" + std::to_string(nextLabel++)).c_str(), false); } // We read functions before we know their names, so we need to backpatch the names later std::vector functions; // we store functions here before wasm.addFunction after we know their names std::map> functionCalls; // at index i we have all calls to the defined function i Function* currFunction = nullptr; Index endOfFunction = -1; // before we see a function (like global init expressions), there is no end of function to check void readFunctions() { if (debug) std::cerr << "== readFunctions" << std::endl; size_t total = getU32LEB(); assert(total == functionTypes.size()); for (size_t i = 0; i < total; i++) { if (debug) std::cerr << "read one at " << pos << std::endl; size_t size = getU32LEB(); assert(size > 0); endOfFunction = pos + size; auto type = functionTypes[i]; if (debug) std::cerr << "reading" << i << std::endl; size_t nextVar = 0; auto addVar = [&]() { Name name = cashew::IString(("var$" + std::to_string(nextVar++)).c_str(), false); return name; }; std::vector params, vars; for (size_t j = 0; j < type->params.size(); j++) { params.emplace_back(addVar(), type->params[j]); } size_t numLocalTypes = getU32LEB(); for (size_t t = 0; t < numLocalTypes; t++) { auto num = getU32LEB(); auto type = getWasmType(); while (num > 0) { vars.emplace_back(addVar(), type); num--; } } auto func = Builder(wasm).makeFunction( Name::fromInt(i), std::move(params), type->result, std::move(vars) ); func->type = type->name; currFunction = func; { // process the function body if (debug) std::cerr << "processing function: " << i << std::endl; nextLabel = 0; // process body assert(breakStack.empty()); assert(expressionStack.empty()); assert(depth == 0); func->body = getMaybeBlock(); assert(depth == 0); assert(breakStack.empty()); assert(expressionStack.empty()); assert(pos == endOfFunction); } currFunction = nullptr; functions.push_back(func); } } std::map exportIndexes; void readExports() { if (debug) std::cerr << "== readExports" << std::endl; size_t num = getU32LEB(); if (debug) std::cerr << "num: " << num << std::endl; for (size_t i = 0; i < num; i++) { if (debug) std::cerr << "read one" << std::endl; auto curr = new Export; curr->name = getInlineString(); curr->kind = (Export::Kind)getU32LEB(); auto index = getU32LEB(); exportIndexes[curr] = index; } } Expression* readExpression() { assert(depth == 0); processExpressions(); assert(expressionStack.size() == 1); auto* ret = popExpression(); assert(depth == 0); return ret; } void readGlobals() { if (debug) std::cerr << "== readGlobals" << std::endl; size_t num = getU32LEB(); if (debug) std::cerr << "num: " << num << std::endl; for (size_t i = 0; i < num; i++) { if (debug) std::cerr << "read one" << std::endl; auto curr = new Global; curr->type = getWasmType(); curr->init = readExpression(); curr->mutable_ = true; // TODO curr->name = Name("global$" + std::to_string(wasm.globals.size())); wasm.addGlobal(curr); } } struct BreakTarget { Name name; int arity;}; std::vector breakStack; std::vector expressionStack; BinaryConsts::ASTNodes lastSeparator = BinaryConsts::End; void processExpressions() { // until an end or else marker, or the end of the function while (1) { Expression* curr; auto ret = readExpression(curr); if (!curr) { lastSeparator = ret; return; } expressionStack.push_back(curr); } } Expression* popExpression() { assert(expressionStack.size() > 0); auto ret = expressionStack.back(); expressionStack.pop_back(); return ret; } std::map mappedGlobals; // index of the Global => name. first imported globals, then internal globals Name getGlobalName(Index index) { if (!mappedGlobals.size()) { // Create name => index mapping. for (auto& import : wasm.imports) { if (import->kind != Import::Global) continue; auto index = mappedGlobals.size(); mappedGlobals[index] = import->name; } for (size_t i = 0; i < wasm.globals.size(); i++) { auto index = mappedGlobals.size(); mappedGlobals[index] = wasm.globals[i]->name; } } assert(mappedGlobals.count(index)); return mappedGlobals[index]; } void processFunctions() { for (auto& func : functions) { wasm.addFunction(func); } // now that we have names for each function, apply things if (startIndex != static_cast(-1)) { wasm.start = getFunctionIndexName(startIndex); } for (auto& iter : exportIndexes) { Export* curr = iter.first; switch (curr->kind) { case Export::Function: { curr->value = getFunctionIndexName(iter.second); break; } case Export::Table: curr->value = Name::fromInt(0); break; case Export::Memory: curr->value = Name::fromInt(0); break; case Export::Global: curr->value = getGlobalName(iter.second); break; default: WASM_UNREACHABLE(); } wasm.addExport(curr); } for (auto& iter : functionCalls) { size_t index = iter.first; auto& calls = iter.second; for (auto* call : calls) { call->target = wasm.functions[index]->name; } } for (auto& pair : functionTable) { auto i = pair.first; auto& indexes = pair.second; for (auto j : indexes) { wasm.table.segments[i].data.push_back(getFunctionIndexName(j)); } } } void readDataSegments() { if (debug) std::cerr << "== readDataSegments" << std::endl; auto num = getU32LEB(); for (size_t i = 0; i < num; i++) { auto memoryIndex = getU32LEB(); WASM_UNUSED(memoryIndex); assert(memoryIndex == 0); // Only one linear memory in the MVP Memory::Segment curr; auto offset = readExpression(); auto size = getU32LEB(); std::vector buffer; buffer.resize(size); for (size_t j = 0; j < size; j++) { buffer[j] = char(getInt8()); } wasm.memory.segments.emplace_back(offset, (const char*)&buffer[0], size); } } std::map> functionTable; void readFunctionTable() { if (debug) std::cerr << "== readFunctionTable" << std::endl; wasm.table.initial = getU32LEB(); wasm.table.max = getU32LEB(); auto num = getU32LEB(); for (size_t i = 0; i < num; i++) { wasm.table.segments.emplace_back(readExpression()); auto& temporary = functionTable[i]; auto size = getU32LEB(); for (Index j = 0; j < size; j++) { temporary.push_back(getU32LEB()); } } } void readNames() { if (debug) std::cerr << "== readNames" << std::endl; auto num = getU32LEB(); assert(num == functions.size()); for (size_t i = 0; i < num; i++) { functions[i]->name = getInlineString(); auto numLocals = getU32LEB(); WASM_UNUSED(numLocals); assert(numLocals == 0); // TODO } } // AST reading int depth = 0; // only for debugging BinaryConsts::ASTNodes readExpression(Expression*& curr) { if (pos == endOfFunction) { curr = nullptr; return BinaryConsts::End; } if (debug) std::cerr << "zz recurse into " << ++depth << " at " << pos << std::endl; uint8_t code = getInt8(); if (debug) std::cerr << "readExpression seeing " << (int)code << std::endl; switch (code) { case BinaryConsts::Block: visitBlock((curr = allocator.alloc())->cast()); break; case BinaryConsts::If: visitIf((curr = allocator.alloc())->cast()); break; case BinaryConsts::Loop: visitLoop((curr = allocator.alloc())->cast()); break; case BinaryConsts::Br: case BinaryConsts::BrIf: visitBreak((curr = allocator.alloc())->cast(), code); break; // code distinguishes br from br_if case BinaryConsts::TableSwitch: visitSwitch((curr = allocator.alloc())->cast()); break; case BinaryConsts::CallFunction: curr = visitCall(); break; // we don't know if it's a call or call_import yet case BinaryConsts::CallIndirect: visitCallIndirect((curr = allocator.alloc())->cast()); break; case BinaryConsts::GetLocal: visitGetLocal((curr = allocator.alloc())->cast()); break; case BinaryConsts::TeeLocal: case BinaryConsts::SetLocal: visitSetLocal((curr = allocator.alloc())->cast(), code); break; case BinaryConsts::GetGlobal: visitGetGlobal((curr = allocator.alloc())->cast()); break; case BinaryConsts::SetGlobal: visitSetGlobal((curr = allocator.alloc())->cast()); break; case BinaryConsts::Select: visitSelect((curr = allocator.alloc()); break; case BinaryConsts::Return: visitReturn((curr = allocator.alloc())->cast()); break; case BinaryConsts::Nop: visitNop((curr = allocator.alloc())->cast()); break; case BinaryConsts::Unreachable: visitUnreachable((curr = allocator.alloc())->cast()); break; case BinaryConsts::Drop: visitDrop((curr = allocator.alloc())->cast()); break; case BinaryConsts::End: case BinaryConsts::Else: curr = nullptr; break; default: { // otherwise, the code is a subcode TODO: optimize if (maybeVisitBinary(curr, code)) break; if (maybeVisitUnary(curr, code)) break; if (maybeVisitConst(curr, code)) break; if (maybeVisitLoad(curr, code)) break; if (maybeVisitStore(curr, code)) break; if (maybeVisitHost(curr, code)) break; std::cerr << "bad code 0x" << std::hex << (int)code << std::endl; abort(); } } if (debug) std::cerr << "zz recurse from " << depth-- << " at " << pos << std::endl; return BinaryConsts::ASTNodes(code); } void visitBlock(Block *curr) { if (debug) std::cerr << "zz node: Block" << std::endl; // special-case Block and de-recurse nested blocks in their first position, as that is // a common pattern that can be very highly nested. std::vector stack; while (1) { curr->type = getWasmType(); curr->name = getNextLabel(); breakStack.push_back({curr->name, curr->type != none}); stack.push_back(curr); if (getInt8() == BinaryConsts::Block) { // a recursion curr = allocator.alloc(); continue; } else { // end of recursion ungetInt8(); break; } } Block* last = nullptr; while (stack.size() > 0) { curr = stack.back(); stack.pop_back(); size_t start = expressionStack.size(); // everything after this, that is left when we see the marker, is ours if (last) { // the previous block is our first-position element expressionStack.push_back(last); } last = curr; processExpressions(); size_t end = expressionStack.size(); assert(end >= start); for (size_t i = start; i < end; i++) { if (debug) std::cerr << " " << size_t(expressionStack[i]) << "\n zz Block element " << curr->list.size() << std::endl; curr->list.push_back(expressionStack[i]); } expressionStack.resize(start); curr->finalize(); breakStack.pop_back(); } } Expression* getMaybeBlock() { auto start = expressionStack.size(); processExpressions(); size_t end = expressionStack.size(); if (start - end == 1) { return popExpression(); } auto* block = allocator.alloc(); for (size_t i = start; i < end; i++) { block->list.push_back(expressionStack[i]); } block->finalize(); expressionStack.resize(start); return block; } Expression* getBlock(WasmType ty) { Name label = getNextLabel(); breakStack.push_back({label, ty != none && ty != unreachable}); auto* block = Builder(wasm).blockify(getMaybeBlock()); breakStack.pop_back(); block->cast()->name = label; return block; } void visitIf(If *curr) { if (debug) std::cerr << "zz node: If" << std::endl; curr->type = getWasmType(); curr->condition = popExpression(); curr->ifTrue = getBlock(curr->type); if (lastSeparator == BinaryConsts::Else) { curr->ifFalse = getBlock(curr->type); curr->finalize(); } assert(lastSeparator == BinaryConsts::End); } void visitLoop(Loop *curr) { if (debug) std::cerr << "zz node: Loop" << std::endl; curr->type = getWasmType(); curr->name = getNextLabel(); breakStack.push_back({curr->name, 0}); curr->body = getMaybeBlock(); breakStack.pop_back(); curr->finalize(); } BreakTarget getBreakTarget(int32_t offset) { if (debug) std::cerr << "getBreakTarget "<name = target.name; if (code == BinaryConsts::BrIf) curr->condition = popExpression(); if (target.arity) curr->value = popExpression(); curr->finalize(); } void visitSwitch(Switch *curr) { if (debug) std::cerr << "zz node: Switch" << std::endl; curr->condition = popExpression(); auto numTargets = getU32LEB(); if (debug) std::cerr << "targets: "<< numTargets<targets.push_back(getBreakTarget(getU32LEB()).name); } auto defaultTarget = getBreakTarget(getU32LEB()); curr->default_ = defaultTarget.name; if (debug) std::cerr << "default: "<< curr->default_<value = popExpression(); } template void fillCall(T* call, FunctionType* type) { assert(type); auto num = type->params.size(); call->operands.resize(num); for (size_t i = 0; i < num; i++) { call->operands[num - i - 1] = popExpression(); } call->type = type->result; } Expression* visitCall() { if (debug) std::cerr << "zz node: Call" << std::endl; auto index = getU32LEB(); FunctionType* type; Expression* ret; if (index < functionImportIndexes.size()) { // this is a call of an imported function auto* call = allocator.alloc(); auto* import = wasm.getImport(functionImportIndexes[index]); call->target = import->name; type = import->functionType; fillCall(call, type); ret = call; } else { // this is a call of a defined function auto* call = allocator.alloc(); auto adjustedIndex = index - functionImportIndexes.size(); assert(adjustedIndex < functionTypes.size()); type = functionTypes[adjustedIndex]; fillCall(call, type); functionCalls[adjustedIndex].push_back(call); // we don't know function names yet ret = call; } return ret; } void visitCallIndirect(CallIndirect *curr) { if (debug) std::cerr << "zz node: CallIndirect" << std::endl; auto arity = getU32LEB(); WASM_UNUSED(arity); auto* fullType = wasm.functionTypes.at(getU32LEB()).get(); curr->fullType = fullType->name; auto num = fullType->params.size(); assert(num == arity); curr->operands.resize(num); for (size_t i = 0; i < num; i++) { curr->operands[num - i - 1] = popExpression(); } curr->target = popExpression(); curr->type = fullType->result; } void visitGetLocal(GetLocal *curr) { if (debug) std::cerr << "zz node: GetLocal " << pos << std::endl; curr->index = getU32LEB(); assert(curr->index < currFunction->getNumLocals()); curr->type = currFunction->getLocalType(curr->index); } void visitSetLocal(SetLocal *curr, uint8_t code) { if (debug) std::cerr << "zz node: Set|TeeLocal" << std::endl; curr->index = getU32LEB(); assert(curr->index < currFunction->getNumLocals()); curr->value = popExpression(); curr->type = curr->value->type; curr->setTee(code == BinaryConsts::TeeLocal); } void visitGetGlobal(GetGlobal *curr) { if (debug) std::cerr << "zz node: GetGlobal " << pos << std::endl; auto index = getU32LEB(); curr->name = getGlobalName(index); auto* global = wasm.checkGlobal(curr->name); if (global) { curr->type = global->type; return; } auto* import = wasm.checkImport(curr->name); if (import && import->kind == Import::Global) { curr->type = import->globalType; return; } throw ParseException("bad get_global"); } void visitSetGlobal(SetGlobal *curr) { if (debug) std::cerr << "zz node: SetGlobal" << std::endl; auto index = getU32LEB(); curr->name = getGlobalName(index); curr->value = popExpression(); } void readMemoryAccess(Address& alignment, size_t bytes, Address& offset) { alignment = Pow2(getU32LEB()); offset = getU32LEB(); } bool maybeVisitLoad(Expression*& out, uint8_t code) { Load* curr; switch (code) { case BinaryConsts::I32LoadMem8S: curr = allocator.alloc(); curr->bytes = 1; curr->type = i32; curr->signed_ = true; break; case BinaryConsts::I32LoadMem8U: curr = allocator.alloc(); curr->bytes = 1; curr->type = i32; curr->signed_ = false; break; case BinaryConsts::I32LoadMem16S: curr = allocator.alloc(); curr->bytes = 2; curr->type = i32; curr->signed_ = true; break; case BinaryConsts::I32LoadMem16U: curr = allocator.alloc(); curr->bytes = 2; curr->type = i32; curr->signed_ = false; break; case BinaryConsts::I32LoadMem: curr = allocator.alloc(); curr->bytes = 4; curr->type = i32; break; case BinaryConsts::I64LoadMem8S: curr = allocator.alloc(); curr->bytes = 1; curr->type = i64; curr->signed_ = true; break; case BinaryConsts::I64LoadMem8U: curr = allocator.alloc(); curr->bytes = 1; curr->type = i64; curr->signed_ = false; break; case BinaryConsts::I64LoadMem16S: curr = allocator.alloc(); curr->bytes = 2; curr->type = i64; curr->signed_ = true; break; case BinaryConsts::I64LoadMem16U: curr = allocator.alloc(); curr->bytes = 2; curr->type = i64; curr->signed_ = false; break; case BinaryConsts::I64LoadMem32S: curr = allocator.alloc(); curr->bytes = 4; curr->type = i64; curr->signed_ = true; break; case BinaryConsts::I64LoadMem32U: curr = allocator.alloc(); curr->bytes = 4; curr->type = i64; curr->signed_ = false; break; case BinaryConsts::I64LoadMem: curr = allocator.alloc(); curr->bytes = 8; curr->type = i64; break; case BinaryConsts::F32LoadMem: curr = allocator.alloc(); curr->bytes = 4; curr->type = f32; break; case BinaryConsts::F64LoadMem: curr = allocator.alloc(); curr->bytes = 8; curr->type = f64; break; default: return false; } if (debug) std::cerr << "zz node: Load" << std::endl; readMemoryAccess(curr->align, curr->bytes, curr->offset); curr->ptr = popExpression(); out = curr; return true; } bool maybeVisitStore(Expression*& out, uint8_t code) { Store* curr; switch (code) { case BinaryConsts::I32StoreMem8: curr = allocator.alloc(); curr->bytes = 1; curr->valueType = i32; break; case BinaryConsts::I32StoreMem16: curr = allocator.alloc(); curr->bytes = 2; curr->valueType = i32; break; case BinaryConsts::I32StoreMem: curr = allocator.alloc(); curr->bytes = 4; curr->valueType = i32; break; case BinaryConsts::I64StoreMem8: curr = allocator.alloc(); curr->bytes = 1; curr->valueType = i64; break; case BinaryConsts::I64StoreMem16: curr = allocator.alloc(); curr->bytes = 2; curr->valueType = i64; break; case BinaryConsts::I64StoreMem32: curr = allocator.alloc(); curr->bytes = 4; curr->valueType = i64; break; case BinaryConsts::I64StoreMem: curr = allocator.alloc(); curr->bytes = 8; curr->valueType = i64; break; case BinaryConsts::F32StoreMem: curr = allocator.alloc(); curr->bytes = 4; curr->valueType = f32; break; case BinaryConsts::F64StoreMem: curr = allocator.alloc(); curr->bytes = 8; curr->valueType = f64; break; default: return false; } if (debug) std::cerr << "zz node: Store" << std::endl; readMemoryAccess(curr->align, curr->bytes, curr->offset); curr->value = popExpression(); curr->ptr = popExpression(); curr->finalize(); out = curr; return true; } bool maybeVisitConst(Expression*& out, uint8_t code) { Const* curr; switch (code) { case BinaryConsts::I32Const: curr = allocator.alloc(); curr->value = Literal(getS32LEB()); break; case BinaryConsts::I64Const: curr = allocator.alloc(); curr->value = Literal(getS64LEB()); break; case BinaryConsts::F32Const: curr = allocator.alloc(); curr->value = Literal(getFloat32()); break; case BinaryConsts::F64Const: curr = allocator.alloc(); curr->value = Literal(getFloat64()); break; default: return false; } curr->type = curr->value.type; out = curr; if (debug) std::cerr << "zz node: Const" << std::endl; return true; } bool maybeVisitUnary(Expression*& out, uint8_t code) { Unary* curr; switch (code) { case BinaryConsts::I32Clz: curr = allocator.alloc(); curr->op = ClzInt32; curr->type = i32; break; case BinaryConsts::I64Clz: curr = allocator.alloc(); curr->op = ClzInt64; curr->type = i64; break; case BinaryConsts::I32Ctz: curr = allocator.alloc(); curr->op = CtzInt32; curr->type = i32; break; case BinaryConsts::I64Ctz: curr = allocator.alloc(); curr->op = CtzInt64; curr->type = i64; break; case BinaryConsts::I32Popcnt: curr = allocator.alloc(); curr->op = PopcntInt32; curr->type = i32; break; case BinaryConsts::I64Popcnt: curr = allocator.alloc(); curr->op = PopcntInt64; curr->type = i64; break; case BinaryConsts::I32EqZ: curr = allocator.alloc(); curr->op = EqZInt32; curr->type = i32; break; case BinaryConsts::I64EqZ: curr = allocator.alloc(); curr->op = EqZInt64; curr->type = i32; break; case BinaryConsts::F32Neg: curr = allocator.alloc(); curr->op = NegFloat32; curr->type = f32; break; case BinaryConsts::F64Neg: curr = allocator.alloc(); curr->op = NegFloat64; curr->type = f64; break; case BinaryConsts::F32Abs: curr = allocator.alloc(); curr->op = AbsFloat32; curr->type = f32; break; case BinaryConsts::F64Abs: curr = allocator.alloc(); curr->op = AbsFloat64; curr->type = f64; break; case BinaryConsts::F32Ceil: curr = allocator.alloc(); curr->op = CeilFloat32; curr->type = f32; break; case BinaryConsts::F64Ceil: curr = allocator.alloc(); curr->op = CeilFloat64; curr->type = f64; break; case BinaryConsts::F32Floor: curr = allocator.alloc(); curr->op = FloorFloat32; curr->type = f32; break; case BinaryConsts::F64Floor: curr = allocator.alloc(); curr->op = FloorFloat64; curr->type = f64; break; case BinaryConsts::F32NearestInt: curr = allocator.alloc(); curr->op = NearestFloat32; curr->type = f32; break; case BinaryConsts::F64NearestInt: curr = allocator.alloc(); curr->op = NearestFloat64; curr->type = f64; break; case BinaryConsts::F32Sqrt: curr = allocator.alloc(); curr->op = SqrtFloat32; curr->type = f32; break; case BinaryConsts::F64Sqrt: curr = allocator.alloc(); curr->op = SqrtFloat64; curr->type = f64; break; case BinaryConsts::F32UConvertI32: curr = allocator.alloc(); curr->op = ConvertUInt32ToFloat32; curr->type = f32; break; case BinaryConsts::F64UConvertI32: curr = allocator.alloc(); curr->op = ConvertUInt32ToFloat64; curr->type = f64; break; case BinaryConsts::F32SConvertI32: curr = allocator.alloc(); curr->op = ConvertSInt32ToFloat32; curr->type = f32; break; case BinaryConsts::F64SConvertI32: curr = allocator.alloc(); curr->op = ConvertSInt32ToFloat64; curr->type = f64; break; case BinaryConsts::F32UConvertI64: curr = allocator.alloc(); curr->op = ConvertUInt64ToFloat32; curr->type = f32; break; case BinaryConsts::F64UConvertI64: curr = allocator.alloc(); curr->op = ConvertUInt64ToFloat64; curr->type = f64; break; case BinaryConsts::F32SConvertI64: curr = allocator.alloc(); curr->op = ConvertSInt64ToFloat32; curr->type = f32; break; case BinaryConsts::F64SConvertI64: curr = allocator.alloc(); curr->op = ConvertSInt64ToFloat64; curr->type = f64; break; case BinaryConsts::I64STruncI32: curr = allocator.alloc(); curr->op = ExtendSInt32; curr->type = i64; break; case BinaryConsts::I64UTruncI32: curr = allocator.alloc(); curr->op = ExtendUInt32; curr->type = i64; break; case BinaryConsts::I32ConvertI64: curr = allocator.alloc(); curr->op = WrapInt64; curr->type = i32; break; case BinaryConsts::I32UTruncF32: curr = allocator.alloc(); curr->op = TruncUFloat32ToInt32; curr->type = i32; break; case BinaryConsts::I32UTruncF64: curr = allocator.alloc(); curr->op = TruncUFloat64ToInt32; curr->type = i32; break; case BinaryConsts::I32STruncF32: curr = allocator.alloc(); curr->op = TruncSFloat32ToInt32; curr->type = i32; break; case BinaryConsts::I32STruncF64: curr = allocator.alloc(); curr->op = TruncSFloat64ToInt32; curr->type = i32; break; case BinaryConsts::I64UTruncF32: curr = allocator.alloc(); curr->op = TruncUFloat32ToInt64; curr->type = i64; break; case BinaryConsts::I64UTruncF64: curr = allocator.alloc(); curr->op = TruncUFloat64ToInt64; curr->type = i64; break; case BinaryConsts::I64STruncF32: curr = allocator.alloc(); curr->op = TruncSFloat32ToInt64; curr->type = i64; break; case BinaryConsts::I64STruncF64: curr = allocator.alloc(); curr->op = TruncSFloat64ToInt64; curr->type = i64; break; case BinaryConsts::F32Trunc: curr = allocator.alloc(); curr->op = TruncFloat32; curr->type = f32; break; case BinaryConsts::F64Trunc: curr = allocator.alloc(); curr->op = TruncFloat64; curr->type = f64; break; case BinaryConsts::F32ConvertF64: curr = allocator.alloc(); curr->op = DemoteFloat64; curr->type = f32; break; case BinaryConsts::F64ConvertF32: curr = allocator.alloc(); curr->op = PromoteFloat32; curr->type = f64; break; case BinaryConsts::I32ReinterpretF32: curr = allocator.alloc(); curr->op = ReinterpretFloat32; curr->type = i32; break; case BinaryConsts::I64ReinterpretF64: curr = allocator.alloc(); curr->op = ReinterpretFloat64; curr->type = i64; break; case BinaryConsts::F32ReinterpretI32: curr = allocator.alloc(); curr->op = ReinterpretInt32; curr->type = f32; break; case BinaryConsts::F64ReinterpretI64: curr = allocator.alloc(); curr->op = ReinterpretInt64; curr->type = f64; break; default: return false; } if (debug) std::cerr << "zz node: Unary" << std::endl; curr->value = popExpression(); out = curr; return true; } bool maybeVisitBinary(Expression*& out, uint8_t code) { Binary* curr; #define INT_TYPED_CODE(code) { \ case BinaryConsts::I32##code: curr = allocator.alloc(); curr->op = code##Int32; curr->type = i32; break; \ case BinaryConsts::I64##code: curr = allocator.alloc(); curr->op = code##Int64; curr->type = i64; break; \ } #define FLOAT_TYPED_CODE(code) { \ case BinaryConsts::F32##code: curr = allocator.alloc(); curr->op = code##Float32; curr->type = f32; break; \ case BinaryConsts::F64##code: curr = allocator.alloc(); curr->op = code##Float64; curr->type = f64; break; \ } #define TYPED_CODE(code) { \ INT_TYPED_CODE(code) \ FLOAT_TYPED_CODE(code) \ } switch (code) { TYPED_CODE(Add); TYPED_CODE(Sub); TYPED_CODE(Mul); INT_TYPED_CODE(DivS); INT_TYPED_CODE(DivU); INT_TYPED_CODE(RemS); INT_TYPED_CODE(RemU); INT_TYPED_CODE(And); INT_TYPED_CODE(Or); INT_TYPED_CODE(Xor); INT_TYPED_CODE(Shl); INT_TYPED_CODE(ShrU); INT_TYPED_CODE(ShrS); INT_TYPED_CODE(RotL); INT_TYPED_CODE(RotR); FLOAT_TYPED_CODE(Div); FLOAT_TYPED_CODE(CopySign); FLOAT_TYPED_CODE(Min); FLOAT_TYPED_CODE(Max); TYPED_CODE(Eq); TYPED_CODE(Ne); INT_TYPED_CODE(LtS); INT_TYPED_CODE(LtU); INT_TYPED_CODE(LeS); INT_TYPED_CODE(LeU); INT_TYPED_CODE(GtS); INT_TYPED_CODE(GtU); INT_TYPED_CODE(GeS); INT_TYPED_CODE(GeU); FLOAT_TYPED_CODE(Lt); FLOAT_TYPED_CODE(Le); FLOAT_TYPED_CODE(Gt); FLOAT_TYPED_CODE(Ge); default: return false; } if (debug) std::cerr << "zz node: Binary" << std::endl; curr->right = popExpression(); curr->left = popExpression(); curr->finalize(); out = curr; return true; #undef TYPED_CODE #undef INT_TYPED_CODE #undef FLOAT_TYPED_CODE } void visitSelect(Select *curr) { if (debug) std::cerr << "zz node: Select" << std::endl; curr->condition = popExpression(); curr->ifFalse = popExpression(); curr->ifTrue = popExpression(); curr->finalize(); } void visitReturn(Return *curr) { if (debug) std::cerr << "zz node: Return" << std::endl; auto arity = getU32LEB(); assert(arity == 0 || arity == 1); if (arity == 1) { curr->value = popExpression(); } } bool maybeVisitHost(Expression*& out, uint8_t code) { Host* curr; switch (code) { case BinaryConsts::CurrentMemory: { curr = allocator.alloc(); curr->op = CurrentMemory; curr->type = i32; break; } case BinaryConsts::GrowMemory: { curr = allocator.alloc(); curr->op = GrowMemory; curr->operands.resize(1); curr->operands[0] = popExpression(); break; } default: return false; } if (debug) std::cerr << "zz node: Host" << std::endl; curr->finalize(); out = curr; return true; } void visitNop(Nop *curr) { if (debug) std::cerr << "zz node: Nop" << std::endl; } void visitUnreachable(Unreachable *curr) { if (debug) std::cerr << "zz node: Unreachable" << std::endl; } void visitDrop(Drop *curr) { if (debug) std::cerr << "zz node: Drop" << std::endl; curr->value = popExpression(); } }; } // namespace wasm #endif // wasm_wasm_binary_h