/* * Copyright 2016 WebAssembly Community Group participants * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include "wasm-binary.h" #include "wasm-stack.h" #include "ir/module-utils.h" #include "support/bits.h" namespace wasm { void WasmBinaryWriter::prepare() { // we need function types for all our functions for (auto& func : wasm->functions) { if (func->type.isNull()) { func->type = ensureFunctionType(getSig(func.get()), wasm)->name; } // TODO: depending on upstream flux https://github.com/WebAssembly/spec/pull/301 might want this: assert(!func->type.isNull()); } ModuleUtils::BinaryIndexes indexes(*wasm); mappedFunctions = std::move(indexes.functionIndexes); mappedGlobals = std::move(indexes.globalIndexes); importInfo = wasm::make_unique(*wasm); } void WasmBinaryWriter::write() { writeHeader(); writeEarlyUserSections(); initializeDebugInfo(); if (sourceMap) { writeSourceMapProlog(); } writeTypes(); writeImports(); writeFunctionSignatures(); writeFunctionTableDeclaration(); writeMemory(); writeGlobals(); writeExports(); writeStart(); writeTableElements(); writeFunctions(); writeDataSegments(); if (debugInfo) writeNames(); if (sourceMap && !sourceMapUrl.empty()) writeSourceMapUrl(); if (symbolMap.size() > 0) writeSymbolMap(); if (sourceMap) { writeSourceMapEpilog(); } writeLateUserSections(); finishUp(); } void WasmBinaryWriter::writeHeader() { if (debug) std::cerr << "== writeHeader" << std::endl; o << int32_t(BinaryConsts::Magic); // magic number \0asm o << int32_t(BinaryConsts::Version); } int32_t WasmBinaryWriter::writeU32LEBPlaceholder() { int32_t ret = o.size(); o << int32_t(0); o << int8_t(0); return ret; } void WasmBinaryWriter::writeResizableLimits(Address initial, Address maximum, bool hasMaximum, bool shared) { uint32_t flags = (hasMaximum ? (uint32_t) BinaryConsts::HasMaximum : 0U) | (shared ? (uint32_t) BinaryConsts::IsShared : 0U); o << U32LEB(flags); o << U32LEB(initial); if (hasMaximum) { o << U32LEB(maximum); } } template int32_t WasmBinaryWriter::startSection(T code) { o << U32LEB(code); if (sourceMap) sourceMapLocationsSizeAtSectionStart = sourceMapLocations.size(); return writeU32LEBPlaceholder(); // section size to be filled in later } void WasmBinaryWriter::finishSection(int32_t start) { int32_t size = o.size() - start - MaxLEB32Bytes; // section size does not include the reserved bytes of the size field itself auto sizeFieldSize = o.writeAt(start, U32LEB(size)); if (sizeFieldSize != MaxLEB32Bytes) { // we can save some room, nice assert(sizeFieldSize < MaxLEB32Bytes); std::move(&o[start] + MaxLEB32Bytes, &o[start] + MaxLEB32Bytes + size, &o[start] + sizeFieldSize); auto adjustment = MaxLEB32Bytes - sizeFieldSize; o.resize(o.size() - adjustment); if (sourceMap) { for (auto i = sourceMapLocationsSizeAtSectionStart; i < sourceMapLocations.size(); ++i) { sourceMapLocations[i].first -= adjustment; } } } } int32_t WasmBinaryWriter::startSubsection(BinaryConsts::UserSections::Subsection code) { return startSection(code); } void WasmBinaryWriter::finishSubsection(int32_t start) { finishSection(start); } void WasmBinaryWriter::writeStart() { if (!wasm->start.is()) return; if (debug) std::cerr << "== writeStart" << std::endl; auto start = startSection(BinaryConsts::Section::Start); o << U32LEB(getFunctionIndex(wasm->start.str)); finishSection(start); } void WasmBinaryWriter::writeMemory() { if (!wasm->memory.exists || wasm->memory.imported()) return; if (debug) std::cerr << "== writeMemory" << std::endl; auto start = startSection(BinaryConsts::Section::Memory); o << U32LEB(1); // Define 1 memory writeResizableLimits(wasm->memory.initial, wasm->memory.max, wasm->memory.hasMax(), wasm->memory.shared); finishSection(start); } void WasmBinaryWriter::writeTypes() { if (wasm->functionTypes.size() == 0) return; if (debug) std::cerr << "== writeTypes" << std::endl; auto start = startSection(BinaryConsts::Section::Type); o << U32LEB(wasm->functionTypes.size()); for (auto& type : wasm->functionTypes) { if (debug) std::cerr << "write one" << std::endl; o << S32LEB(BinaryConsts::EncodedType::Func); o << U32LEB(type->params.size()); for (auto param : type->params) { o << binaryType(param); } if (type->result == none) { o << U32LEB(0); } else { o << U32LEB(1); o << binaryType(type->result); } } finishSection(start); } int32_t WasmBinaryWriter::getFunctionTypeIndex(Name type) { // TODO: optimize for (size_t i = 0; i < wasm->functionTypes.size(); i++) { if (wasm->functionTypes[i]->name == type) return i; } abort(); } void WasmBinaryWriter::writeImports() { auto num = importInfo->getNumImports(); if (num == 0) return; if (debug) std::cerr << "== writeImports" << std::endl; auto start = startSection(BinaryConsts::Section::Import); o << U32LEB(num); auto writeImportHeader = [&](Importable* import) { writeInlineString(import->module.str); writeInlineString(import->base.str); }; ModuleUtils::iterImportedFunctions(*wasm, [&](Function* func) { if (debug) std::cerr << "write one function" << std::endl; writeImportHeader(func); o << U32LEB(int32_t(ExternalKind::Function)); o << U32LEB(getFunctionTypeIndex(func->type)); }); ModuleUtils::iterImportedGlobals(*wasm, [&](Global* global) { if (debug) std::cerr << "write one global" << std::endl; writeImportHeader(global); o << U32LEB(int32_t(ExternalKind::Global)); o << binaryType(global->type); o << U32LEB(global->mutable_); }); if (wasm->memory.imported()) { if (debug) std::cerr << "write one memory" << std::endl; writeImportHeader(&wasm->memory); o << U32LEB(int32_t(ExternalKind::Memory)); writeResizableLimits(wasm->memory.initial, wasm->memory.max, wasm->memory.hasMax(), wasm->memory.shared); } if (wasm->table.imported()) { if (debug) std::cerr << "write one table" << std::endl; writeImportHeader(&wasm->table); o << U32LEB(int32_t(ExternalKind::Table)); o << S32LEB(BinaryConsts::EncodedType::AnyFunc); writeResizableLimits(wasm->table.initial, wasm->table.max, wasm->table.hasMax(), /*shared=*/false); } finishSection(start); } void WasmBinaryWriter::writeFunctionSignatures() { if (importInfo->getNumDefinedFunctions() == 0) return; if (debug) std::cerr << "== writeFunctionSignatures" << std::endl; auto start = startSection(BinaryConsts::Section::Function); o << U32LEB(importInfo->getNumDefinedFunctions()); ModuleUtils::iterDefinedFunctions(*wasm, [&](Function* func) { if (debug) std::cerr << "write one" << std::endl; o << U32LEB(getFunctionTypeIndex(func->type)); }); finishSection(start); } void WasmBinaryWriter::writeExpression(Expression* curr) { ExpressionStackWriter(curr, *this, o, debug); } void WasmBinaryWriter::writeFunctions() { if (importInfo->getNumDefinedFunctions() == 0) return; if (debug) std::cerr << "== writeFunctions" << std::endl; auto start = startSection(BinaryConsts::Section::Code); o << U32LEB(importInfo->getNumDefinedFunctions()); ModuleUtils::iterDefinedFunctions(*wasm, [&](Function* func) { size_t sourceMapLocationsSizeAtFunctionStart = sourceMapLocations.size(); if (debug) std::cerr << "write one at" << o.size() << std::endl; size_t sizePos = writeU32LEBPlaceholder(); size_t start = o.size(); if (debug) std::cerr << "writing" << func->name << std::endl; // Emit Stack IR if present, and if we can if (func->stackIR && !sourceMap) { if (debug) std::cerr << "write Stack IR" << std::endl; StackIRFunctionStackWriter(func, *this, o, debug); } else { if (debug) std::cerr << "write Binaryen IR" << std::endl; FunctionStackWriter(func, *this, o, sourceMap, debug); } size_t size = o.size() - start; assert(size <= std::numeric_limits::max()); if (debug) std::cerr << "body size: " << size << ", writing at " << sizePos << ", next starts at " << o.size() << std::endl; auto sizeFieldSize = o.writeAt(sizePos, U32LEB(size)); if (sizeFieldSize != MaxLEB32Bytes) { // we can save some room, nice assert(sizeFieldSize < MaxLEB32Bytes); std::move(&o[start], &o[start] + size, &o[sizePos] + sizeFieldSize); auto adjustment = MaxLEB32Bytes - sizeFieldSize; o.resize(o.size() - adjustment); if (sourceMap) { for (auto i = sourceMapLocationsSizeAtFunctionStart; i < sourceMapLocations.size(); ++i) { sourceMapLocations[i].first -= adjustment; } } } tableOfContents.functionBodies.emplace_back(func->name, sizePos + sizeFieldSize, size); }); finishSection(start); } void WasmBinaryWriter::writeGlobals() { if (importInfo->getNumDefinedGlobals() == 0) return; if (debug) std::cerr << "== writeglobals" << std::endl; auto start = startSection(BinaryConsts::Section::Global); auto num = importInfo->getNumDefinedGlobals(); o << U32LEB(num); ModuleUtils::iterDefinedGlobals(*wasm, [&](Global* global) { if (debug) std::cerr << "write one" << std::endl; o << binaryType(global->type); o << U32LEB(global->mutable_); writeExpression(global->init); o << int8_t(BinaryConsts::End); }); finishSection(start); } void WasmBinaryWriter::writeExports() { if (wasm->exports.size() == 0) return; if (debug) std::cerr << "== writeexports" << std::endl; auto start = startSection(BinaryConsts::Section::Export); o << U32LEB(wasm->exports.size()); for (auto& curr : wasm->exports) { if (debug) std::cerr << "write one" << std::endl; writeInlineString(curr->name.str); o << U32LEB(int32_t(curr->kind)); switch (curr->kind) { case ExternalKind::Function: o << U32LEB(getFunctionIndex(curr->value)); break; case ExternalKind::Table: o << U32LEB(0); break; case ExternalKind::Memory: o << U32LEB(0); break; case ExternalKind::Global: o << U32LEB(getGlobalIndex(curr->value)); break; default: WASM_UNREACHABLE(); } } finishSection(start); } void WasmBinaryWriter::writeDataSegments() { if (wasm->memory.segments.size() == 0) return; if (wasm->memory.segments.size() > WebLimitations::MaxDataSegments) { std::cerr << "Some VMs may not accept this binary because it has a large " << "number of data segments. Run the limit-segments pass to " << "merge segments." << std::endl; } auto start = startSection(BinaryConsts::Section::Data); o << U32LEB(wasm->memory.segments.size()); for (auto& segment : wasm->memory.segments) { uint32_t flags = 0; if (segment.isPassive) { flags |= BinaryConsts::IsPassive; } o << U32LEB(flags); if (!segment.isPassive) { writeExpression(segment.offset); o << int8_t(BinaryConsts::End); } writeInlineBuffer(segment.data.data(), segment.data.size()); } finishSection(start); } uint32_t WasmBinaryWriter::getFunctionIndex(Name name) { assert(mappedFunctions.count(name)); return mappedFunctions[name]; } uint32_t WasmBinaryWriter::getGlobalIndex(Name name) { assert(mappedGlobals.count(name)); return mappedGlobals[name]; } void WasmBinaryWriter::writeFunctionTableDeclaration() { if (!wasm->table.exists || wasm->table.imported()) return; if (debug) std::cerr << "== writeFunctionTableDeclaration" << std::endl; auto start = startSection(BinaryConsts::Section::Table); o << U32LEB(1); // Declare 1 table. o << S32LEB(BinaryConsts::EncodedType::AnyFunc); writeResizableLimits(wasm->table.initial, wasm->table.max, wasm->table.hasMax(), /*shared=*/false); finishSection(start); } void WasmBinaryWriter::writeTableElements() { if (!wasm->table.exists) return; if (debug) std::cerr << "== writeTableElements" << std::endl; auto start = startSection(BinaryConsts::Section::Element); o << U32LEB(wasm->table.segments.size()); for (auto& segment : wasm->table.segments) { o << U32LEB(0); // Table index; 0 in the MVP (and binaryen IR only has 1 table) writeExpression(segment.offset); o << int8_t(BinaryConsts::End); o << U32LEB(segment.data.size()); for (auto name : segment.data) { o << U32LEB(getFunctionIndex(name)); } } finishSection(start); } void WasmBinaryWriter::writeNames() { bool hasContents = false; if (wasm->functions.size() > 0) { hasContents = true; getFunctionIndex(wasm->functions[0]->name); // generate mappedFunctions } if (!hasContents) return; if (debug) std::cerr << "== writeNames" << std::endl; auto start = startSection(BinaryConsts::Section::User); writeInlineString(BinaryConsts::UserSections::Name); auto substart = startSubsection(BinaryConsts::UserSections::Subsection::NameFunction); o << U32LEB(mappedFunctions.size()); Index emitted = 0; auto add = [&](Function* curr) { o << U32LEB(emitted); writeEscapedName(curr->name.str); emitted++; }; ModuleUtils::iterImportedFunctions(*wasm, add); ModuleUtils::iterDefinedFunctions(*wasm, add); assert(emitted == mappedFunctions.size()); finishSubsection(substart); /* TODO: locals */ finishSection(start); } void WasmBinaryWriter::writeSourceMapUrl() { if (debug) std::cerr << "== writeSourceMapUrl" << std::endl; auto start = startSection(BinaryConsts::Section::User); writeInlineString(BinaryConsts::UserSections::SourceMapUrl); writeInlineString(sourceMapUrl.c_str()); finishSection(start); } void WasmBinaryWriter::writeSymbolMap() { std::ofstream file(symbolMap); auto write = [&](Function* func) { file << getFunctionIndex(func->name) << ":" << func->name.str << std::endl; }; ModuleUtils::iterImportedFunctions(*wasm, write); ModuleUtils::iterDefinedFunctions(*wasm, write); file.close(); } void WasmBinaryWriter::initializeDebugInfo() { lastDebugLocation = { 0, /* lineNumber = */ 1, 0 }; } void WasmBinaryWriter::writeSourceMapProlog() { *sourceMap << "{\"version\":3,\"sources\":["; for (size_t i = 0; i < wasm->debugInfoFileNames.size(); i++) { if (i > 0) *sourceMap << ","; // TODO respect JSON string encoding, e.g. quotes and control chars. *sourceMap << "\"" << wasm->debugInfoFileNames[i] << "\""; } *sourceMap << "],\"names\":[],\"mappings\":\""; } static void writeBase64VLQ(std::ostream& out, int32_t n) { uint32_t value = n >= 0 ? n << 1 : ((-n) << 1) | 1; while (1) { uint32_t digit = value & 0x1F; value >>= 5; if (!value) { // last VLQ digit -- base64 codes 'A'..'Z', 'a'..'f' out << char(digit < 26 ? 'A' + digit : 'a' + digit - 26); break; } // more VLG digit will follow -- add continuation bit (0x20), // base64 codes 'g'..'z', '0'..'9', '+', '/' out << char(digit < 20 ? 'g' + digit : digit < 30 ? '0' + digit - 20 : digit == 30 ? '+' : '/'); } } void WasmBinaryWriter::writeSourceMapEpilog() { // write source map entries size_t lastOffset = 0; Function::DebugLocation lastLoc = { 0, /* lineNumber = */ 1, 0 }; for (const auto &offsetAndlocPair : sourceMapLocations) { if (lastOffset > 0) { *sourceMap << ","; } size_t offset = offsetAndlocPair.first; const Function::DebugLocation& loc = *offsetAndlocPair.second; writeBase64VLQ(*sourceMap, int32_t(offset - lastOffset)); writeBase64VLQ(*sourceMap, int32_t(loc.fileIndex - lastLoc.fileIndex)); writeBase64VLQ(*sourceMap, int32_t(loc.lineNumber - lastLoc.lineNumber)); writeBase64VLQ(*sourceMap, int32_t(loc.columnNumber - lastLoc.columnNumber)); lastLoc = loc; lastOffset = offset; } *sourceMap << "\"}"; } void WasmBinaryWriter::writeEarlyUserSections() { // The dylink section must be the first in the module, per // the spec, to allow simple parsing by loaders. for (auto& section : wasm->userSections) { if (section.name == BinaryConsts::UserSections::Dylink) { writeUserSection(section); } } } void WasmBinaryWriter::writeLateUserSections() { for (auto& section : wasm->userSections) { if (section.name != BinaryConsts::UserSections::Dylink) { writeUserSection(section); } } } void WasmBinaryWriter::writeUserSection(const UserSection& section) { auto start = startSection(0); writeInlineString(section.name.c_str()); for (size_t i = 0; i < section.data.size(); i++) { o << uint8_t(section.data[i]); } finishSection(start); } void WasmBinaryWriter::writeDebugLocation(const Function::DebugLocation& loc) { if (loc == lastDebugLocation) { return; } auto offset = o.size(); sourceMapLocations.emplace_back(offset, &loc); lastDebugLocation = loc; } void WasmBinaryWriter::writeDebugLocation(Expression* curr, Function* func) { auto& debugLocations = func->debugLocations; auto iter = debugLocations.find(curr); if (iter != debugLocations.end()) { writeDebugLocation(iter->second); } } void WasmBinaryWriter::writeInlineString(const char* name) { int32_t size = strlen(name); o << U32LEB(size); for (int32_t i = 0; i < size; i++) { o << int8_t(name[i]); } } static bool isHexDigit(char ch) { return (ch >= '0' && ch <= '9') || (ch >= 'a' && ch <= 'f') || (ch >= 'A' && ch <= 'F'); } static int decodeHexNibble(char ch) { return ch <= '9' ? ch & 15 : (ch & 15) + 9; } void WasmBinaryWriter::writeEscapedName(const char* name) { if (!strpbrk(name, "\\")) { writeInlineString(name); return; } // decode escaped by escapeName (see below) function names std::string unescaped; int32_t size = strlen(name); for (int32_t i = 0; i < size;) { char ch = name[i++]; // support only `\xx` escapes; ignore invalid or unsupported escapes if (ch != '\\' || i + 1 >= size || !isHexDigit(name[i]) || !isHexDigit(name[i + 1])) { unescaped.push_back(ch); continue; } unescaped.push_back(char((decodeHexNibble(name[i]) << 4) | decodeHexNibble(name[i + 1]))); i += 2; } writeInlineString(unescaped.c_str()); } void WasmBinaryWriter::writeInlineBuffer(const char* data, size_t size) { o << U32LEB(size); for (size_t i = 0; i < size; i++) { o << int8_t(data[i]); } } void WasmBinaryWriter::emitBuffer(const char* data, size_t size) { assert(size > 0); buffersToWrite.emplace_back(data, size, o.size()); o << uint32_t(0); // placeholder, we'll fill in the pointer to the buffer later when we have it } void WasmBinaryWriter::emitString(const char *str) { if (debug) std::cerr << "emitString " << str << std::endl; emitBuffer(str, strlen(str) + 1); } void WasmBinaryWriter::finishUp() { if (debug) std::cerr << "finishUp" << std::endl; // finish buffers for (const auto& buffer : buffersToWrite) { if (debug) std::cerr << "writing buffer" << (int)buffer.data[0] << "," << (int)buffer.data[1] << " at " << o.size() << " and pointer is at " << buffer.pointerLocation << std::endl; o.writeAt(buffer.pointerLocation, (uint32_t)o.size()); for (size_t i = 0; i < buffer.size; i++) { o << (uint8_t)buffer.data[i]; } } } // reader void WasmBinaryBuilder::read() { readHeader(); readSourceMapHeader(); // read sections until the end while (more()) { uint32_t sectionCode = getU32LEB(); uint32_t payloadLen = getU32LEB(); if (pos + payloadLen > input.size()) throwError("Section extends beyond end of input"); auto oldPos = pos; // note the section in the list of seen sections, as almost no sections can appear more than once, // and verify those that shouldn't do not. if (sectionCode != BinaryConsts::Section::User && sectionCode != BinaryConsts::Section::Code) { if (!seenSections.insert(BinaryConsts::Section(sectionCode)).second) { throwError("section seen more than once: " + std::to_string(sectionCode)); } } switch (sectionCode) { case BinaryConsts::Section::Start: readStart(); break; case BinaryConsts::Section::Memory: readMemory(); break; case BinaryConsts::Section::Type: readSignatures(); break; case BinaryConsts::Section::Import: readImports(); break; case BinaryConsts::Section::Function: readFunctionSignatures(); break; case BinaryConsts::Section::Code: readFunctions(); break; case BinaryConsts::Section::Export: readExports(); break; case BinaryConsts::Section::Element: readTableElements(); break; case BinaryConsts::Section::Global: { readGlobals(); // imports can read global imports, so we run getGlobalName and create the mapping // but after we read globals, we need to add the internal globals too, so do that here mappedGlobals.clear(); // wipe the mapping getGlobalName(-1); // force rebuild break; } case BinaryConsts::Section::Data: readDataSegments(); break; case BinaryConsts::Section::Table: readFunctionTableDeclaration(); break; default: { readUserSection(payloadLen); if (pos > oldPos + payloadLen) { throwError("bad user section size, started at " + std::to_string(oldPos) + " plus payload " + std::to_string(payloadLen) + " not being equal to new position " + std::to_string(pos)); } pos = oldPos + payloadLen; } } // make sure we advanced exactly past this section if (pos != oldPos + payloadLen) { throwError("bad section size, started at " + std::to_string(oldPos) + " plus payload " + std::to_string(payloadLen) + " not being equal to new position " + std::to_string(pos)); } } processFunctions(); } void WasmBinaryBuilder::readUserSection(size_t payloadLen) { auto oldPos = pos; Name sectionName = getInlineString(); size_t read = pos - oldPos; if (read > payloadLen) { throwError("bad user section size"); } payloadLen -= read; if (sectionName.equals(BinaryConsts::UserSections::Name)) { readNames(payloadLen); } else { // an unfamiliar custom section if (sectionName.equals(BinaryConsts::UserSections::Linking)) { std::cerr << "warning: linking section is present, so this is not a standard wasm file - binaryen cannot handle this properly!\n"; } wasm.userSections.resize(wasm.userSections.size() + 1); auto& section = wasm.userSections.back(); section.name = sectionName.str; auto sectionSize = payloadLen; section.data.resize(sectionSize); for (size_t i = 0; i < sectionSize; i++) { section.data[i] = getInt8(); } } } uint8_t WasmBinaryBuilder::getInt8() { if (!more()) throwError("unexpected end of input"); if (debug) std::cerr << "getInt8: " << (int)(uint8_t)input[pos] << " (at " << pos << ")" << std::endl; return input[pos++]; } uint16_t WasmBinaryBuilder::getInt16() { if (debug) std::cerr << "<==" << std::endl; auto ret = uint16_t(getInt8()); ret |= uint16_t(getInt8()) << 8; if (debug) std::cerr << "getInt16: " << ret << "/0x" << std::hex << ret << std::dec << " ==>" << std::endl; return ret; } uint32_t WasmBinaryBuilder::getInt32() { if (debug) std::cerr << "<==" << std::endl; auto ret = uint32_t(getInt16()); ret |= uint32_t(getInt16()) << 16; if (debug) std::cerr << "getInt32: " << ret << "/0x" << std::hex << ret << std::dec <<" ==>" << std::endl; return ret; } uint64_t WasmBinaryBuilder::getInt64() { if (debug) std::cerr << "<==" << std::endl; auto ret = uint64_t(getInt32()); ret |= uint64_t(getInt32()) << 32; if (debug) std::cerr << "getInt64: " << ret << "/0x" << std::hex << ret << std::dec << " ==>" << std::endl; return ret; } uint8_t WasmBinaryBuilder::getLaneIndex(size_t lanes) { if (debug) std::cerr << "<==" << std::endl; auto ret = getInt8(); if (ret >= lanes) throwError("Illegal lane index"); if (debug) std::cerr << "getLaneIndex(" << lanes << "): " << ret << " ==>" << std::endl; return ret; } Literal WasmBinaryBuilder::getFloat32Literal() { if (debug) std::cerr << "<==" << std::endl; auto ret = Literal(getInt32()); ret = ret.castToF32(); if (debug) std::cerr << "getFloat32: " << ret << " ==>" << std::endl; return ret; } Literal WasmBinaryBuilder::getFloat64Literal() { if (debug) std::cerr << "<==" << std::endl; auto ret = Literal(getInt64()); ret = ret.castToF64(); if (debug) std::cerr << "getFloat64: " << ret << " ==>" << std::endl; return ret; } Literal WasmBinaryBuilder::getVec128Literal() { if (debug) std::cerr << "<==" << std::endl; std::array bytes; for (auto i = 0; i < 16; ++i) { bytes[i] = getInt8(); } auto ret = Literal(bytes.data()); if (debug) std::cerr << "getVec128: " << ret << " ==>" << std::endl; return ret; } uint32_t WasmBinaryBuilder::getU32LEB() { if (debug) std::cerr << "<==" << std::endl; U32LEB ret; ret.read([&]() { return getInt8(); }); if (debug) std::cerr << "getU32LEB: " << ret.value << " ==>" << std::endl; return ret.value; } uint64_t WasmBinaryBuilder::getU64LEB() { if (debug) std::cerr << "<==" << std::endl; U64LEB ret; ret.read([&]() { return getInt8(); }); if (debug) std::cerr << "getU64LEB: " << ret.value << " ==>" << std::endl; return ret.value; } int32_t WasmBinaryBuilder::getS32LEB() { if (debug) std::cerr << "<==" << std::endl; S32LEB ret; ret.read([&]() { return (int8_t)getInt8(); }); if (debug) std::cerr << "getS32LEB: " << ret.value << " ==>" << std::endl; return ret.value; } int64_t WasmBinaryBuilder::getS64LEB() { if (debug) std::cerr << "<==" << std::endl; S64LEB ret; ret.read([&]() { return (int8_t)getInt8(); }); if (debug) std::cerr << "getS64LEB: " << ret.value << " ==>" << std::endl; return ret.value; } Type WasmBinaryBuilder::getType() { int type = getS32LEB(); switch (type) { // None only used for block signatures. TODO: Separate out? case BinaryConsts::EncodedType::Empty: return none; case BinaryConsts::EncodedType::i32: return i32; case BinaryConsts::EncodedType::i64: return i64; case BinaryConsts::EncodedType::f32: return f32; case BinaryConsts::EncodedType::f64: return f64; case BinaryConsts::EncodedType::v128: return v128; default: { throwError("invalid wasm type: " + std::to_string(type)); } } WASM_UNREACHABLE(); } Type WasmBinaryBuilder::getConcreteType() { auto type = getType(); if (!isConcreteType(type)) { throw ParseException("non-concrete type when one expected"); } return type; } Name WasmBinaryBuilder::getInlineString() { if (debug) std::cerr << "<==" << std::endl; auto len = getU32LEB(); std::string str; for (size_t i = 0; i < len; i++) { auto curr = char(getInt8()); if (curr == 0) { throwError("inline string contains NULL (0). that is technically valid in wasm, but you shouldn't do it, and it's not supported in binaryen"); } str = str + curr; } if (debug) std::cerr << "getInlineString: " << str << " ==>" << std::endl; return Name(str); } void WasmBinaryBuilder::verifyInt8(int8_t x) { int8_t y = getInt8(); if (x != y) throwError("surprising value"); } void WasmBinaryBuilder::verifyInt16(int16_t x) { int16_t y = getInt16(); if (x != y) throwError("surprising value"); } void WasmBinaryBuilder::verifyInt32(int32_t x) { int32_t y = getInt32(); if (x != y) throwError("surprising value"); } void WasmBinaryBuilder::verifyInt64(int64_t x) { int64_t y = getInt64(); if (x != y) throwError("surprising value"); } void WasmBinaryBuilder::ungetInt8() { assert(pos > 0); if (debug) std::cerr << "ungetInt8 (at " << pos << ")" << std::endl; pos--; } void WasmBinaryBuilder::readHeader() { if (debug) std::cerr << "== readHeader" << std::endl; verifyInt32(BinaryConsts::Magic); verifyInt32(BinaryConsts::Version); } void WasmBinaryBuilder::readStart() { if (debug) std::cerr << "== readStart" << std::endl; startIndex = getU32LEB(); } void WasmBinaryBuilder::readMemory() { if (debug) std::cerr << "== readMemory" << std::endl; auto numMemories = getU32LEB(); if (!numMemories) return; if (numMemories != 1) { throwError("Must be exactly 1 memory"); } if (wasm.memory.exists) { throwError("Memory cannot be both imported and defined"); } wasm.memory.exists = true; getResizableLimits(wasm.memory.initial, wasm.memory.max, wasm.memory.shared, Memory::kUnlimitedSize); } void WasmBinaryBuilder::readSignatures() { if (debug) std::cerr << "== readSignatures" << std::endl; size_t numTypes = getU32LEB(); if (debug) std::cerr << "num: " << numTypes << std::endl; for (size_t i = 0; i < numTypes; i++) { if (debug) std::cerr << "read one" << std::endl; auto curr = make_unique(); auto form = getS32LEB(); if (form != BinaryConsts::EncodedType::Func) { throwError("bad signature form " + std::to_string(form)); } size_t numParams = getU32LEB(); if (debug) std::cerr << "num params: " << numParams << std::endl; for (size_t j = 0; j < numParams; j++) { curr->params.push_back(getConcreteType()); } auto numResults = getU32LEB(); if (numResults == 0) { curr->result = none; } else { if (numResults != 1) { throwError("signature must have 1 result"); } curr->result = getType(); } curr->name = Name::fromInt(wasm.functionTypes.size()); wasm.addFunctionType(std::move(curr)); } } Name WasmBinaryBuilder::getFunctionIndexName(Index i) { if (i >= wasm.functions.size()) { throwError("invalid function index"); } return wasm.functions[i]->name; } void WasmBinaryBuilder::getResizableLimits(Address& initial, Address& max, bool &shared, Address defaultIfNoMax) { auto flags = getU32LEB(); initial = getU32LEB(); bool hasMax = (flags & BinaryConsts::HasMaximum) != 0; bool isShared = (flags & BinaryConsts::IsShared) != 0; if (isShared && !hasMax) throwError("shared memory must have max size"); shared = isShared; if (hasMax) max = getU32LEB(); else max = defaultIfNoMax; } void WasmBinaryBuilder::readImports() { if (debug) std::cerr << "== readImports" << std::endl; size_t num = getU32LEB(); if (debug) std::cerr << "num: " << num << std::endl; Builder builder(wasm); for (size_t i = 0; i < num; i++) { if (debug) std::cerr << "read one" << std::endl; auto module = getInlineString(); auto base = getInlineString(); auto kind = (ExternalKind)getU32LEB(); // We set a unique prefix for the name based on the kind. This ensures no collisions // between them, which can't occur here (due to the index i) but could occur later // due to the names section. switch (kind) { case ExternalKind::Function: { auto name = Name(std::string("fimport$") + std::to_string(i)); auto index = getU32LEB(); if (index >= wasm.functionTypes.size()) { throwError("invalid function index " + std::to_string(index) + " / " + std::to_string(wasm.functionTypes.size())); } auto* functionType = wasm.functionTypes[index].get(); auto params = functionType->params; auto result = functionType->result; auto* curr = builder.makeFunction(name, std::move(params), result, {}); curr->module = module; curr->base = base; curr->type = functionType->name; wasm.addFunction(curr); functionImports.push_back(curr); break; } case ExternalKind::Table: { wasm.table.module = module; wasm.table.base = base; wasm.table.name = Name(std::string("timport$") + std::to_string(i)); auto elementType = getS32LEB(); WASM_UNUSED(elementType); if (elementType != BinaryConsts::EncodedType::AnyFunc) throwError("Imported table type is not AnyFunc"); wasm.table.exists = true; bool is_shared; getResizableLimits(wasm.table.initial, wasm.table.max, is_shared, Table::kUnlimitedSize); if (is_shared) throwError("Tables may not be shared"); break; } case ExternalKind::Memory: { wasm.memory.module = module; wasm.memory.base = base; wasm.memory.name = Name(std::to_string(i)); wasm.memory.exists = true; getResizableLimits(wasm.memory.initial, wasm.memory.max, wasm.memory.shared, Memory::kUnlimitedSize); break; } case ExternalKind::Global: { auto name = Name(std::string("gimport$") + std::to_string(i)); auto type = getConcreteType(); auto mutable_ = getU32LEB(); auto* curr = builder.makeGlobal(name, type, nullptr, mutable_ ? Builder::Mutable : Builder::Immutable); curr->module = module; curr->base = base; wasm.addGlobal(curr); break; } default: { throwError("bad import kind"); } } } } Name WasmBinaryBuilder::getNextLabel() { requireFunctionContext("getting a label"); return Name("label$" + std::to_string(nextLabel++)); } void WasmBinaryBuilder::requireFunctionContext(const char* error) { if (!currFunction) { throwError(std::string("in a non-function context: ") + error); } } void WasmBinaryBuilder::readFunctionSignatures() { if (debug) std::cerr << "== readFunctionSignatures" << std::endl; size_t num = getU32LEB(); if (debug) std::cerr << "num: " << num << std::endl; for (size_t i = 0; i < num; i++) { if (debug) std::cerr << "read one" << std::endl; auto index = getU32LEB(); if (index >= wasm.functionTypes.size()) { throwError("invalid function type index for function"); } functionTypes.push_back(wasm.functionTypes[index].get()); } } void WasmBinaryBuilder::readFunctions() { if (debug) std::cerr << "== readFunctions" << std::endl; size_t total = getU32LEB(); if (total != functionTypes.size()) { throwError("invalid function section size, must equal types"); } for (size_t i = 0; i < total; i++) { if (debug) std::cerr << "read one at " << pos << std::endl; size_t size = getU32LEB(); if (size == 0) { throwError("empty function size"); } endOfFunction = pos + size; Function *func = new Function; func->name = Name::fromInt(i); currFunction = func; readNextDebugLocation(); auto type = functionTypes[i]; if (debug) std::cerr << "reading " << i << std::endl; func->type = type->name; func->result = type->result; for (size_t j = 0; j < type->params.size(); j++) { func->params.emplace_back(type->params[j]); } size_t numLocalTypes = getU32LEB(); for (size_t t = 0; t < numLocalTypes; t++) { auto num = getU32LEB(); auto type = getConcreteType(); while (num > 0) { func->vars.push_back(type); num--; } } std::swap(func->prologLocation, debugLocation); { // process the function body if (debug) std::cerr << "processing function: " << i << std::endl; nextLabel = 0; debugLocation.clear(); willBeIgnored = false; // process body assert(breakTargetNames.size() == 0); assert(breakStack.empty()); assert(expressionStack.empty()); assert(depth == 0); func->body = getBlockOrSingleton(func->result); assert(depth == 0); assert(breakStack.size() == 0); assert(breakTargetNames.size() == 0); if (!expressionStack.empty()) { throwError("stack not empty on function exit"); } if (pos != endOfFunction) { throwError("binary offset at function exit not at expected location"); } } std::swap(func->epilogLocation, debugLocation); currFunction = nullptr; debugLocation.clear(); functions.push_back(func); } if (debug) std::cerr << " end function bodies" << std::endl; } void WasmBinaryBuilder::readExports() { if (debug) std::cerr << "== readExports" << std::endl; size_t num = getU32LEB(); if (debug) std::cerr << "num: " << num << std::endl; std::set names; for (size_t i = 0; i < num; i++) { if (debug) std::cerr << "read one" << std::endl; auto curr = new Export; curr->name = getInlineString(); if (names.count(curr->name) > 0) { throwError("duplicate export name"); } names.insert(curr->name); curr->kind = (ExternalKind)getU32LEB(); auto index = getU32LEB(); exportIndexes[curr] = index; exportOrder.push_back(curr); } } static int32_t readBase64VLQ(std::istream& in) { uint32_t value = 0; uint32_t shift = 0; while (1) { auto ch = in.get(); if (ch == EOF) throw MapParseException("unexpected EOF in the middle of VLQ"); if ((ch >= 'A' && ch <= 'Z') || (ch >= 'a' && ch < 'g')) { // last number digit uint32_t digit = ch < 'a' ? ch - 'A' : ch - 'a' + 26; value |= digit << shift; break; } if (!(ch >= 'g' && ch <= 'z') && !(ch >= '0' && ch <= '9') && ch != '+' && ch != '/') { throw MapParseException("invalid VLQ digit"); } uint32_t digit = ch > '9' ? ch - 'g' : (ch >= '0' ? ch - '0' + 20 : (ch == '+' ? 30 : 31)); value |= digit << shift; shift += 5; } return value & 1 ? -int32_t(value >> 1) : int32_t(value >> 1); } void WasmBinaryBuilder::readSourceMapHeader() { if (!sourceMap) return; auto skipWhitespace = [&]() { while (sourceMap->peek() == ' ' || sourceMap->peek() == '\n') sourceMap->get(); }; auto maybeReadChar = [&](char expected) { if (sourceMap->peek() != expected) return false; sourceMap->get(); return true; }; auto mustReadChar = [&](char expected) { char c = sourceMap->get(); if (c != expected) { throw MapParseException(std::string("Unexpected char: expected '") + expected + "' got '" + c + "'"); } }; auto findField = [&](const char* name) { bool matching = false; size_t len = strlen(name); size_t pos; while (1) { int ch = sourceMap->get(); if (ch == EOF) return false; if (ch == '\"') { if (matching) { // we matched a terminating quote. if (pos == len) break; matching = false; } else { matching = true; pos = 0; } } else if (matching && name[pos] == ch) { ++pos; } else if (matching) { matching = false; } } skipWhitespace(); mustReadChar(':'); skipWhitespace(); return true; }; auto readString = [&](std::string& str) { std::vector vec; skipWhitespace(); mustReadChar('\"'); if (!maybeReadChar('\"')) { while (1) { int ch = sourceMap->get(); if (ch == EOF) { throw MapParseException("unexpected EOF in the middle of string"); } if (ch == '\"') break; vec.push_back(ch); } } skipWhitespace(); str = std::string(vec.begin(), vec.end()); }; if (!findField("sources")) { throw MapParseException("cannot find the 'sources' field in map"); } skipWhitespace(); mustReadChar('['); if (!maybeReadChar(']')) { do { std::string file; readString(file); Index index = wasm.debugInfoFileNames.size(); wasm.debugInfoFileNames.push_back(file); debugInfoFileIndices[file] = index; } while (maybeReadChar(',')); mustReadChar(']'); } if (!findField("mappings")) { throw MapParseException("cannot find the 'mappings' field in map"); } mustReadChar('\"'); if (maybeReadChar('\"')) { // empty mappings nextDebugLocation.first = 0; return; } // read first debug location uint32_t position = readBase64VLQ(*sourceMap); uint32_t fileIndex = readBase64VLQ(*sourceMap); uint32_t lineNumber = readBase64VLQ(*sourceMap) + 1; // adjust zero-based line number uint32_t columnNumber = readBase64VLQ(*sourceMap); nextDebugLocation = { position, { fileIndex, lineNumber, columnNumber } }; } void WasmBinaryBuilder::readNextDebugLocation() { if (!sourceMap) return; while (nextDebugLocation.first && nextDebugLocation.first <= pos) { if (nextDebugLocation.first < pos) { std::cerr << "skipping debug location info for 0x"; std::cerr << std::hex << nextDebugLocation.first << std::dec << std::endl; } debugLocation.clear(); // use debugLocation only for function expressions if (currFunction) { debugLocation.insert(nextDebugLocation.second); } char ch; *sourceMap >> ch; if (ch == '\"') { // end of records nextDebugLocation.first = 0; break; } if (ch != ',') { throw MapParseException("Unexpected delimiter"); } int32_t positionDelta = readBase64VLQ(*sourceMap); uint32_t position = nextDebugLocation.first + positionDelta; int32_t fileIndexDelta = readBase64VLQ(*sourceMap); uint32_t fileIndex = nextDebugLocation.second.fileIndex + fileIndexDelta; int32_t lineNumberDelta = readBase64VLQ(*sourceMap); uint32_t lineNumber = nextDebugLocation.second.lineNumber + lineNumberDelta; int32_t columnNumberDelta = readBase64VLQ(*sourceMap); uint32_t columnNumber = nextDebugLocation.second.columnNumber + columnNumberDelta; nextDebugLocation = { position, { fileIndex, lineNumber, columnNumber } }; } } Expression* WasmBinaryBuilder::readExpression() { assert(depth == 0); processExpressions(); if (expressionStack.size() != 1) { throwError("expected to read a single expression"); } auto* ret = popExpression(); assert(depth == 0); return ret; } void WasmBinaryBuilder::readGlobals() { if (debug) std::cerr << "== readGlobals" << std::endl; size_t num = getU32LEB(); if (debug) std::cerr << "num: " << num << std::endl; for (size_t i = 0; i < num; i++) { if (debug) std::cerr << "read one" << std::endl; auto type = getConcreteType(); auto mutable_ = getU32LEB(); if (mutable_ & ~1) throwError("Global mutability must be 0 or 1"); auto* init = readExpression(); wasm.addGlobal(Builder::makeGlobal( "global$" + std::to_string(i), type, init, mutable_ ? Builder::Mutable : Builder::Immutable )); } } void WasmBinaryBuilder::processExpressions() { if (debug) std::cerr << "== processExpressions" << std::endl; unreachableInTheWasmSense = false; while (1) { Expression* curr; auto ret = readExpression(curr); if (!curr) { lastSeparator = ret; if (debug) std::cerr << "== processExpressions finished" << std::endl; return; } expressionStack.push_back(curr); if (curr->type == unreachable) { // once we see something unreachable, we don't want to add anything else // to the stack, as it could be stacky code that is non-representable in // our AST. but we do need to skip it // if there is nothing else here, just stop. otherwise, go into unreachable // mode. peek to see what to do if (pos == endOfFunction) { throwError("Reached function end without seeing End opcode"); } if (!more()) throwError("unexpected end of input"); auto peek = input[pos]; if (peek == BinaryConsts::End || peek == BinaryConsts::Else) { if (debug) std::cerr << "== processExpressions finished with unreachable" << std::endl; readNextDebugLocation(); lastSeparator = BinaryConsts::ASTNodes(peek); pos++; return; } else { skipUnreachableCode(); return; } } } } void WasmBinaryBuilder::skipUnreachableCode() { if (debug) std::cerr << "== skipUnreachableCode" << std::endl; // preserve the stack, and restore it. it contains the instruction that made us // unreachable, and we can ignore anything after it. things after it may pop, // we want to undo that auto savedStack = expressionStack; // note we are entering unreachable code, and note what the state as before so // we can restore it auto before = willBeIgnored; willBeIgnored = true; // clear the stack. nothing should be popped from there anyhow, just stuff // can be pushed and then popped. Popping past the top of the stack will // result in uneachables being returned expressionStack.clear(); while (1) { // set the unreachableInTheWasmSense flag each time, as sub-blocks may set and unset it unreachableInTheWasmSense = true; Expression* curr; auto ret = readExpression(curr); if (!curr) { if (debug) std::cerr << "== skipUnreachableCode finished" << std::endl; lastSeparator = ret; unreachableInTheWasmSense = false; willBeIgnored = before; expressionStack = savedStack; return; } expressionStack.push_back(curr); } } Expression* WasmBinaryBuilder::popExpression() { if (debug) std::cerr << "== popExpression" << std::endl; if (expressionStack.empty()) { if (unreachableInTheWasmSense) { // in unreachable code, trying to pop past the polymorphic stack // area results in receiving unreachables if (debug) std::cerr << "== popping unreachable from polymorphic stack" << std::endl; return allocator.alloc(); } throwError("attempted pop from empty stack / beyond block start boundary at " + std::to_string(pos)); } // the stack is not empty, and we would not be going out of the current block auto ret = expressionStack.back(); expressionStack.pop_back(); return ret; } Expression* WasmBinaryBuilder::popNonVoidExpression() { auto* ret = popExpression(); if (ret->type != none) return ret; // we found a void, so this is stacky code that we must handle carefully Builder builder(wasm); // add elements until we find a non-void std::vector expressions; expressions.push_back(ret); while (1) { auto* curr = popExpression(); expressions.push_back(curr); if (curr->type != none) break; } auto* block = builder.makeBlock(); while (!expressions.empty()) { block->list.push_back(expressions.back()); expressions.pop_back(); } requireFunctionContext("popping void where we need a new local"); auto type = block->list[0]->type; if (isConcreteType(type)) { auto local = builder.addVar(currFunction, type); block->list[0] = builder.makeSetLocal(local, block->list[0]); block->list.push_back(builder.makeGetLocal(local, type)); } else { assert(type == unreachable); // nothing to do here - unreachable anyhow } block->finalize(); return block; } Name WasmBinaryBuilder::getGlobalName(Index index) { if (!mappedGlobals.size()) { // Create name => index mapping. auto add = [&](Global* curr) { auto index = mappedGlobals.size(); mappedGlobals[index] = curr->name; }; ModuleUtils::iterImportedGlobals(wasm, add); ModuleUtils::iterDefinedGlobals(wasm, add); } if (index == Index(-1)) return Name("null"); // just a force-rebuild if (mappedGlobals.count(index) == 0) { throwError("bad global index"); } return mappedGlobals[index]; } void WasmBinaryBuilder::processFunctions() { for (auto* func : functions) { wasm.addFunction(func); } // now that we have names for each function, apply things if (startIndex != static_cast(-1)) { wasm.start = getFunctionIndexName(startIndex); } for (auto* curr : exportOrder) { auto index = exportIndexes[curr]; switch (curr->kind) { case ExternalKind::Function: { curr->value = getFunctionIndexName(index); break; } case ExternalKind::Table: curr->value = Name::fromInt(0); break; case ExternalKind::Memory: curr->value = Name::fromInt(0); break; case ExternalKind::Global: curr->value = getGlobalName(index); break; default: throwError("bad export kind"); } wasm.addExport(curr); } for (auto& iter : functionCalls) { size_t index = iter.first; auto& calls = iter.second; for (auto* call : calls) { call->target = getFunctionIndexName(index); } } for (auto& pair : functionTable) { auto i = pair.first; auto& indexes = pair.second; for (auto j : indexes) { wasm.table.segments[i].data.push_back(getFunctionIndexName(j)); } } // Everything now has its proper name. wasm.updateMaps(); } void WasmBinaryBuilder::readDataSegments() { if (debug) std::cerr << "== readDataSegments" << std::endl; auto num = getU32LEB(); for (size_t i = 0; i < num; i++) { Memory::Segment curr; uint32_t flags = getU32LEB(); if (flags > 2) { throwError("bad segment flags, must be 0, 1, or 2, not " + std::to_string(flags)); } curr.isPassive = flags & BinaryConsts::IsPassive; if (flags & BinaryConsts::HasMemIndex) { curr.index = getU32LEB(); } if (!curr.isPassive) { curr.offset = readExpression(); } auto size = getU32LEB(); curr.data.resize(size); for (size_t j = 0; j < size; j++) { curr.data[j] = char(getInt8()); } wasm.memory.segments.push_back(curr); } } void WasmBinaryBuilder::readFunctionTableDeclaration() { if (debug) std::cerr << "== readFunctionTableDeclaration" << std::endl; auto numTables = getU32LEB(); if (numTables != 1) throwError("Only 1 table definition allowed in MVP"); if (wasm.table.exists) throwError("Table cannot be both imported and defined"); wasm.table.exists = true; auto elemType = getS32LEB(); if (elemType != BinaryConsts::EncodedType::AnyFunc) throwError("ElementType must be AnyFunc in MVP"); bool is_shared; getResizableLimits(wasm.table.initial, wasm.table.max, is_shared, Table::kUnlimitedSize); if (is_shared) throwError("Tables may not be shared"); } void WasmBinaryBuilder::readTableElements() { if (debug) std::cerr << "== readTableElements" << std::endl; auto numSegments = getU32LEB(); if (numSegments >= Table::kMaxSize) throwError("Too many segments"); for (size_t i = 0; i < numSegments; i++) { auto tableIndex = getU32LEB(); if (tableIndex != 0) throwError("Table elements must refer to table 0 in MVP"); wasm.table.segments.emplace_back(readExpression()); auto& indexSegment = functionTable[i]; auto size = getU32LEB(); for (Index j = 0; j < size; j++) { indexSegment.push_back(getU32LEB()); } } } static bool isIdChar(char ch) { return (ch >= '0' && ch <= '9') || (ch >= 'A' && ch <= 'Z') || (ch >= 'a' && ch <= 'z') || ch == '!' || ch == '#' || ch == '$' || ch == '%' || ch == '&' || ch == '\'' || ch == '*' || ch == '+' || ch == '-' || ch == '.' || ch == '/' || ch == ':' || ch == '<' || ch == '=' || ch == '>' || ch == '?' || ch == '@' || ch == '^' || ch == '_' || ch == '`' || ch == '|' || ch == '~'; } static char formatNibble(int nibble) { return nibble < 10 ? '0' + nibble : 'a' - 10 + nibble; } static void escapeName(Name &name) { bool allIdChars = true; for (const char *p = name.str; allIdChars && *p; p++) { allIdChars = isIdChar(*p); } if (allIdChars) { return; } // encode name, if at least one non-idchar (per WebAssembly spec) was found std::string escaped; for (const char *p = name.str; *p; p++) { char ch = *p; if (isIdChar(ch)) { escaped.push_back(ch); continue; } // replace non-idchar with `\xx` escape escaped.push_back('\\'); escaped.push_back(formatNibble(ch >> 4)); escaped.push_back(formatNibble(ch & 15)); } name = escaped; } void WasmBinaryBuilder::readNames(size_t payloadLen) { if (debug) std::cerr << "== readNames" << std::endl; auto sectionPos = pos; while (pos < sectionPos + payloadLen) { auto nameType = getU32LEB(); auto subsectionSize = getU32LEB(); auto subsectionPos = pos; if (nameType != BinaryConsts::UserSections::Subsection::NameFunction) { // TODO: locals std::cerr << "unknown name subsection at " << pos << std::endl; pos = subsectionPos + subsectionSize; continue; } auto num = getU32LEB(); std::set usedNames; for (size_t i = 0; i < num; i++) { auto index = getU32LEB(); auto rawName = getInlineString(); escapeName(rawName); auto name = rawName; // De-duplicate names by appending .1, .2, etc. for (int i = 1; !usedNames.insert(name).second; ++i) { name = rawName.str + std::string(".") + std::to_string(i); } // note: we silently ignore errors here, as name section errors // are not fatal. should we warn? auto numFunctionImports = functionImports.size(); if (index < numFunctionImports) { functionImports[index]->name = name; } else if (index - numFunctionImports < functions.size()) { functions[index - numFunctionImports]->name = name; } else { throwError("index out of bounds: " + std::string(name.str)); } } if (pos != subsectionPos + subsectionSize) { throwError("bad names subsection position change"); } } if (pos != sectionPos + payloadLen) { throwError("bad names section position change"); } } BinaryConsts::ASTNodes WasmBinaryBuilder::readExpression(Expression*& curr) { if (pos == endOfFunction) { throwError("Reached function end without seeing End opcode"); } if (debug) std::cerr << "zz recurse into " << ++depth << " at " << pos << std::endl; readNextDebugLocation(); std::set currDebugLocation; if (debugLocation.size()) { currDebugLocation.insert(*debugLocation.begin()); } uint8_t code = getInt8(); if (debug) std::cerr << "readExpression seeing " << (int)code << std::endl; switch (code) { case BinaryConsts::Block: visitBlock((curr = allocator.alloc())->cast()); break; case BinaryConsts::If: visitIf((curr = allocator.alloc())->cast()); break; case BinaryConsts::Loop: visitLoop((curr = allocator.alloc())->cast()); break; case BinaryConsts::Br: case BinaryConsts::BrIf: visitBreak((curr = allocator.alloc())->cast(), code); break; // code distinguishes br from br_if case BinaryConsts::TableSwitch: visitSwitch((curr = allocator.alloc())->cast()); break; case BinaryConsts::CallFunction: visitCall((curr = allocator.alloc())->cast()); break; case BinaryConsts::CallIndirect: visitCallIndirect((curr = allocator.alloc())->cast()); break; case BinaryConsts::GetLocal: visitGetLocal((curr = allocator.alloc())->cast()); break; case BinaryConsts::TeeLocal: case BinaryConsts::SetLocal: visitSetLocal((curr = allocator.alloc())->cast(), code); break; case BinaryConsts::GetGlobal: visitGetGlobal((curr = allocator.alloc())->cast()); break; case BinaryConsts::SetGlobal: visitSetGlobal((curr = allocator.alloc())->cast()); break; case BinaryConsts::Select: visitSelect((curr = allocator.alloc()); break; case BinaryConsts::Return: visitReturn((curr = allocator.alloc())->cast()); break; case BinaryConsts::Nop: visitNop((curr = allocator.alloc())->cast()); break; case BinaryConsts::Unreachable: visitUnreachable((curr = allocator.alloc())->cast()); break; case BinaryConsts::Drop: visitDrop((curr = allocator.alloc())->cast()); break; case BinaryConsts::End: case BinaryConsts::Else: curr = nullptr; break; case BinaryConsts::AtomicPrefix: { code = static_cast(getU32LEB()); if (maybeVisitLoad(curr, code, /*isAtomic=*/true)) break; if (maybeVisitStore(curr, code, /*isAtomic=*/true)) break; if (maybeVisitAtomicRMW(curr, code)) break; if (maybeVisitAtomicCmpxchg(curr, code)) break; if (maybeVisitAtomicWait(curr, code)) break; if (maybeVisitAtomicNotify(curr, code)) break; throwError("invalid code after atomic prefix: " + std::to_string(code)); break; } case BinaryConsts::MiscPrefix: { auto opcode = getU32LEB(); if (maybeVisitTruncSat(curr, opcode)) break; if (maybeVisitMemoryInit(curr, opcode)) break; if (maybeVisitDataDrop(curr, opcode)) break; if (maybeVisitMemoryCopy(curr, opcode)) break; if (maybeVisitMemoryFill(curr, opcode)) break; throwError("invalid code after nontrapping float-to-int prefix: " + std::to_string(opcode)); break; } case BinaryConsts::SIMDPrefix: { auto opcode = getU32LEB(); if (maybeVisitSIMDBinary(curr, opcode)) break; if (maybeVisitSIMDUnary(curr, opcode)) break; if (maybeVisitSIMDConst(curr, opcode)) break; if (maybeVisitSIMDLoad(curr, opcode)) break; if (maybeVisitSIMDStore(curr, opcode)) break; if (maybeVisitSIMDExtract(curr, opcode)) break; if (maybeVisitSIMDReplace(curr, opcode)) break; if (maybeVisitSIMDShuffle(curr, opcode)) break; if (maybeVisitSIMDBitselect(curr, opcode)) break; if (maybeVisitSIMDShift(curr, opcode)) break; throwError("invalid code after SIMD prefix: " + std::to_string(opcode)); break; } default: { // otherwise, the code is a subcode TODO: optimize if (maybeVisitBinary(curr, code)) break; if (maybeVisitUnary(curr, code)) break; if (maybeVisitConst(curr, code)) break; if (maybeVisitLoad(curr, code, /*isAtomic=*/false)) break; if (maybeVisitStore(curr, code, /*isAtomic=*/false)) break; if (maybeVisitHost(curr, code)) break; throwError("bad node code " + std::to_string(code)); break; } } if (curr && currDebugLocation.size()) { currFunction->debugLocations[curr] = *currDebugLocation.begin(); } if (debug) std::cerr << "zz recurse from " << depth-- << " at " << pos << std::endl; return BinaryConsts::ASTNodes(code); } void WasmBinaryBuilder::pushBlockElements(Block* curr, size_t start, size_t end) { assert(start <= expressionStack.size()); assert(start <= end); assert(end <= expressionStack.size()); // the first dropped element may be consumed by code later - it was on the stack first, // and is the only thing left on the stack. there must be just one thing on the stack // since we are at the end of a block context. note that we may need to drop more than // one thing, since a bunch of concrete values may be all "consumed" by an unreachable // (in which case, the first value can't be consumed anyhow, so it doesn't matter) const Index NONE = -1; Index consumable = NONE; for (size_t i = start; i < end; i++) { auto* item = expressionStack[i]; curr->list.push_back(item); if (i < end - 1) { // stacky&unreachable code may introduce elements that need to be dropped in non-final positions if (isConcreteType(item->type)) { curr->list.back() = Builder(wasm).makeDrop(item); if (consumable == NONE) { // this is the first, and hence consumable value. note the location consumable = curr->list.size() - 1; } } } } expressionStack.resize(start); // if we have a consumable item and need it, use it if (consumable != NONE && curr->list.back()->type == none) { requireFunctionContext("need an extra var in a non-function context, invalid wasm"); Builder builder(wasm); auto* item = curr->list[consumable]->cast()->value; auto temp = builder.addVar(currFunction, item->type); curr->list[consumable] = builder.makeSetLocal(temp, item); curr->list.push_back(builder.makeGetLocal(temp, item->type)); } } void WasmBinaryBuilder::visitBlock(Block* curr) { if (debug) std::cerr << "zz node: Block" << std::endl; // special-case Block and de-recurse nested blocks in their first position, as that is // a common pattern that can be very highly nested. std::vector stack; while (1) { curr->type = getType(); curr->name = getNextLabel(); breakStack.push_back({curr->name, curr->type != none}); stack.push_back(curr); if (more() && input[pos] == BinaryConsts::Block) { // a recursion readNextDebugLocation(); curr = allocator.alloc(); pos++; if (debugLocation.size()) { currFunction->debugLocations[curr] = *debugLocation.begin(); } continue; } else { // end of recursion break; } } Block* last = nullptr; while (stack.size() > 0) { curr = stack.back(); stack.pop_back(); size_t start = expressionStack.size(); // everything after this, that is left when we see the marker, is ours if (last) { // the previous block is our first-position element expressionStack.push_back(last); } last = curr; processExpressions(); size_t end = expressionStack.size(); if (end < start) { throwError("block cannot pop from outside"); } pushBlockElements(curr, start, end); curr->finalize(curr->type, breakTargetNames.find(curr->name) != breakTargetNames.end() /* hasBreak */); breakStack.pop_back(); breakTargetNames.erase(curr->name); } } Expression* WasmBinaryBuilder::getBlockOrSingleton(Type type) { Name label = getNextLabel(); breakStack.push_back({label, type != none && type != unreachable}); auto start = expressionStack.size(); processExpressions(); size_t end = expressionStack.size(); if (end < start) { throwError("block cannot pop from outside"); } breakStack.pop_back(); auto* block = allocator.alloc(); pushBlockElements(block, start, end); block->name = label; block->finalize(type); // maybe we don't need a block here? if (breakTargetNames.find(block->name) == breakTargetNames.end()) { block->name = Name(); if (block->list.size() == 1) { return block->list[0]; } } breakTargetNames.erase(block->name); return block; } void WasmBinaryBuilder::visitIf(If* curr) { if (debug) std::cerr << "zz node: If" << std::endl; curr->type = getType(); curr->condition = popNonVoidExpression(); curr->ifTrue = getBlockOrSingleton(curr->type); if (lastSeparator == BinaryConsts::Else) { curr->ifFalse = getBlockOrSingleton(curr->type); } curr->finalize(curr->type); if (lastSeparator != BinaryConsts::End) { throwError("if should end with End"); } } void WasmBinaryBuilder::visitLoop(Loop* curr) { if (debug) std::cerr << "zz node: Loop" << std::endl; curr->type = getType(); curr->name = getNextLabel(); breakStack.push_back({curr->name, 0}); // find the expressions in the block, and create the body // a loop may have a list of instructions in wasm, much like // a block, but it only has a label at the top of the loop, // so even if we need a block (if there is more than 1 // expression) we never need a label on the block. auto start = expressionStack.size(); processExpressions(); size_t end = expressionStack.size(); if (end - start == 1) { curr->body = popExpression(); } else { if (start > end) { throwError("block cannot pop from outside"); } auto* block = allocator.alloc(); pushBlockElements(block, start, end); block->finalize(curr->type); curr->body = block; } breakStack.pop_back(); breakTargetNames.erase(curr->name); curr->finalize(curr->type); } WasmBinaryBuilder::BreakTarget WasmBinaryBuilder::getBreakTarget(int32_t offset) { if (debug) std::cerr << "getBreakTarget " << offset << std::endl; if (breakStack.size() < 1 + size_t(offset)) { throwError("bad breakindex (low)"); } size_t index = breakStack.size() - 1 - offset; if (index >= breakStack.size()) { throwError("bad breakindex (high)"); } if (debug) std::cerr << "breaktarget "<< breakStack[index].name << " arity " << breakStack[index].arity << std::endl; auto& ret = breakStack[index]; // if the break is in literally unreachable code, then we will not emit it anyhow, // so do not note that the target has breaks to it if (!willBeIgnored) { breakTargetNames.insert(ret.name); } return ret; } void WasmBinaryBuilder::visitBreak(Break *curr, uint8_t code) { if (debug) std::cerr << "zz node: Break, code "<< int32_t(code) << std::endl; BreakTarget target = getBreakTarget(getU32LEB()); curr->name = target.name; if (code == BinaryConsts::BrIf) curr->condition = popNonVoidExpression(); if (target.arity) curr->value = popNonVoidExpression(); curr->finalize(); } void WasmBinaryBuilder::visitSwitch(Switch* curr) { if (debug) std::cerr << "zz node: Switch" << std::endl; curr->condition = popNonVoidExpression(); auto numTargets = getU32LEB(); if (debug) std::cerr << "targets: "<< numTargets<targets.push_back(getBreakTarget(getU32LEB()).name); } auto defaultTarget = getBreakTarget(getU32LEB()); curr->default_ = defaultTarget.name; if (debug) std::cerr << "default: "<< curr->default_<value = popNonVoidExpression(); curr->finalize(); } void WasmBinaryBuilder::visitCall(Call* curr) { if (debug) std::cerr << "zz node: Call" << std::endl; auto index = getU32LEB(); FunctionType* type; if (index < functionImports.size()) { auto* import = functionImports[index]; type = wasm.getFunctionType(import->type); } else { Index adjustedIndex = index - functionImports.size(); if (adjustedIndex >= functionTypes.size()) { throwError("invalid call index"); } type = functionTypes[adjustedIndex]; } assert(type); auto num = type->params.size(); curr->operands.resize(num); for (size_t i = 0; i < num; i++) { curr->operands[num - i - 1] = popNonVoidExpression(); } curr->type = type->result; functionCalls[index].push_back(curr); // we don't know function names yet curr->finalize(); } void WasmBinaryBuilder::visitCallIndirect(CallIndirect* curr) { if (debug) std::cerr << "zz node: CallIndirect" << std::endl; auto index = getU32LEB(); if (index >= wasm.functionTypes.size()) { throwError("bad call_indirect function index"); } auto* fullType = wasm.functionTypes[index].get(); auto reserved = getU32LEB(); if (reserved != 0) throwError("Invalid flags field in call_indirect"); curr->fullType = fullType->name; auto num = fullType->params.size(); curr->operands.resize(num); curr->target = popNonVoidExpression(); for (size_t i = 0; i < num; i++) { curr->operands[num - i - 1] = popNonVoidExpression(); } curr->type = fullType->result; curr->finalize(); } void WasmBinaryBuilder::visitGetLocal(GetLocal* curr) { if (debug) std::cerr << "zz node: GetLocal " << pos << std::endl; requireFunctionContext("local.get"); curr->index = getU32LEB(); if (curr->index >= currFunction->getNumLocals()) { throwError("bad local.get index"); } curr->type = currFunction->getLocalType(curr->index); curr->finalize(); } void WasmBinaryBuilder::visitSetLocal(SetLocal *curr, uint8_t code) { if (debug) std::cerr << "zz node: Set|TeeLocal" << std::endl; requireFunctionContext("local.set outside of function"); curr->index = getU32LEB(); if (curr->index >= currFunction->getNumLocals()) { throwError("bad local.set index"); } curr->value = popNonVoidExpression(); curr->type = curr->value->type; curr->setTee(code == BinaryConsts::TeeLocal); curr->finalize(); } void WasmBinaryBuilder::visitGetGlobal(GetGlobal* curr) { if (debug) std::cerr << "zz node: GetGlobal " << pos << std::endl; auto index = getU32LEB(); curr->name = getGlobalName(index); curr->type = wasm.getGlobal(curr->name)->type; } void WasmBinaryBuilder::visitSetGlobal(SetGlobal* curr) { if (debug) std::cerr << "zz node: SetGlobal" << std::endl; auto index = getU32LEB(); curr->name = getGlobalName(index); curr->value = popNonVoidExpression(); curr->finalize(); } void WasmBinaryBuilder::readMemoryAccess(Address& alignment, Address& offset) { auto rawAlignment = getU32LEB(); if (rawAlignment > 4) throwError("Alignment must be of a reasonable size"); alignment = Pow2(rawAlignment); offset = getU32LEB(); } bool WasmBinaryBuilder::maybeVisitLoad(Expression*& out, uint8_t code, bool isAtomic) { Load* curr; if (!isAtomic) { switch (code) { case BinaryConsts::I32LoadMem8S: curr = allocator.alloc(); curr->bytes = 1; curr->type = i32; curr->signed_ = true; break; case BinaryConsts::I32LoadMem8U: curr = allocator.alloc(); curr->bytes = 1; curr->type = i32; curr->signed_ = false; break; case BinaryConsts::I32LoadMem16S: curr = allocator.alloc(); curr->bytes = 2; curr->type = i32; curr->signed_ = true; break; case BinaryConsts::I32LoadMem16U: curr = allocator.alloc(); curr->bytes = 2; curr->type = i32; curr->signed_ = false; break; case BinaryConsts::I32LoadMem: curr = allocator.alloc(); curr->bytes = 4; curr->type = i32; break; case BinaryConsts::I64LoadMem8S: curr = allocator.alloc(); curr->bytes = 1; curr->type = i64; curr->signed_ = true; break; case BinaryConsts::I64LoadMem8U: curr = allocator.alloc(); curr->bytes = 1; curr->type = i64; curr->signed_ = false; break; case BinaryConsts::I64LoadMem16S: curr = allocator.alloc(); curr->bytes = 2; curr->type = i64; curr->signed_ = true; break; case BinaryConsts::I64LoadMem16U: curr = allocator.alloc(); curr->bytes = 2; curr->type = i64; curr->signed_ = false; break; case BinaryConsts::I64LoadMem32S: curr = allocator.alloc(); curr->bytes = 4; curr->type = i64; curr->signed_ = true; break; case BinaryConsts::I64LoadMem32U: curr = allocator.alloc(); curr->bytes = 4; curr->type = i64; curr->signed_ = false; break; case BinaryConsts::I64LoadMem: curr = allocator.alloc(); curr->bytes = 8; curr->type = i64; break; case BinaryConsts::F32LoadMem: curr = allocator.alloc(); curr->bytes = 4; curr->type = f32; break; case BinaryConsts::F64LoadMem: curr = allocator.alloc(); curr->bytes = 8; curr->type = f64; break; default: return false; } if (debug) std::cerr << "zz node: Load" << std::endl; } else { switch (code) { case BinaryConsts::I32AtomicLoad8U: curr = allocator.alloc(); curr->bytes = 1; curr->type = i32; break; case BinaryConsts::I32AtomicLoad16U: curr = allocator.alloc(); curr->bytes = 2; curr->type = i32; break; case BinaryConsts::I32AtomicLoad: curr = allocator.alloc(); curr->bytes = 4; curr->type = i32; break; case BinaryConsts::I64AtomicLoad8U: curr = allocator.alloc(); curr->bytes = 1; curr->type = i64; break; case BinaryConsts::I64AtomicLoad16U: curr = allocator.alloc(); curr->bytes = 2; curr->type = i64; break; case BinaryConsts::I64AtomicLoad32U: curr = allocator.alloc(); curr->bytes = 4; curr->type = i64; break; case BinaryConsts::I64AtomicLoad: curr = allocator.alloc(); curr->bytes = 8; curr->type = i64; break; default: return false; } curr->signed_ = false; if (debug) std::cerr << "zz node: AtomicLoad" << std::endl; } curr->isAtomic = isAtomic; readMemoryAccess(curr->align, curr->offset); curr->ptr = popNonVoidExpression(); curr->finalize(); out = curr; return true; } bool WasmBinaryBuilder::maybeVisitStore(Expression*& out, uint8_t code, bool isAtomic) { Store* curr; if (!isAtomic) { switch (code) { case BinaryConsts::I32StoreMem8: curr = allocator.alloc(); curr->bytes = 1; curr->valueType = i32; break; case BinaryConsts::I32StoreMem16: curr = allocator.alloc(); curr->bytes = 2; curr->valueType = i32; break; case BinaryConsts::I32StoreMem: curr = allocator.alloc(); curr->bytes = 4; curr->valueType = i32; break; case BinaryConsts::I64StoreMem8: curr = allocator.alloc(); curr->bytes = 1; curr->valueType = i64; break; case BinaryConsts::I64StoreMem16: curr = allocator.alloc(); curr->bytes = 2; curr->valueType = i64; break; case BinaryConsts::I64StoreMem32: curr = allocator.alloc(); curr->bytes = 4; curr->valueType = i64; break; case BinaryConsts::I64StoreMem: curr = allocator.alloc(); curr->bytes = 8; curr->valueType = i64; break; case BinaryConsts::F32StoreMem: curr = allocator.alloc(); curr->bytes = 4; curr->valueType = f32; break; case BinaryConsts::F64StoreMem: curr = allocator.alloc(); curr->bytes = 8; curr->valueType = f64; break; default: return false; } } else { switch (code) { case BinaryConsts::I32AtomicStore8: curr = allocator.alloc(); curr->bytes = 1; curr->valueType = i32; break; case BinaryConsts::I32AtomicStore16: curr = allocator.alloc(); curr->bytes = 2; curr->valueType = i32; break; case BinaryConsts::I32AtomicStore: curr = allocator.alloc(); curr->bytes = 4; curr->valueType = i32; break; case BinaryConsts::I64AtomicStore8: curr = allocator.alloc(); curr->bytes = 1; curr->valueType = i64; break; case BinaryConsts::I64AtomicStore16: curr = allocator.alloc(); curr->bytes = 2; curr->valueType = i64; break; case BinaryConsts::I64AtomicStore32: curr = allocator.alloc(); curr->bytes = 4; curr->valueType = i64; break; case BinaryConsts::I64AtomicStore: curr = allocator.alloc(); curr->bytes = 8; curr->valueType = i64; break; default: return false; } } curr->isAtomic = isAtomic; if (debug) std::cerr << "zz node: Store" << std::endl; readMemoryAccess(curr->align, curr->offset); curr->value = popNonVoidExpression(); curr->ptr = popNonVoidExpression(); curr->finalize(); out = curr; return true; } bool WasmBinaryBuilder::maybeVisitAtomicRMW(Expression*& out, uint8_t code) { if (code < BinaryConsts::AtomicRMWOps_Begin || code > BinaryConsts::AtomicRMWOps_End) return false; auto* curr = allocator.alloc(); // Set curr to the given opcode, type and size. #define SET(opcode, optype, size) \ curr->op = opcode; \ curr->type = optype; \ curr->bytes = size // Handle the cases for all the valid types for a particular opcode #define SET_FOR_OP(Op) \ case BinaryConsts::I32AtomicRMW##Op: SET(Op, i32, 4); break; \ case BinaryConsts::I32AtomicRMW##Op##8U: SET(Op, i32, 1); break; \ case BinaryConsts::I32AtomicRMW##Op##16U: SET(Op, i32, 2); break; \ case BinaryConsts::I64AtomicRMW##Op: SET(Op, i64, 8); break; \ case BinaryConsts::I64AtomicRMW##Op##8U: SET(Op, i64, 1); break; \ case BinaryConsts::I64AtomicRMW##Op##16U: SET(Op, i64, 2); break; \ case BinaryConsts::I64AtomicRMW##Op##32U: SET(Op, i64, 4); break; switch(code) { SET_FOR_OP(Add); SET_FOR_OP(Sub); SET_FOR_OP(And); SET_FOR_OP(Or); SET_FOR_OP(Xor); SET_FOR_OP(Xchg); default: WASM_UNREACHABLE(); } #undef SET_FOR_OP #undef SET if (debug) std::cerr << "zz node: AtomicRMW" << std::endl; Address readAlign; readMemoryAccess(readAlign, curr->offset); if (readAlign != curr->bytes) throwError("Align of AtomicRMW must match size"); curr->value = popNonVoidExpression(); curr->ptr = popNonVoidExpression(); curr->finalize(); out = curr; return true; } bool WasmBinaryBuilder::maybeVisitAtomicCmpxchg(Expression*& out, uint8_t code) { if (code < BinaryConsts::AtomicCmpxchgOps_Begin || code > BinaryConsts::AtomicCmpxchgOps_End) return false; auto* curr = allocator.alloc(); // Set curr to the given type and size. #define SET(optype, size) \ curr->type = optype; \ curr->bytes = size switch (code) { case BinaryConsts::I32AtomicCmpxchg: SET(i32, 4); break; case BinaryConsts::I64AtomicCmpxchg: SET(i64, 8); break; case BinaryConsts::I32AtomicCmpxchg8U: SET(i32, 1); break; case BinaryConsts::I32AtomicCmpxchg16U: SET(i32, 2); break; case BinaryConsts::I64AtomicCmpxchg8U: SET(i64, 1); break; case BinaryConsts::I64AtomicCmpxchg16U: SET(i64, 2); break; case BinaryConsts::I64AtomicCmpxchg32U: SET(i64, 4); break; default: WASM_UNREACHABLE(); } if (debug) std::cerr << "zz node: AtomicCmpxchg" << std::endl; Address readAlign; readMemoryAccess(readAlign, curr->offset); if (readAlign != curr->bytes) throwError("Align of AtomicCpxchg must match size"); curr->replacement = popNonVoidExpression(); curr->expected = popNonVoidExpression(); curr->ptr = popNonVoidExpression(); curr->finalize(); out = curr; return true; } bool WasmBinaryBuilder::maybeVisitAtomicWait(Expression*& out, uint8_t code) { if (code < BinaryConsts::I32AtomicWait || code > BinaryConsts::I64AtomicWait) return false; auto* curr = allocator.alloc(); switch (code) { case BinaryConsts::I32AtomicWait: curr->expectedType = i32; break; case BinaryConsts::I64AtomicWait: curr->expectedType = i64; break; default: WASM_UNREACHABLE(); } curr->type = i32; if (debug) std::cerr << "zz node: AtomicWait" << std::endl; curr->timeout = popNonVoidExpression(); curr->expected = popNonVoidExpression(); curr->ptr = popNonVoidExpression(); Address readAlign; readMemoryAccess(readAlign, curr->offset); if (readAlign != getTypeSize(curr->expectedType)) throwError("Align of AtomicWait must match size"); curr->finalize(); out = curr; return true; } bool WasmBinaryBuilder::maybeVisitAtomicNotify(Expression*& out, uint8_t code) { if (code != BinaryConsts::AtomicNotify) return false; auto* curr = allocator.alloc(); if (debug) std::cerr << "zz node: AtomicNotify" << std::endl; curr->type = i32; curr->notifyCount = popNonVoidExpression(); curr->ptr = popNonVoidExpression(); Address readAlign; readMemoryAccess(readAlign, curr->offset); if (readAlign != getTypeSize(curr->type)) throwError("Align of AtomicNotify must match size"); curr->finalize(); out = curr; return true; } bool WasmBinaryBuilder::maybeVisitConst(Expression*& out, uint8_t code) { Const* curr; if (debug) std::cerr << "zz node: Const, code " << code << std::endl; switch (code) { case BinaryConsts::I32Const: curr = allocator.alloc(); curr->value = Literal(getS32LEB()); break; case BinaryConsts::I64Const: curr = allocator.alloc(); curr->value = Literal(getS64LEB()); break; case BinaryConsts::F32Const: curr = allocator.alloc(); curr->value = getFloat32Literal(); break; case BinaryConsts::F64Const: curr = allocator.alloc(); curr->value = getFloat64Literal(); break; default: return false; } curr->type = curr->value.type; out = curr; return true; } bool WasmBinaryBuilder::maybeVisitUnary(Expression*& out, uint8_t code) { Unary* curr; switch (code) { case BinaryConsts::I32Clz: curr = allocator.alloc(); curr->op = ClzInt32; break; case BinaryConsts::I64Clz: curr = allocator.alloc(); curr->op = ClzInt64; break; case BinaryConsts::I32Ctz: curr = allocator.alloc(); curr->op = CtzInt32; break; case BinaryConsts::I64Ctz: curr = allocator.alloc(); curr->op = CtzInt64; break; case BinaryConsts::I32Popcnt: curr = allocator.alloc(); curr->op = PopcntInt32; break; case BinaryConsts::I64Popcnt: curr = allocator.alloc(); curr->op = PopcntInt64; break; case BinaryConsts::I32EqZ: curr = allocator.alloc(); curr->op = EqZInt32; break; case BinaryConsts::I64EqZ: curr = allocator.alloc(); curr->op = EqZInt64; break; case BinaryConsts::F32Neg: curr = allocator.alloc(); curr->op = NegFloat32; break; case BinaryConsts::F64Neg: curr = allocator.alloc(); curr->op = NegFloat64; break; case BinaryConsts::F32Abs: curr = allocator.alloc(); curr->op = AbsFloat32; break; case BinaryConsts::F64Abs: curr = allocator.alloc(); curr->op = AbsFloat64; break; case BinaryConsts::F32Ceil: curr = allocator.alloc(); curr->op = CeilFloat32; break; case BinaryConsts::F64Ceil: curr = allocator.alloc(); curr->op = CeilFloat64; break; case BinaryConsts::F32Floor: curr = allocator.alloc(); curr->op = FloorFloat32; break; case BinaryConsts::F64Floor: curr = allocator.alloc(); curr->op = FloorFloat64; break; case BinaryConsts::F32NearestInt: curr = allocator.alloc(); curr->op = NearestFloat32; break; case BinaryConsts::F64NearestInt: curr = allocator.alloc(); curr->op = NearestFloat64; break; case BinaryConsts::F32Sqrt: curr = allocator.alloc(); curr->op = SqrtFloat32; break; case BinaryConsts::F64Sqrt: curr = allocator.alloc(); curr->op = SqrtFloat64; break; case BinaryConsts::F32UConvertI32: curr = allocator.alloc(); curr->op = ConvertUInt32ToFloat32; break; case BinaryConsts::F64UConvertI32: curr = allocator.alloc(); curr->op = ConvertUInt32ToFloat64; break; case BinaryConsts::F32SConvertI32: curr = allocator.alloc(); curr->op = ConvertSInt32ToFloat32; break; case BinaryConsts::F64SConvertI32: curr = allocator.alloc(); curr->op = ConvertSInt32ToFloat64; break; case BinaryConsts::F32UConvertI64: curr = allocator.alloc(); curr->op = ConvertUInt64ToFloat32; break; case BinaryConsts::F64UConvertI64: curr = allocator.alloc(); curr->op = ConvertUInt64ToFloat64; break; case BinaryConsts::F32SConvertI64: curr = allocator.alloc(); curr->op = ConvertSInt64ToFloat32; break; case BinaryConsts::F64SConvertI64: curr = allocator.alloc(); curr->op = ConvertSInt64ToFloat64; break; case BinaryConsts::I64STruncI32: curr = allocator.alloc(); curr->op = ExtendSInt32; break; case BinaryConsts::I64UTruncI32: curr = allocator.alloc(); curr->op = ExtendUInt32; break; case BinaryConsts::I32ConvertI64: curr = allocator.alloc(); curr->op = WrapInt64; break; case BinaryConsts::I32UTruncF32: curr = allocator.alloc(); curr->op = TruncUFloat32ToInt32; break; case BinaryConsts::I32UTruncF64: curr = allocator.alloc(); curr->op = TruncUFloat64ToInt32; break; case BinaryConsts::I32STruncF32: curr = allocator.alloc(); curr->op = TruncSFloat32ToInt32; break; case BinaryConsts::I32STruncF64: curr = allocator.alloc(); curr->op = TruncSFloat64ToInt32; break; case BinaryConsts::I64UTruncF32: curr = allocator.alloc(); curr->op = TruncUFloat32ToInt64; break; case BinaryConsts::I64UTruncF64: curr = allocator.alloc(); curr->op = TruncUFloat64ToInt64; break; case BinaryConsts::I64STruncF32: curr = allocator.alloc(); curr->op = TruncSFloat32ToInt64; break; case BinaryConsts::I64STruncF64: curr = allocator.alloc(); curr->op = TruncSFloat64ToInt64; break; case BinaryConsts::F32Trunc: curr = allocator.alloc(); curr->op = TruncFloat32; break; case BinaryConsts::F64Trunc: curr = allocator.alloc(); curr->op = TruncFloat64; break; case BinaryConsts::F32ConvertF64: curr = allocator.alloc(); curr->op = DemoteFloat64; break; case BinaryConsts::F64ConvertF32: curr = allocator.alloc(); curr->op = PromoteFloat32; break; case BinaryConsts::I32ReinterpretF32: curr = allocator.alloc(); curr->op = ReinterpretFloat32; break; case BinaryConsts::I64ReinterpretF64: curr = allocator.alloc(); curr->op = ReinterpretFloat64; break; case BinaryConsts::F32ReinterpretI32: curr = allocator.alloc(); curr->op = ReinterpretInt32; break; case BinaryConsts::F64ReinterpretI64: curr = allocator.alloc(); curr->op = ReinterpretInt64; break; case BinaryConsts::I32ExtendS8: curr = allocator.alloc(); curr->op = ExtendS8Int32; break; case BinaryConsts::I32ExtendS16: curr = allocator.alloc(); curr->op = ExtendS16Int32; break; case BinaryConsts::I64ExtendS8: curr = allocator.alloc(); curr->op = ExtendS8Int64; break; case BinaryConsts::I64ExtendS16: curr = allocator.alloc(); curr->op = ExtendS16Int64; break; case BinaryConsts::I64ExtendS32: curr = allocator.alloc(); curr->op = ExtendS32Int64; break; default: return false; } if (debug) std::cerr << "zz node: Unary" << std::endl; curr->value = popNonVoidExpression(); curr->finalize(); out = curr; return true; } bool WasmBinaryBuilder::maybeVisitTruncSat(Expression*& out, uint32_t code) { Unary* curr; switch (code) { case BinaryConsts::I32STruncSatF32: curr = allocator.alloc(); curr->op = TruncSatSFloat32ToInt32; break; case BinaryConsts::I32UTruncSatF32: curr = allocator.alloc(); curr->op = TruncSatUFloat32ToInt32; break; case BinaryConsts::I32STruncSatF64: curr = allocator.alloc(); curr->op = TruncSatSFloat64ToInt32; break; case BinaryConsts::I32UTruncSatF64: curr = allocator.alloc(); curr->op = TruncSatUFloat64ToInt32; break; case BinaryConsts::I64STruncSatF32: curr = allocator.alloc(); curr->op = TruncSatSFloat32ToInt64; break; case BinaryConsts::I64UTruncSatF32: curr = allocator.alloc(); curr->op = TruncSatUFloat32ToInt64; break; case BinaryConsts::I64STruncSatF64: curr = allocator.alloc(); curr->op = TruncSatSFloat64ToInt64; break; case BinaryConsts::I64UTruncSatF64: curr = allocator.alloc(); curr->op = TruncSatUFloat64ToInt64; break; default: return false; } if (debug) std::cerr << "zz node: Unary (nontrapping float-to-int)" << std::endl; curr->value = popNonVoidExpression(); curr->finalize(); out = curr; return true; } bool WasmBinaryBuilder::maybeVisitMemoryInit(Expression*& out, uint32_t code) { if (code != BinaryConsts::MemoryInit) { return false; } auto* curr = allocator.alloc(); curr->size = popNonVoidExpression(); curr->offset = popNonVoidExpression(); curr->dest = popNonVoidExpression(); curr->segment = getU32LEB(); if (getInt8() != 0) { throwError("Unexpected nonzero memory index"); } curr->finalize(); out = curr; return true; } bool WasmBinaryBuilder::maybeVisitDataDrop(Expression*& out, uint32_t code) { if (code != BinaryConsts::DataDrop) { return false; } auto* curr = allocator.alloc(); curr->segment = getU32LEB(); curr->finalize(); out = curr; return true; } bool WasmBinaryBuilder::maybeVisitMemoryCopy(Expression*& out, uint32_t code) { if (code != BinaryConsts::MemoryCopy) { return false; } auto* curr = allocator.alloc(); curr->size = popNonVoidExpression(); curr->source = popNonVoidExpression(); curr->dest = popNonVoidExpression(); if (getInt8() != 0 || getInt8() != 0) { throwError("Unexpected nonzero memory index"); } curr->finalize(); out = curr; return true; } bool WasmBinaryBuilder::maybeVisitMemoryFill(Expression*& out, uint32_t code) { if (code != BinaryConsts::MemoryFill) { return false; } auto* curr = allocator.alloc(); curr->size = popNonVoidExpression(); curr->value = popNonVoidExpression(); curr->dest = popNonVoidExpression(); if (getInt8() != 0) { throwError("Unexpected nonzero memory index"); } curr->finalize(); out = curr; return true; } bool WasmBinaryBuilder::maybeVisitBinary(Expression*& out, uint8_t code) { Binary* curr; #define INT_TYPED_CODE(code) { \ case BinaryConsts::I32##code: curr = allocator.alloc(); curr->op = code##Int32; break; \ case BinaryConsts::I64##code: curr = allocator.alloc(); curr->op = code##Int64; break; \ } #define FLOAT_TYPED_CODE(code) { \ case BinaryConsts::F32##code: curr = allocator.alloc(); curr->op = code##Float32; break; \ case BinaryConsts::F64##code: curr = allocator.alloc(); curr->op = code##Float64; break; \ } #define TYPED_CODE(code) { \ INT_TYPED_CODE(code) \ FLOAT_TYPED_CODE(code) \ } switch (code) { TYPED_CODE(Add); TYPED_CODE(Sub); TYPED_CODE(Mul); INT_TYPED_CODE(DivS); INT_TYPED_CODE(DivU); INT_TYPED_CODE(RemS); INT_TYPED_CODE(RemU); INT_TYPED_CODE(And); INT_TYPED_CODE(Or); INT_TYPED_CODE(Xor); INT_TYPED_CODE(Shl); INT_TYPED_CODE(ShrU); INT_TYPED_CODE(ShrS); INT_TYPED_CODE(RotL); INT_TYPED_CODE(RotR); FLOAT_TYPED_CODE(Div); FLOAT_TYPED_CODE(CopySign); FLOAT_TYPED_CODE(Min); FLOAT_TYPED_CODE(Max); TYPED_CODE(Eq); TYPED_CODE(Ne); INT_TYPED_CODE(LtS); INT_TYPED_CODE(LtU); INT_TYPED_CODE(LeS); INT_TYPED_CODE(LeU); INT_TYPED_CODE(GtS); INT_TYPED_CODE(GtU); INT_TYPED_CODE(GeS); INT_TYPED_CODE(GeU); FLOAT_TYPED_CODE(Lt); FLOAT_TYPED_CODE(Le); FLOAT_TYPED_CODE(Gt); FLOAT_TYPED_CODE(Ge); default: return false; } if (debug) std::cerr << "zz node: Binary" << std::endl; curr->right = popNonVoidExpression(); curr->left = popNonVoidExpression(); curr->finalize(); out = curr; return true; #undef TYPED_CODE #undef INT_TYPED_CODE #undef FLOAT_TYPED_CODE } bool WasmBinaryBuilder::maybeVisitSIMDBinary(Expression*& out, uint32_t code) { Binary* curr; switch (code) { case BinaryConsts::I8x16Eq: curr = allocator.alloc(); curr->op = EqVecI8x16; break; case BinaryConsts::I8x16Ne: curr = allocator.alloc(); curr->op = NeVecI8x16; break; case BinaryConsts::I8x16LtS: curr = allocator.alloc(); curr->op = LtSVecI8x16; break; case BinaryConsts::I8x16LtU: curr = allocator.alloc(); curr->op = LtUVecI8x16; break; case BinaryConsts::I8x16GtS: curr = allocator.alloc(); curr->op = GtSVecI8x16; break; case BinaryConsts::I8x16GtU: curr = allocator.alloc(); curr->op = GtUVecI8x16; break; case BinaryConsts::I8x16LeS: curr = allocator.alloc(); curr->op = LeSVecI8x16; break; case BinaryConsts::I8x16LeU: curr = allocator.alloc(); curr->op = LeUVecI8x16; break; case BinaryConsts::I8x16GeS: curr = allocator.alloc(); curr->op = GeSVecI8x16; break; case BinaryConsts::I8x16GeU: curr = allocator.alloc(); curr->op = GeUVecI8x16; break; case BinaryConsts::I16x8Eq: curr = allocator.alloc(); curr->op = EqVecI16x8; break; case BinaryConsts::I16x8Ne: curr = allocator.alloc(); curr->op = NeVecI16x8; break; case BinaryConsts::I16x8LtS: curr = allocator.alloc(); curr->op = LtSVecI16x8; break; case BinaryConsts::I16x8LtU: curr = allocator.alloc(); curr->op = LtUVecI16x8; break; case BinaryConsts::I16x8GtS: curr = allocator.alloc(); curr->op = GtSVecI16x8; break; case BinaryConsts::I16x8GtU: curr = allocator.alloc(); curr->op = GtUVecI16x8; break; case BinaryConsts::I16x8LeS: curr = allocator.alloc(); curr->op = LeSVecI16x8; break; case BinaryConsts::I16x8LeU: curr = allocator.alloc(); curr->op = LeUVecI16x8; break; case BinaryConsts::I16x8GeS: curr = allocator.alloc(); curr->op = GeSVecI16x8; break; case BinaryConsts::I16x8GeU: curr = allocator.alloc(); curr->op = GeUVecI16x8; break; case BinaryConsts::I32x4Eq: curr = allocator.alloc(); curr->op = EqVecI32x4; break; case BinaryConsts::I32x4Ne: curr = allocator.alloc(); curr->op = NeVecI32x4; break; case BinaryConsts::I32x4LtS: curr = allocator.alloc(); curr->op = LtSVecI32x4; break; case BinaryConsts::I32x4LtU: curr = allocator.alloc(); curr->op = LtUVecI32x4; break; case BinaryConsts::I32x4GtS: curr = allocator.alloc(); curr->op = GtSVecI32x4; break; case BinaryConsts::I32x4GtU: curr = allocator.alloc(); curr->op = GtUVecI32x4; break; case BinaryConsts::I32x4LeS: curr = allocator.alloc(); curr->op = LeSVecI32x4; break; case BinaryConsts::I32x4LeU: curr = allocator.alloc(); curr->op = LeUVecI32x4; break; case BinaryConsts::I32x4GeS: curr = allocator.alloc(); curr->op = GeSVecI32x4; break; case BinaryConsts::I32x4GeU: curr = allocator.alloc(); curr->op = GeUVecI32x4; break; case BinaryConsts::F32x4Eq: curr = allocator.alloc(); curr->op = EqVecF32x4; break; case BinaryConsts::F32x4Ne: curr = allocator.alloc(); curr->op = NeVecF32x4; break; case BinaryConsts::F32x4Lt: curr = allocator.alloc(); curr->op = LtVecF32x4; break; case BinaryConsts::F32x4Gt: curr = allocator.alloc(); curr->op = GtVecF32x4; break; case BinaryConsts::F32x4Le: curr = allocator.alloc(); curr->op = LeVecF32x4; break; case BinaryConsts::F32x4Ge: curr = allocator.alloc(); curr->op = GeVecF32x4; break; case BinaryConsts::F64x2Eq: curr = allocator.alloc(); curr->op = EqVecF64x2; break; case BinaryConsts::F64x2Ne: curr = allocator.alloc(); curr->op = NeVecF64x2; break; case BinaryConsts::F64x2Lt: curr = allocator.alloc(); curr->op = LtVecF64x2; break; case BinaryConsts::F64x2Gt: curr = allocator.alloc(); curr->op = GtVecF64x2; break; case BinaryConsts::F64x2Le: curr = allocator.alloc(); curr->op = LeVecF64x2; break; case BinaryConsts::F64x2Ge: curr = allocator.alloc(); curr->op = GeVecF64x2; break; case BinaryConsts::V128And: curr = allocator.alloc(); curr->op = AndVec128; break; case BinaryConsts::V128Or: curr = allocator.alloc(); curr->op = OrVec128; break; case BinaryConsts::V128Xor: curr = allocator.alloc(); curr->op = XorVec128; break; case BinaryConsts::I8x16Add: curr = allocator.alloc(); curr->op = AddVecI8x16; break; case BinaryConsts::I8x16AddSatS: curr = allocator.alloc(); curr->op = AddSatSVecI8x16; break; case BinaryConsts::I8x16AddSatU: curr = allocator.alloc(); curr->op = AddSatUVecI8x16; break; case BinaryConsts::I8x16Sub: curr = allocator.alloc(); curr->op = SubVecI8x16; break; case BinaryConsts::I8x16SubSatS: curr = allocator.alloc(); curr->op = SubSatSVecI8x16; break; case BinaryConsts::I8x16SubSatU: curr = allocator.alloc(); curr->op = SubSatUVecI8x16; break; case BinaryConsts::I8x16Mul: curr = allocator.alloc(); curr->op = MulVecI8x16; break; case BinaryConsts::I16x8Add: curr = allocator.alloc(); curr->op = AddVecI16x8; break; case BinaryConsts::I16x8AddSatS: curr = allocator.alloc(); curr->op = AddSatSVecI16x8; break; case BinaryConsts::I16x8AddSatU: curr = allocator.alloc(); curr->op = AddSatUVecI16x8; break; case BinaryConsts::I16x8Sub: curr = allocator.alloc(); curr->op = SubVecI16x8; break; case BinaryConsts::I16x8SubSatS: curr = allocator.alloc(); curr->op = SubSatSVecI16x8; break; case BinaryConsts::I16x8SubSatU: curr = allocator.alloc(); curr->op = SubSatUVecI16x8; break; case BinaryConsts::I16x8Mul: curr = allocator.alloc(); curr->op = MulVecI16x8; break; case BinaryConsts::I32x4Add: curr = allocator.alloc(); curr->op = AddVecI32x4; break; case BinaryConsts::I32x4Sub: curr = allocator.alloc(); curr->op = SubVecI32x4; break; case BinaryConsts::I32x4Mul: curr = allocator.alloc(); curr->op = MulVecI32x4; break; case BinaryConsts::I64x2Add: curr = allocator.alloc(); curr->op = AddVecI64x2; break; case BinaryConsts::I64x2Sub: curr = allocator.alloc(); curr->op = SubVecI64x2; break; case BinaryConsts::F32x4Add: curr = allocator.alloc(); curr->op = AddVecF32x4; break; case BinaryConsts::F32x4Sub: curr = allocator.alloc(); curr->op = SubVecF32x4; break; case BinaryConsts::F32x4Mul: curr = allocator.alloc(); curr->op = MulVecF32x4; break; case BinaryConsts::F32x4Div: curr = allocator.alloc(); curr->op = DivVecF32x4; break; case BinaryConsts::F32x4Min: curr = allocator.alloc(); curr->op = MinVecF32x4; break; case BinaryConsts::F32x4Max: curr = allocator.alloc(); curr->op = MaxVecF32x4; break; case BinaryConsts::F64x2Add: curr = allocator.alloc(); curr->op = AddVecF64x2; break; case BinaryConsts::F64x2Sub: curr = allocator.alloc(); curr->op = SubVecF64x2; break; case BinaryConsts::F64x2Mul: curr = allocator.alloc(); curr->op = MulVecF64x2; break; case BinaryConsts::F64x2Div: curr = allocator.alloc(); curr->op = DivVecF64x2; break; case BinaryConsts::F64x2Min: curr = allocator.alloc(); curr->op = MinVecF64x2; break; case BinaryConsts::F64x2Max: curr = allocator.alloc(); curr->op = MaxVecF64x2; break; default: return false; } if (debug) std::cerr << "zz node: Binary" << std::endl; curr->right = popNonVoidExpression(); curr->left = popNonVoidExpression(); curr->finalize(); out = curr; return true; } bool WasmBinaryBuilder::maybeVisitSIMDUnary(Expression*& out, uint32_t code) { Unary* curr; switch (code) { case BinaryConsts::I8x16Splat: curr = allocator.alloc(); curr->op = SplatVecI8x16; break; case BinaryConsts::I16x8Splat: curr = allocator.alloc(); curr->op = SplatVecI16x8; break; case BinaryConsts::I32x4Splat: curr = allocator.alloc(); curr->op = SplatVecI32x4; break; case BinaryConsts::I64x2Splat: curr = allocator.alloc(); curr->op = SplatVecI64x2; break; case BinaryConsts::F32x4Splat: curr = allocator.alloc(); curr->op = SplatVecF32x4; break; case BinaryConsts::F64x2Splat: curr = allocator.alloc(); curr->op = SplatVecF64x2; break; case BinaryConsts::V128Not: curr = allocator.alloc(); curr->op = NotVec128; break; case BinaryConsts::I8x16Neg: curr = allocator.alloc(); curr->op = NegVecI8x16; break; case BinaryConsts::I8x16AnyTrue: curr = allocator.alloc(); curr->op = AnyTrueVecI8x16; break; case BinaryConsts::I8x16AllTrue: curr = allocator.alloc(); curr->op = AllTrueVecI8x16; break; case BinaryConsts::I16x8Neg: curr = allocator.alloc(); curr->op = NegVecI16x8; break; case BinaryConsts::I16x8AnyTrue: curr = allocator.alloc(); curr->op = AnyTrueVecI16x8; break; case BinaryConsts::I16x8AllTrue: curr = allocator.alloc(); curr->op = AllTrueVecI16x8; break; case BinaryConsts::I32x4Neg: curr = allocator.alloc(); curr->op = NegVecI32x4; break; case BinaryConsts::I32x4AnyTrue: curr = allocator.alloc(); curr->op = AnyTrueVecI32x4; break; case BinaryConsts::I32x4AllTrue: curr = allocator.alloc(); curr->op = AllTrueVecI32x4; break; case BinaryConsts::I64x2Neg: curr = allocator.alloc(); curr->op = NegVecI64x2; break; case BinaryConsts::I64x2AnyTrue: curr = allocator.alloc(); curr->op = AnyTrueVecI64x2; break; case BinaryConsts::I64x2AllTrue: curr = allocator.alloc(); curr->op = AllTrueVecI64x2; break; case BinaryConsts::F32x4Abs: curr = allocator.alloc(); curr->op = AbsVecF32x4; break; case BinaryConsts::F32x4Neg: curr = allocator.alloc(); curr->op = NegVecF32x4; break; case BinaryConsts::F32x4Sqrt: curr = allocator.alloc(); curr->op = SqrtVecF32x4; break; case BinaryConsts::F64x2Abs: curr = allocator.alloc(); curr->op = AbsVecF64x2; break; case BinaryConsts::F64x2Neg: curr = allocator.alloc(); curr->op = NegVecF64x2; break; case BinaryConsts::F64x2Sqrt: curr = allocator.alloc(); curr->op = SqrtVecF64x2; break; case BinaryConsts::I32x4TruncSatSF32x4: curr = allocator.alloc(); curr->op = TruncSatSVecF32x4ToVecI32x4; break; case BinaryConsts::I32x4TruncSatUF32x4: curr = allocator.alloc(); curr->op = TruncSatUVecF32x4ToVecI32x4; break; case BinaryConsts::I64x2TruncSatSF64x2: curr = allocator.alloc(); curr->op = TruncSatSVecF64x2ToVecI64x2; break; case BinaryConsts::I64x2TruncSatUF64x2: curr = allocator.alloc(); curr->op = TruncSatUVecF64x2ToVecI64x2; break; case BinaryConsts::F32x4ConvertSI32x4: curr = allocator.alloc(); curr->op = ConvertSVecI32x4ToVecF32x4; break; case BinaryConsts::F32x4ConvertUI32x4: curr = allocator.alloc(); curr->op = ConvertUVecI32x4ToVecF32x4; break; case BinaryConsts::F64x2ConvertSI64x2: curr = allocator.alloc(); curr->op = ConvertSVecI64x2ToVecF64x2; break; case BinaryConsts::F64x2ConvertUI64x2: curr = allocator.alloc(); curr->op = ConvertUVecI64x2ToVecF64x2; break; default: return false; } curr->value = popNonVoidExpression(); curr->finalize(); out = curr; return true; } bool WasmBinaryBuilder::maybeVisitSIMDConst(Expression*& out, uint32_t code) { if (code != BinaryConsts::V128Const) { return false; } auto* curr = allocator.alloc(); curr->value = getVec128Literal(); curr->finalize(); out = curr; return true; } bool WasmBinaryBuilder::maybeVisitSIMDLoad(Expression*& out, uint32_t code) { if (code != BinaryConsts::V128Load) { return false; } auto* curr = allocator.alloc(); curr->type = v128; curr->bytes = 16; readMemoryAccess(curr->align, curr->offset); curr->isAtomic = false; curr->ptr = popNonVoidExpression(); curr->finalize(); out = curr; return true; } bool WasmBinaryBuilder::maybeVisitSIMDStore(Expression*& out, uint32_t code) { if (code != BinaryConsts::V128Store) { return false; } auto* curr = allocator.alloc(); curr->bytes = 16; curr->valueType = v128; readMemoryAccess(curr->align, curr->offset); curr->isAtomic = false; curr->value = popNonVoidExpression(); curr->ptr = popNonVoidExpression(); curr->finalize(); out = curr; return true; } bool WasmBinaryBuilder::maybeVisitSIMDExtract(Expression*& out, uint32_t code) { SIMDExtract* curr; switch (code) { case BinaryConsts::I8x16ExtractLaneS: curr = allocator.alloc(); curr->op = ExtractLaneSVecI8x16; curr->index = getLaneIndex(16); break; case BinaryConsts::I8x16ExtractLaneU: curr = allocator.alloc(); curr->op = ExtractLaneUVecI8x16; curr->index = getLaneIndex(16); break; case BinaryConsts::I16x8ExtractLaneS: curr = allocator.alloc(); curr->op = ExtractLaneSVecI16x8; curr->index = getLaneIndex(8); break; case BinaryConsts::I16x8ExtractLaneU: curr = allocator.alloc(); curr->op = ExtractLaneUVecI16x8; curr->index = getLaneIndex(8); break; case BinaryConsts::I32x4ExtractLane: curr = allocator.alloc(); curr->op = ExtractLaneVecI32x4; curr->index = getLaneIndex(4); break; case BinaryConsts::I64x2ExtractLane: curr = allocator.alloc(); curr->op = ExtractLaneVecI64x2; curr->index = getLaneIndex(2); break; case BinaryConsts::F32x4ExtractLane: curr = allocator.alloc(); curr->op = ExtractLaneVecF32x4; curr->index = getLaneIndex(4); break; case BinaryConsts::F64x2ExtractLane: curr = allocator.alloc(); curr->op = ExtractLaneVecF64x2; curr->index = getLaneIndex(2); break; default: return false; } curr->vec = popNonVoidExpression(); curr->finalize(); out = curr; return true; } bool WasmBinaryBuilder::maybeVisitSIMDReplace(Expression*& out, uint32_t code) { SIMDReplace* curr; switch (code) { case BinaryConsts::I8x16ReplaceLane: curr = allocator.alloc(); curr->op = ReplaceLaneVecI8x16; curr->index = getLaneIndex(16); break; case BinaryConsts::I16x8ReplaceLane: curr = allocator.alloc(); curr->op = ReplaceLaneVecI16x8; curr->index = getLaneIndex(8); break; case BinaryConsts::I32x4ReplaceLane: curr = allocator.alloc(); curr->op = ReplaceLaneVecI32x4; curr->index = getLaneIndex(4); break; case BinaryConsts::I64x2ReplaceLane: curr = allocator.alloc(); curr->op = ReplaceLaneVecI64x2; curr->index = getLaneIndex(2); break; case BinaryConsts::F32x4ReplaceLane: curr = allocator.alloc(); curr->op = ReplaceLaneVecF32x4; curr->index = getLaneIndex(4); break; case BinaryConsts::F64x2ReplaceLane: curr = allocator.alloc(); curr->op = ReplaceLaneVecF64x2; curr->index = getLaneIndex(2); break; default: return false; } curr->value = popNonVoidExpression(); curr->vec = popNonVoidExpression(); curr->finalize(); out = curr; return true; } bool WasmBinaryBuilder::maybeVisitSIMDShuffle(Expression*& out, uint32_t code) { if (code != BinaryConsts::V8x16Shuffle) { return false; } auto* curr = allocator.alloc(); for (auto i = 0; i < 16; ++i) { curr->mask[i] = getLaneIndex(32); } curr->right = popNonVoidExpression(); curr->left = popNonVoidExpression(); curr->finalize(); out = curr; return true; } bool WasmBinaryBuilder::maybeVisitSIMDBitselect(Expression*& out, uint32_t code) { if (code != BinaryConsts::V128Bitselect) { return false; } auto* curr = allocator.alloc(); curr->cond = popNonVoidExpression(); curr->right = popNonVoidExpression(); curr->left = popNonVoidExpression(); curr->finalize(); out = curr; return true; } bool WasmBinaryBuilder::maybeVisitSIMDShift(Expression*& out, uint32_t code) { SIMDShift* curr; switch (code) { case BinaryConsts::I8x16Shl: curr = allocator.alloc(); curr->op = ShlVecI8x16; break; case BinaryConsts::I8x16ShrS: curr = allocator.alloc(); curr->op = ShrSVecI8x16; break; case BinaryConsts::I8x16ShrU: curr = allocator.alloc(); curr->op = ShrUVecI8x16; break; case BinaryConsts::I16x8Shl: curr = allocator.alloc(); curr->op = ShlVecI16x8; break; case BinaryConsts::I16x8ShrS: curr = allocator.alloc(); curr->op = ShrSVecI16x8; break; case BinaryConsts::I16x8ShrU: curr = allocator.alloc(); curr->op = ShrUVecI16x8; break; case BinaryConsts::I32x4Shl: curr = allocator.alloc(); curr->op = ShlVecI32x4; break; case BinaryConsts::I32x4ShrS: curr = allocator.alloc(); curr->op = ShrSVecI32x4; break; case BinaryConsts::I32x4ShrU: curr = allocator.alloc(); curr->op = ShrUVecI32x4; break; case BinaryConsts::I64x2Shl: curr = allocator.alloc(); curr->op = ShlVecI64x2; break; case BinaryConsts::I64x2ShrS: curr = allocator.alloc(); curr->op = ShrSVecI64x2; break; case BinaryConsts::I64x2ShrU: curr = allocator.alloc(); curr->op = ShrUVecI64x2; break; default: return false; } curr->shift = popNonVoidExpression(); curr->vec = popNonVoidExpression(); curr->finalize(); out = curr; return true; } void WasmBinaryBuilder::visitSelect(Select* curr) { if (debug) std::cerr << "zz node: Select" << std::endl; curr->condition = popNonVoidExpression(); curr->ifFalse = popNonVoidExpression(); curr->ifTrue = popNonVoidExpression(); curr->finalize(); } void WasmBinaryBuilder::visitReturn(Return* curr) { if (debug) std::cerr << "zz node: Return" << std::endl; requireFunctionContext("return"); if (currFunction->result != none) { curr->value = popNonVoidExpression(); } curr->finalize(); } bool WasmBinaryBuilder::maybeVisitHost(Expression*& out, uint8_t code) { Host* curr; switch (code) { case BinaryConsts::CurrentMemory: { curr = allocator.alloc(); curr->op = CurrentMemory; break; } case BinaryConsts::GrowMemory: { curr = allocator.alloc(); curr->op = GrowMemory; curr->operands.resize(1); curr->operands[0] = popNonVoidExpression(); break; } default: return false; } if (debug) std::cerr << "zz node: Host" << std::endl; auto reserved = getU32LEB(); if (reserved != 0) throwError("Invalid reserved field on grow_memory/current_memory"); curr->finalize(); out = curr; return true; } void WasmBinaryBuilder::visitNop(Nop* curr) { if (debug) std::cerr << "zz node: Nop" << std::endl; } void WasmBinaryBuilder::visitUnreachable(Unreachable* curr) { if (debug) std::cerr << "zz node: Unreachable" << std::endl; } void WasmBinaryBuilder::visitDrop(Drop* curr) { if (debug) std::cerr << "zz node: Drop" << std::endl; curr->value = popNonVoidExpression(); curr->finalize(); } void WasmBinaryBuilder::throwError(std::string text) { throw ParseException(text, 0, pos); } } // namespace wasm