/* * Copyright 2016 WebAssembly Community Group participants * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "wasm-binary.h" namespace wasm { void WasmBinaryWriter::prepare() { // we need function types for all our functions for (auto& func : wasm->functions) { if (func->type.isNull()) { func->type = ensureFunctionType(getSig(func.get()), wasm)->name; } // TODO: depending on upstream flux https://github.com/WebAssembly/spec/pull/301 might want this: assert(!func->type.isNull()); } } void WasmBinaryWriter::write() { writeHeader(); writeTypes(); writeImports(); writeFunctionSignatures(); writeFunctionTableDeclaration(); writeMemory(); writeGlobals(); writeExports(); writeTableElements(); writeStart(); writeFunctions(); writeDataSegments(); if (debugInfo) writeNames(); if (symbolMap.size() > 0) writeSymbolMap(); finishUp(); } void WasmBinaryWriter::writeHeader() { if (debug) std::cerr << "== writeHeader" << std::endl; o << int32_t(BinaryConsts::Magic); // magic number \0asm o << int32_t(BinaryConsts::Version); } int32_t WasmBinaryWriter::writeU32LEBPlaceholder() { int32_t ret = o.size(); o << int32_t(0); o << int8_t(0); return ret; } void WasmBinaryWriter::writeResizableLimits(Address initial, Address maximum, bool hasMaximum) { uint32_t flags = hasMaximum ? 1 : 0; o << U32LEB(flags); o << U32LEB(initial); if (hasMaximum) { o << U32LEB(maximum); } } int32_t WasmBinaryWriter::startSection(BinaryConsts::Section code) { o << U32LEB(code); return writeU32LEBPlaceholder(); // section size to be filled in later } void WasmBinaryWriter::finishSection(int32_t start) { int32_t size = o.size() - start - 5; // section size does not include the 5 bytes of the size field itself o.writeAt(start, U32LEB(size)); } void WasmBinaryWriter::writeStart() { if (!wasm->start.is()) return; if (debug) std::cerr << "== writeStart" << std::endl; auto start = startSection(BinaryConsts::Section::Start); o << U32LEB(getFunctionIndex(wasm->start.str)); finishSection(start); } void WasmBinaryWriter::writeMemory() { if (!wasm->memory.exists || wasm->memory.imported) return; if (debug) std::cerr << "== writeMemory" << std::endl; auto start = startSection(BinaryConsts::Section::Memory); o << U32LEB(1); // Define 1 memory writeResizableLimits(wasm->memory.initial, wasm->memory.max, wasm->memory.max != Memory::kMaxSize); finishSection(start); } void WasmBinaryWriter::writeTypes() { if (wasm->functionTypes.size() == 0) return; if (debug) std::cerr << "== writeTypes" << std::endl; auto start = startSection(BinaryConsts::Section::Type); o << U32LEB(wasm->functionTypes.size()); for (auto& type : wasm->functionTypes) { if (debug) std::cerr << "write one" << std::endl; o << S32LEB(BinaryConsts::EncodedType::Func); o << U32LEB(type->params.size()); for (auto param : type->params) { o << binaryWasmType(param); } if (type->result == none) { o << U32LEB(0); } else { o << U32LEB(1); o << binaryWasmType(type->result); } } finishSection(start); } int32_t WasmBinaryWriter::getFunctionTypeIndex(Name type) { // TODO: optimize for (size_t i = 0; i < wasm->functionTypes.size(); i++) { if (wasm->functionTypes[i]->name == type) return i; } abort(); } void WasmBinaryWriter::writeImports() { if (wasm->imports.size() == 0) return; if (debug) std::cerr << "== writeImports" << std::endl; auto start = startSection(BinaryConsts::Section::Import); o << U32LEB(wasm->imports.size()); for (auto& import : wasm->imports) { if (debug) std::cerr << "write one" << std::endl; writeInlineString(import->module.str); writeInlineString(import->base.str); o << U32LEB(int32_t(import->kind)); switch (import->kind) { case ExternalKind::Function: o << U32LEB(getFunctionTypeIndex(import->functionType->name)); break; case ExternalKind::Table: { o << S32LEB(BinaryConsts::EncodedType::AnyFunc); writeResizableLimits(wasm->table.initial, wasm->table.max, wasm->table.max != Table::kMaxSize); break; } case ExternalKind::Memory: { writeResizableLimits(wasm->memory.initial, wasm->memory.max, wasm->memory.max != Memory::kMaxSize); break; } case ExternalKind::Global: o << binaryWasmType(import->globalType); o << U32LEB(0); // Mutable global's can't be imported for now. break; default: WASM_UNREACHABLE(); } } finishSection(start); } void WasmBinaryWriter::mapLocals(Function* function) { for (Index i = 0; i < function->getNumParams(); i++) { size_t curr = mappedLocals.size(); mappedLocals[i] = curr; } for (auto type : function->vars) { numLocalsByType[type]++; } std::map currLocalsByType; for (Index i = function->getVarIndexBase(); i < function->getNumLocals(); i++) { size_t index = function->getVarIndexBase(); WasmType type = function->getLocalType(i); currLocalsByType[type]++; // increment now for simplicity, must decrement it in returns if (type == i32) { mappedLocals[i] = index + currLocalsByType[i32] - 1; continue; } index += numLocalsByType[i32]; if (type == i64) { mappedLocals[i] = index + currLocalsByType[i64] - 1; continue; } index += numLocalsByType[i64]; if (type == f32) { mappedLocals[i] = index + currLocalsByType[f32] - 1; continue; } index += numLocalsByType[f32]; if (type == f64) { mappedLocals[i] = index + currLocalsByType[f64] - 1; continue; } abort(); } } void WasmBinaryWriter::writeFunctionSignatures() { if (wasm->functions.size() == 0) return; if (debug) std::cerr << "== writeFunctionSignatures" << std::endl; auto start = startSection(BinaryConsts::Section::Function); o << U32LEB(wasm->functions.size()); for (auto& curr : wasm->functions) { if (debug) std::cerr << "write one" << std::endl; o << U32LEB(getFunctionTypeIndex(curr->type)); } finishSection(start); } void WasmBinaryWriter::writeExpression(Expression* curr) { assert(depth == 0); recurse(curr); assert(depth == 0); } void WasmBinaryWriter::writeFunctions() { if (wasm->functions.size() == 0) return; if (debug) std::cerr << "== writeFunctions" << std::endl; auto start = startSection(BinaryConsts::Section::Code); size_t total = wasm->functions.size(); o << U32LEB(total); for (size_t i = 0; i < total; i++) { if (debug) std::cerr << "write one at" << o.size() << std::endl; size_t sizePos = writeU32LEBPlaceholder(); size_t start = o.size(); Function* function = wasm->functions[i].get(); mappedLocals.clear(); numLocalsByType.clear(); if (debug) std::cerr << "writing" << function->name << std::endl; mapLocals(function); o << U32LEB( (numLocalsByType[i32] ? 1 : 0) + (numLocalsByType[i64] ? 1 : 0) + (numLocalsByType[f32] ? 1 : 0) + (numLocalsByType[f64] ? 1 : 0) ); if (numLocalsByType[i32]) o << U32LEB(numLocalsByType[i32]) << binaryWasmType(i32); if (numLocalsByType[i64]) o << U32LEB(numLocalsByType[i64]) << binaryWasmType(i64); if (numLocalsByType[f32]) o << U32LEB(numLocalsByType[f32]) << binaryWasmType(f32); if (numLocalsByType[f64]) o << U32LEB(numLocalsByType[f64]) << binaryWasmType(f64); writeExpression(function->body); o << int8_t(BinaryConsts::End); size_t size = o.size() - start; assert(size <= std::numeric_limits::max()); if (debug) std::cerr << "body size: " << size << ", writing at " << sizePos << ", next starts at " << o.size() << std::endl; o.writeAt(sizePos, U32LEB(size)); } finishSection(start); } void WasmBinaryWriter::writeGlobals() { if (wasm->globals.size() == 0) return; if (debug) std::cerr << "== writeglobals" << std::endl; auto start = startSection(BinaryConsts::Section::Global); o << U32LEB(wasm->globals.size()); for (auto& curr : wasm->globals) { if (debug) std::cerr << "write one" << std::endl; o << binaryWasmType(curr->type); o << U32LEB(curr->mutable_); writeExpression(curr->init); o << int8_t(BinaryConsts::End); } finishSection(start); } void WasmBinaryWriter::writeExports() { if (wasm->exports.size() == 0) return; if (debug) std::cerr << "== writeexports" << std::endl; auto start = startSection(BinaryConsts::Section::Export); o << U32LEB(wasm->exports.size()); for (auto& curr : wasm->exports) { if (debug) std::cerr << "write one" << std::endl; writeInlineString(curr->name.str); o << U32LEB(int32_t(curr->kind)); switch (curr->kind) { case ExternalKind::Function: o << U32LEB(getFunctionIndex(curr->value)); break; case ExternalKind::Table: o << U32LEB(0); break; case ExternalKind::Memory: o << U32LEB(0); break; case ExternalKind::Global: o << U32LEB(getGlobalIndex(curr->value)); break; default: WASM_UNREACHABLE(); } } finishSection(start); } void WasmBinaryWriter::writeDataSegments() { if (wasm->memory.segments.size() == 0) return; uint32_t num = 0; for (auto& segment : wasm->memory.segments) { if (segment.data.size() > 0) num++; } auto start = startSection(BinaryConsts::Section::Data); o << U32LEB(num); for (auto& segment : wasm->memory.segments) { if (segment.data.size() == 0) continue; o << U32LEB(0); // Linear memory 0 in the MVP writeExpression(segment.offset); o << int8_t(BinaryConsts::End); writeInlineBuffer(&segment.data[0], segment.data.size()); } finishSection(start); } uint32_t WasmBinaryWriter::getFunctionIndex(Name name) { if (!mappedFunctions.size()) { // Create name => index mapping. for (auto& import : wasm->imports) { if (import->kind != ExternalKind::Function) continue; assert(mappedFunctions.count(import->name) == 0); auto index = mappedFunctions.size(); mappedFunctions[import->name] = index; } for (size_t i = 0; i < wasm->functions.size(); i++) { assert(mappedFunctions.count(wasm->functions[i]->name) == 0); auto index = mappedFunctions.size(); mappedFunctions[wasm->functions[i]->name] = index; } } assert(mappedFunctions.count(name)); return mappedFunctions[name]; } uint32_t WasmBinaryWriter::getGlobalIndex(Name name) { if (!mappedGlobals.size()) { // Create name => index mapping. for (auto& import : wasm->imports) { if (import->kind != ExternalKind::Global) continue; assert(mappedGlobals.count(import->name) == 0); auto index = mappedGlobals.size(); mappedGlobals[import->name] = index; } for (size_t i = 0; i < wasm->globals.size(); i++) { assert(mappedGlobals.count(wasm->globals[i]->name) == 0); auto index = mappedGlobals.size(); mappedGlobals[wasm->globals[i]->name] = index; } } assert(mappedGlobals.count(name)); return mappedGlobals[name]; } void WasmBinaryWriter::writeFunctionTableDeclaration() { if (!wasm->table.exists || wasm->table.imported) return; if (debug) std::cerr << "== writeFunctionTableDeclaration" << std::endl; auto start = startSection(BinaryConsts::Section::Table); o << U32LEB(1); // Declare 1 table. o << S32LEB(BinaryConsts::EncodedType::AnyFunc); writeResizableLimits(wasm->table.initial, wasm->table.max, wasm->table.max != Table::kMaxSize); finishSection(start); } void WasmBinaryWriter::writeTableElements() { if (!wasm->table.exists) return; if (debug) std::cerr << "== writeTableElements" << std::endl; auto start = startSection(BinaryConsts::Section::Element); o << U32LEB(wasm->table.segments.size()); for (auto& segment : wasm->table.segments) { o << U32LEB(0); // Table index; 0 in the MVP (and binaryen IR only has 1 table) writeExpression(segment.offset); o << int8_t(BinaryConsts::End); o << U32LEB(segment.data.size()); for (auto name : segment.data) { o << U32LEB(getFunctionIndex(name)); } } finishSection(start); } void WasmBinaryWriter::writeNames() { bool hasContents = false; if (wasm->functions.size() > 0) { hasContents = true; getFunctionIndex(wasm->functions[0]->name); // generate mappedFunctions } else { for (auto& import : wasm->imports) { if (import->kind == ExternalKind::Function) { hasContents = true; getFunctionIndex(import->name); // generate mappedFunctions break; } } } if (!hasContents) return; if (debug) std::cerr << "== writeNames" << std::endl; auto start = startSection(BinaryConsts::Section::User); writeInlineString(BinaryConsts::UserSections::Name); o << U32LEB(mappedFunctions.size()); Index emitted = 0; for (auto& import : wasm->imports) { if (import->kind == ExternalKind::Function) { writeInlineString(import->name.str); o << U32LEB(0); // TODO: locals emitted++; } } for (auto& curr : wasm->functions) { writeInlineString(curr->name.str); o << U32LEB(0); // TODO: locals emitted++; } assert(emitted == mappedFunctions.size()); finishSection(start); } void WasmBinaryWriter::writeSymbolMap() { std::ofstream file(symbolMap); for (auto& import : wasm->imports) { if (import->kind == ExternalKind::Function) { file << getFunctionIndex(import->name) << ":" << import->name.str << std::endl; } } for (auto& func : wasm->functions) { file << getFunctionIndex(func->name) << ":" << func->name.str << std::endl; } file.close(); } void WasmBinaryWriter::writeInlineString(const char* name) { int32_t size = strlen(name); o << U32LEB(size); for (int32_t i = 0; i < size; i++) { o << int8_t(name[i]); } } void WasmBinaryWriter::writeInlineBuffer(const char* data, size_t size) { o << U32LEB(size); for (size_t i = 0; i < size; i++) { o << int8_t(data[i]); } } void WasmBinaryWriter::emitBuffer(const char* data, size_t size) { assert(size > 0); buffersToWrite.emplace_back(data, size, o.size()); o << uint32_t(0); // placeholder, we'll fill in the pointer to the buffer later when we have it } void WasmBinaryWriter::emitString(const char *str) { if (debug) std::cerr << "emitString " << str << std::endl; emitBuffer(str, strlen(str) + 1); } void WasmBinaryWriter::finishUp() { if (debug) std::cerr << "finishUp" << std::endl; // finish buffers for (const auto& buffer : buffersToWrite) { if (debug) std::cerr << "writing buffer" << (int)buffer.data[0] << "," << (int)buffer.data[1] << " at " << o.size() << " and pointer is at " << buffer.pointerLocation << std::endl; o.writeAt(buffer.pointerLocation, (uint32_t)o.size()); for (size_t i = 0; i < buffer.size; i++) { o << (uint8_t)buffer.data[i]; } } } void WasmBinaryWriter::recurse(Expression*& curr) { if (debug) std::cerr << "zz recurse into " << ++depth << " at " << o.size() << std::endl; visit(curr); if (debug) std::cerr << "zz recurse from " << depth-- << " at " << o.size() << std::endl; } void WasmBinaryWriter::visitBlock(Block *curr) { if (debug) std::cerr << "zz node: Block" << std::endl; o << int8_t(BinaryConsts::Block); o << binaryWasmType(curr->type != unreachable ? curr->type : none); breakStack.push_back(curr->name); size_t i = 0; for (auto* child : curr->list) { if (debug) std::cerr << " " << size_t(curr) << "\n zz Block element " << i++ << std::endl; recurse(child); } breakStack.pop_back(); o << int8_t(BinaryConsts::End); } // emits a node, but if it is a block with no name, emit a list of its contents void WasmBinaryWriter::recursePossibleBlockContents(Expression* curr) { auto* block = curr->dynCast(); if (!block || (block->name.is() && BreakSeeker::has(curr, block->name))) { recurse(curr); return; } for (auto* child : block->list) { recurse(child); } } void WasmBinaryWriter::visitIf(If *curr) { if (debug) std::cerr << "zz node: If" << std::endl; recurse(curr->condition); o << int8_t(BinaryConsts::If); o << binaryWasmType(curr->type != unreachable ? curr->type : none); breakStack.push_back(IMPOSSIBLE_CONTINUE); // the binary format requires this; we have a block if we need one; TODO: optimize recursePossibleBlockContents(curr->ifTrue); // TODO: emit block contents directly, if possible breakStack.pop_back(); if (curr->ifFalse) { o << int8_t(BinaryConsts::Else); breakStack.push_back(IMPOSSIBLE_CONTINUE); // TODO ditto recursePossibleBlockContents(curr->ifFalse); breakStack.pop_back(); } o << int8_t(BinaryConsts::End); } void WasmBinaryWriter::visitLoop(Loop *curr) { if (debug) std::cerr << "zz node: Loop" << std::endl; o << int8_t(BinaryConsts::Loop); o << binaryWasmType(curr->type != unreachable ? curr->type : none); breakStack.push_back(curr->name); recursePossibleBlockContents(curr->body); breakStack.pop_back(); o << int8_t(BinaryConsts::End); } int32_t WasmBinaryWriter::getBreakIndex(Name name) { // -1 if not found for (int i = breakStack.size() - 1; i >= 0; i--) { if (breakStack[i] == name) { return breakStack.size() - 1 - i; } } std::cerr << "bad break: " << name << std::endl; abort(); } void WasmBinaryWriter::visitBreak(Break *curr) { if (debug) std::cerr << "zz node: Break" << std::endl; if (curr->value) { recurse(curr->value); } if (curr->condition) recurse(curr->condition); o << int8_t(curr->condition ? BinaryConsts::BrIf : BinaryConsts::Br) << U32LEB(getBreakIndex(curr->name)); } void WasmBinaryWriter::visitSwitch(Switch *curr) { if (debug) std::cerr << "zz node: Switch" << std::endl; if (curr->value) { recurse(curr->value); } recurse(curr->condition); o << int8_t(BinaryConsts::TableSwitch) << U32LEB(curr->targets.size()); for (auto target : curr->targets) { o << U32LEB(getBreakIndex(target)); } o << U32LEB(getBreakIndex(curr->default_)); } void WasmBinaryWriter::visitCall(Call *curr) { if (debug) std::cerr << "zz node: Call" << std::endl; for (auto* operand : curr->operands) { recurse(operand); } o << int8_t(BinaryConsts::CallFunction) << U32LEB(getFunctionIndex(curr->target)); } void WasmBinaryWriter::visitCallImport(CallImport *curr) { if (debug) std::cerr << "zz node: CallImport" << std::endl; for (auto* operand : curr->operands) { recurse(operand); } o << int8_t(BinaryConsts::CallFunction) << U32LEB(getFunctionIndex(curr->target)); } void WasmBinaryWriter::visitCallIndirect(CallIndirect *curr) { if (debug) std::cerr << "zz node: CallIndirect" << std::endl; for (auto* operand : curr->operands) { recurse(operand); } recurse(curr->target); o << int8_t(BinaryConsts::CallIndirect) << U32LEB(getFunctionTypeIndex(curr->fullType)) << U32LEB(0); // Reserved flags field } void WasmBinaryWriter::visitGetLocal(GetLocal *curr) { if (debug) std::cerr << "zz node: GetLocal " << (o.size() + 1) << std::endl; o << int8_t(BinaryConsts::GetLocal) << U32LEB(mappedLocals[curr->index]); } void WasmBinaryWriter::visitSetLocal(SetLocal *curr) { if (debug) std::cerr << "zz node: Set|TeeLocal" << std::endl; recurse(curr->value); o << int8_t(curr->isTee() ? BinaryConsts::TeeLocal : BinaryConsts::SetLocal) << U32LEB(mappedLocals[curr->index]); } void WasmBinaryWriter::visitGetGlobal(GetGlobal *curr) { if (debug) std::cerr << "zz node: GetGlobal " << (o.size() + 1) << std::endl; o << int8_t(BinaryConsts::GetGlobal) << U32LEB(getGlobalIndex(curr->name)); } void WasmBinaryWriter::visitSetGlobal(SetGlobal *curr) { if (debug) std::cerr << "zz node: SetGlobal" << std::endl; recurse(curr->value); o << int8_t(BinaryConsts::SetGlobal) << U32LEB(getGlobalIndex(curr->name)); } void WasmBinaryWriter::emitMemoryAccess(size_t alignment, size_t bytes, uint32_t offset) { o << U32LEB(Log2(alignment ? alignment : bytes)); o << U32LEB(offset); } void WasmBinaryWriter::visitLoad(Load *curr) { if (debug) std::cerr << "zz node: Load" << std::endl; recurse(curr->ptr); switch (curr->type) { case i32: { switch (curr->bytes) { case 1: o << int8_t(curr->signed_ ? BinaryConsts::I32LoadMem8S : BinaryConsts::I32LoadMem8U); break; case 2: o << int8_t(curr->signed_ ? BinaryConsts::I32LoadMem16S : BinaryConsts::I32LoadMem16U); break; case 4: o << int8_t(BinaryConsts::I32LoadMem); break; default: abort(); } break; } case i64: { switch (curr->bytes) { case 1: o << int8_t(curr->signed_ ? BinaryConsts::I64LoadMem8S : BinaryConsts::I64LoadMem8U); break; case 2: o << int8_t(curr->signed_ ? BinaryConsts::I64LoadMem16S : BinaryConsts::I64LoadMem16U); break; case 4: o << int8_t(curr->signed_ ? BinaryConsts::I64LoadMem32S : BinaryConsts::I64LoadMem32U); break; case 8: o << int8_t(BinaryConsts::I64LoadMem); break; default: abort(); } break; } case f32: o << int8_t(BinaryConsts::F32LoadMem); break; case f64: o << int8_t(BinaryConsts::F64LoadMem); break; default: abort(); } emitMemoryAccess(curr->align, curr->bytes, curr->offset); } void WasmBinaryWriter::visitStore(Store *curr) { if (debug) std::cerr << "zz node: Store" << std::endl; recurse(curr->ptr); recurse(curr->value); switch (curr->valueType) { case i32: { switch (curr->bytes) { case 1: o << int8_t(BinaryConsts::I32StoreMem8); break; case 2: o << int8_t(BinaryConsts::I32StoreMem16); break; case 4: o << int8_t(BinaryConsts::I32StoreMem); break; default: abort(); } break; } case i64: { switch (curr->bytes) { case 1: o << int8_t(BinaryConsts::I64StoreMem8); break; case 2: o << int8_t(BinaryConsts::I64StoreMem16); break; case 4: o << int8_t(BinaryConsts::I64StoreMem32); break; case 8: o << int8_t(BinaryConsts::I64StoreMem); break; default: abort(); } break; } case f32: o << int8_t(BinaryConsts::F32StoreMem); break; case f64: o << int8_t(BinaryConsts::F64StoreMem); break; default: abort(); } emitMemoryAccess(curr->align, curr->bytes, curr->offset); } void WasmBinaryWriter::visitConst(Const *curr) { if (debug) std::cerr << "zz node: Const" << curr << " : " << curr->type << std::endl; switch (curr->type) { case i32: { o << int8_t(BinaryConsts::I32Const) << S32LEB(curr->value.geti32()); break; } case i64: { o << int8_t(BinaryConsts::I64Const) << S64LEB(curr->value.geti64()); break; } case f32: { o << int8_t(BinaryConsts::F32Const) << curr->value.reinterpreti32(); break; } case f64: { o << int8_t(BinaryConsts::F64Const) << curr->value.reinterpreti64(); break; } default: abort(); } if (debug) std::cerr << "zz const node done.\n"; } void WasmBinaryWriter::visitUnary(Unary *curr) { if (debug) std::cerr << "zz node: Unary" << std::endl; recurse(curr->value); switch (curr->op) { case ClzInt32: o << int8_t(BinaryConsts::I32Clz); break; case CtzInt32: o << int8_t(BinaryConsts::I32Ctz); break; case PopcntInt32: o << int8_t(BinaryConsts::I32Popcnt); break; case EqZInt32: o << int8_t(BinaryConsts::I32EqZ); break; case ClzInt64: o << int8_t(BinaryConsts::I64Clz); break; case CtzInt64: o << int8_t(BinaryConsts::I64Ctz); break; case PopcntInt64: o << int8_t(BinaryConsts::I64Popcnt); break; case EqZInt64: o << int8_t(BinaryConsts::I64EqZ); break; case NegFloat32: o << int8_t(BinaryConsts::F32Neg); break; case AbsFloat32: o << int8_t(BinaryConsts::F32Abs); break; case CeilFloat32: o << int8_t(BinaryConsts::F32Ceil); break; case FloorFloat32: o << int8_t(BinaryConsts::F32Floor); break; case TruncFloat32: o << int8_t(BinaryConsts::F32Trunc); break; case NearestFloat32: o << int8_t(BinaryConsts::F32NearestInt); break; case SqrtFloat32: o << int8_t(BinaryConsts::F32Sqrt); break; case NegFloat64: o << int8_t(BinaryConsts::F64Neg); break; case AbsFloat64: o << int8_t(BinaryConsts::F64Abs); break; case CeilFloat64: o << int8_t(BinaryConsts::F64Ceil); break; case FloorFloat64: o << int8_t(BinaryConsts::F64Floor); break; case TruncFloat64: o << int8_t(BinaryConsts::F64Trunc); break; case NearestFloat64: o << int8_t(BinaryConsts::F64NearestInt); break; case SqrtFloat64: o << int8_t(BinaryConsts::F64Sqrt); break; case ExtendSInt32: o << int8_t(BinaryConsts::I64STruncI32); break; case ExtendUInt32: o << int8_t(BinaryConsts::I64UTruncI32); break; case WrapInt64: o << int8_t(BinaryConsts::I32ConvertI64); break; case TruncUFloat32ToInt32: o << int8_t(BinaryConsts::I32UTruncF32); break; case TruncUFloat32ToInt64: o << int8_t(BinaryConsts::I64UTruncF32); break; case TruncSFloat32ToInt32: o << int8_t(BinaryConsts::I32STruncF32); break; case TruncSFloat32ToInt64: o << int8_t(BinaryConsts::I64STruncF32); break; case TruncUFloat64ToInt32: o << int8_t(BinaryConsts::I32UTruncF64); break; case TruncUFloat64ToInt64: o << int8_t(BinaryConsts::I64UTruncF64); break; case TruncSFloat64ToInt32: o << int8_t(BinaryConsts::I32STruncF64); break; case TruncSFloat64ToInt64: o << int8_t(BinaryConsts::I64STruncF64); break; case ConvertUInt32ToFloat32: o << int8_t(BinaryConsts::F32UConvertI32); break; case ConvertUInt32ToFloat64: o << int8_t(BinaryConsts::F64UConvertI32); break; case ConvertSInt32ToFloat32: o << int8_t(BinaryConsts::F32SConvertI32); break; case ConvertSInt32ToFloat64: o << int8_t(BinaryConsts::F64SConvertI32); break; case ConvertUInt64ToFloat32: o << int8_t(BinaryConsts::F32UConvertI64); break; case ConvertUInt64ToFloat64: o << int8_t(BinaryConsts::F64UConvertI64); break; case ConvertSInt64ToFloat32: o << int8_t(BinaryConsts::F32SConvertI64); break; case ConvertSInt64ToFloat64: o << int8_t(BinaryConsts::F64SConvertI64); break; case DemoteFloat64: o << int8_t(BinaryConsts::F32ConvertF64); break; case PromoteFloat32: o << int8_t(BinaryConsts::F64ConvertF32); break; case ReinterpretFloat32: o << int8_t(BinaryConsts::I32ReinterpretF32); break; case ReinterpretFloat64: o << int8_t(BinaryConsts::I64ReinterpretF64); break; case ReinterpretInt32: o << int8_t(BinaryConsts::F32ReinterpretI32); break; case ReinterpretInt64: o << int8_t(BinaryConsts::F64ReinterpretI64); break; default: abort(); } } void WasmBinaryWriter::visitBinary(Binary *curr) { if (debug) std::cerr << "zz node: Binary" << std::endl; recurse(curr->left); recurse(curr->right); switch (curr->op) { case AddInt32: o << int8_t(BinaryConsts::I32Add); break; case SubInt32: o << int8_t(BinaryConsts::I32Sub); break; case MulInt32: o << int8_t(BinaryConsts::I32Mul); break; case DivSInt32: o << int8_t(BinaryConsts::I32DivS); break; case DivUInt32: o << int8_t(BinaryConsts::I32DivU); break; case RemSInt32: o << int8_t(BinaryConsts::I32RemS); break; case RemUInt32: o << int8_t(BinaryConsts::I32RemU); break; case AndInt32: o << int8_t(BinaryConsts::I32And); break; case OrInt32: o << int8_t(BinaryConsts::I32Or); break; case XorInt32: o << int8_t(BinaryConsts::I32Xor); break; case ShlInt32: o << int8_t(BinaryConsts::I32Shl); break; case ShrUInt32: o << int8_t(BinaryConsts::I32ShrU); break; case ShrSInt32: o << int8_t(BinaryConsts::I32ShrS); break; case RotLInt32: o << int8_t(BinaryConsts::I32RotL); break; case RotRInt32: o << int8_t(BinaryConsts::I32RotR); break; case EqInt32: o << int8_t(BinaryConsts::I32Eq); break; case NeInt32: o << int8_t(BinaryConsts::I32Ne); break; case LtSInt32: o << int8_t(BinaryConsts::I32LtS); break; case LtUInt32: o << int8_t(BinaryConsts::I32LtU); break; case LeSInt32: o << int8_t(BinaryConsts::I32LeS); break; case LeUInt32: o << int8_t(BinaryConsts::I32LeU); break; case GtSInt32: o << int8_t(BinaryConsts::I32GtS); break; case GtUInt32: o << int8_t(BinaryConsts::I32GtU); break; case GeSInt32: o << int8_t(BinaryConsts::I32GeS); break; case GeUInt32: o << int8_t(BinaryConsts::I32GeU); break; case AddInt64: o << int8_t(BinaryConsts::I64Add); break; case SubInt64: o << int8_t(BinaryConsts::I64Sub); break; case MulInt64: o << int8_t(BinaryConsts::I64Mul); break; case DivSInt64: o << int8_t(BinaryConsts::I64DivS); break; case DivUInt64: o << int8_t(BinaryConsts::I64DivU); break; case RemSInt64: o << int8_t(BinaryConsts::I64RemS); break; case RemUInt64: o << int8_t(BinaryConsts::I64RemU); break; case AndInt64: o << int8_t(BinaryConsts::I64And); break; case OrInt64: o << int8_t(BinaryConsts::I64Or); break; case XorInt64: o << int8_t(BinaryConsts::I64Xor); break; case ShlInt64: o << int8_t(BinaryConsts::I64Shl); break; case ShrUInt64: o << int8_t(BinaryConsts::I64ShrU); break; case ShrSInt64: o << int8_t(BinaryConsts::I64ShrS); break; case RotLInt64: o << int8_t(BinaryConsts::I64RotL); break; case RotRInt64: o << int8_t(BinaryConsts::I64RotR); break; case EqInt64: o << int8_t(BinaryConsts::I64Eq); break; case NeInt64: o << int8_t(BinaryConsts::I64Ne); break; case LtSInt64: o << int8_t(BinaryConsts::I64LtS); break; case LtUInt64: o << int8_t(BinaryConsts::I64LtU); break; case LeSInt64: o << int8_t(BinaryConsts::I64LeS); break; case LeUInt64: o << int8_t(BinaryConsts::I64LeU); break; case GtSInt64: o << int8_t(BinaryConsts::I64GtS); break; case GtUInt64: o << int8_t(BinaryConsts::I64GtU); break; case GeSInt64: o << int8_t(BinaryConsts::I64GeS); break; case GeUInt64: o << int8_t(BinaryConsts::I64GeU); break; case AddFloat32: o << int8_t(BinaryConsts::F32Add); break; case SubFloat32: o << int8_t(BinaryConsts::F32Sub); break; case MulFloat32: o << int8_t(BinaryConsts::F32Mul); break; case DivFloat32: o << int8_t(BinaryConsts::F32Div); break; case CopySignFloat32: o << int8_t(BinaryConsts::F32CopySign);break; case MinFloat32: o << int8_t(BinaryConsts::F32Min); break; case MaxFloat32: o << int8_t(BinaryConsts::F32Max); break; case EqFloat32: o << int8_t(BinaryConsts::F32Eq); break; case NeFloat32: o << int8_t(BinaryConsts::F32Ne); break; case LtFloat32: o << int8_t(BinaryConsts::F32Lt); break; case LeFloat32: o << int8_t(BinaryConsts::F32Le); break; case GtFloat32: o << int8_t(BinaryConsts::F32Gt); break; case GeFloat32: o << int8_t(BinaryConsts::F32Ge); break; case AddFloat64: o << int8_t(BinaryConsts::F64Add); break; case SubFloat64: o << int8_t(BinaryConsts::F64Sub); break; case MulFloat64: o << int8_t(BinaryConsts::F64Mul); break; case DivFloat64: o << int8_t(BinaryConsts::F64Div); break; case CopySignFloat64: o << int8_t(BinaryConsts::F64CopySign);break; case MinFloat64: o << int8_t(BinaryConsts::F64Min); break; case MaxFloat64: o << int8_t(BinaryConsts::F64Max); break; case EqFloat64: o << int8_t(BinaryConsts::F64Eq); break; case NeFloat64: o << int8_t(BinaryConsts::F64Ne); break; case LtFloat64: o << int8_t(BinaryConsts::F64Lt); break; case LeFloat64: o << int8_t(BinaryConsts::F64Le); break; case GtFloat64: o << int8_t(BinaryConsts::F64Gt); break; case GeFloat64: o << int8_t(BinaryConsts::F64Ge); break; default: abort(); } } void WasmBinaryWriter::visitSelect(Select *curr) { if (debug) std::cerr << "zz node: Select" << std::endl; recurse(curr->ifTrue); recurse(curr->ifFalse); recurse(curr->condition); o << int8_t(BinaryConsts::Select); } void WasmBinaryWriter::visitReturn(Return *curr) { if (debug) std::cerr << "zz node: Return" << std::endl; if (curr->value) { recurse(curr->value); } o << int8_t(BinaryConsts::Return); } void WasmBinaryWriter::visitHost(Host *curr) { if (debug) std::cerr << "zz node: Host" << std::endl; switch (curr->op) { case CurrentMemory: { o << int8_t(BinaryConsts::CurrentMemory); break; } case GrowMemory: { recurse(curr->operands[0]); o << int8_t(BinaryConsts::GrowMemory); break; } default: abort(); } o << U32LEB(0); // Reserved flags field } void WasmBinaryWriter::visitNop(Nop *curr) { if (debug) std::cerr << "zz node: Nop" << std::endl; o << int8_t(BinaryConsts::Nop); } void WasmBinaryWriter::visitUnreachable(Unreachable *curr) { if (debug) std::cerr << "zz node: Unreachable" << std::endl; o << int8_t(BinaryConsts::Unreachable); } void WasmBinaryWriter::visitDrop(Drop *curr) { if (debug) std::cerr << "zz node: Drop" << std::endl; recurse(curr->value); o << int8_t(BinaryConsts::Drop); } void WasmBinaryBuilder::read() { readHeader(); // read sections until the end while (more()) { uint32_t sectionCode = getU32LEB(); uint32_t payloadLen = getU32LEB(); if (pos + payloadLen > input.size()) throw ParseException("Section extends beyond end of input"); switch (sectionCode) { case BinaryConsts::Section::Start: readStart(); break; case BinaryConsts::Section::Memory: readMemory(); break; case BinaryConsts::Section::Type: readSignatures(); break; case BinaryConsts::Section::Import: readImports(); break; case BinaryConsts::Section::Function: readFunctionSignatures(); break; case BinaryConsts::Section::Code: readFunctions(); break; case BinaryConsts::Section::Export: readExports(); break; case BinaryConsts::Section::Element: readTableElements(); break; case BinaryConsts::Section::Global: { readGlobals(); // imports can read global imports, so we run getGlobalName and create the mapping // but after we read globals, we need to add the internal globals too, so do that here mappedGlobals.clear(); // wipe the mapping getGlobalName(0); // force rebuild break; } case BinaryConsts::Section::Data: readDataSegments(); break; case BinaryConsts::Section::Table: readFunctionTableDeclaration(); break; default: if (!readUserSection()) abort(); } } processFunctions(); } bool WasmBinaryBuilder::readUserSection() { Name sectionName = getInlineString(); if (sectionName.equals(BinaryConsts::UserSections::Name)) { readNames(); return true; } std::cerr << "unfamiliar section: " << sectionName << std::endl; return false; } uint8_t WasmBinaryBuilder::getInt8() { if (!more()) throw ParseException("unexpected end of input"); if (debug) std::cerr << "getInt8: " << (int)(uint8_t)input[pos] << " (at " << pos << ")" << std::endl; return input[pos++]; } uint16_t WasmBinaryBuilder::getInt16() { if (debug) std::cerr << "<==" << std::endl; auto ret = uint16_t(getInt8()); ret |= uint16_t(getInt8()) << 8; if (debug) std::cerr << "getInt16: " << ret << "/0x" << std::hex << ret << std::dec << " ==>" << std::endl; return ret; } uint32_t WasmBinaryBuilder::getInt32() { if (debug) std::cerr << "<==" << std::endl; auto ret = uint32_t(getInt16()); ret |= uint32_t(getInt16()) << 16; if (debug) std::cerr << "getInt32: " << ret << "/0x" << std::hex << ret << std::dec <<" ==>" << std::endl; return ret; } uint64_t WasmBinaryBuilder::getInt64() { if (debug) std::cerr << "<==" << std::endl; auto ret = uint64_t(getInt32()); ret |= uint64_t(getInt32()) << 32; if (debug) std::cerr << "getInt64: " << ret << "/0x" << std::hex << ret << std::dec << " ==>" << std::endl; return ret; } Literal WasmBinaryBuilder::getFloat32Literal() { if (debug) std::cerr << "<==" << std::endl; auto ret = Literal(getInt32()); ret = ret.castToF32(); if (debug) std::cerr << "getFloat32: " << ret << " ==>" << std::endl; return ret; } Literal WasmBinaryBuilder::getFloat64Literal() { if (debug) std::cerr << "<==" << std::endl; auto ret = Literal(getInt64()); ret = ret.castToF64(); if (debug) std::cerr << "getFloat64: " << ret << " ==>" << std::endl; return ret; } uint32_t WasmBinaryBuilder::getU32LEB() { if (debug) std::cerr << "<==" << std::endl; U32LEB ret; ret.read([&]() { return getInt8(); }); if (debug) std::cerr << "getU32LEB: " << ret.value << " ==>" << std::endl; return ret.value; } uint64_t WasmBinaryBuilder::getU64LEB() { if (debug) std::cerr << "<==" << std::endl; U64LEB ret; ret.read([&]() { return getInt8(); }); if (debug) std::cerr << "getU64LEB: " << ret.value << " ==>" << std::endl; return ret.value; } int32_t WasmBinaryBuilder::getS32LEB() { if (debug) std::cerr << "<==" << std::endl; S32LEB ret; ret.read([&]() { return (int8_t)getInt8(); }); if (debug) std::cerr << "getS32LEB: " << ret.value << " ==>" << std::endl; return ret.value; } int64_t WasmBinaryBuilder::getS64LEB() { if (debug) std::cerr << "<==" << std::endl; S64LEB ret; ret.read([&]() { return (int8_t)getInt8(); }); if (debug) std::cerr << "getS64LEB: " << ret.value << " ==>" << std::endl; return ret.value; } WasmType WasmBinaryBuilder::getWasmType() { int type = getS32LEB(); switch (type) { // None only used for block signatures. TODO: Separate out? case BinaryConsts::EncodedType::Empty: return none; case BinaryConsts::EncodedType::i32: return i32; case BinaryConsts::EncodedType::i64: return i64; case BinaryConsts::EncodedType::f32: return f32; case BinaryConsts::EncodedType::f64: return f64; default: abort(); } } Name WasmBinaryBuilder::getString() { if (debug) std::cerr << "<==" << std::endl; size_t offset = getInt32(); Name ret = cashew::IString((&input[0]) + offset, false); if (debug) std::cerr << "getString: " << ret << " ==>" << std::endl; return ret; } Name WasmBinaryBuilder::getInlineString() { if (debug) std::cerr << "<==" << std::endl; auto len = getU32LEB(); std::string str; for (size_t i = 0; i < len; i++) { str = str + char(getInt8()); } if (debug) std::cerr << "getInlineString: " << str << " ==>" << std::endl; return Name(str); } void WasmBinaryBuilder::verifyInt8(int8_t x) { int8_t y = getInt8(); if (x != y) throw ParseException("surprising value", 0, pos); } void WasmBinaryBuilder::verifyInt16(int16_t x) { int16_t y = getInt16(); if (x != y) throw ParseException("surprising value", 0, pos); } void WasmBinaryBuilder::verifyInt32(int32_t x) { int32_t y = getInt32(); if (x != y) throw ParseException("surprising value", 0, pos); } void WasmBinaryBuilder::verifyInt64(int64_t x) { int64_t y = getInt64(); if (x != y) throw ParseException("surprising value", 0, pos); } void WasmBinaryBuilder::ungetInt8() { assert(pos > 0); if (debug) std::cerr << "ungetInt8 (at " << pos << ")" << std::endl; pos--; } void WasmBinaryBuilder::readHeader() { if (debug) std::cerr << "== readHeader" << std::endl; verifyInt32(BinaryConsts::Magic); verifyInt32(BinaryConsts::Version); } void WasmBinaryBuilder::readStart() { if (debug) std::cerr << "== readStart" << std::endl; startIndex = getU32LEB(); } void WasmBinaryBuilder::readMemory() { if (debug) std::cerr << "== readMemory" << std::endl; auto numMemories = getU32LEB(); if (!numMemories) return; assert(numMemories == 1); if (wasm.memory.exists) throw ParseException("Memory cannot be both imported and defined"); wasm.memory.exists = true; getResizableLimits(wasm.memory.initial, wasm.memory.max, Memory::kMaxSize); } void WasmBinaryBuilder::readSignatures() { if (debug) std::cerr << "== readSignatures" << std::endl; size_t numTypes = getU32LEB(); if (debug) std::cerr << "num: " << numTypes << std::endl; for (size_t i = 0; i < numTypes; i++) { if (debug) std::cerr << "read one" << std::endl; auto curr = new FunctionType; auto form = getS32LEB(); WASM_UNUSED(form); assert(form == BinaryConsts::EncodedType::Func); size_t numParams = getU32LEB(); if (debug) std::cerr << "num params: " << numParams << std::endl; for (size_t j = 0; j < numParams; j++) { curr->params.push_back(getWasmType()); } auto numResults = getU32LEB(); if (numResults == 0) { curr->result = none; } else { assert(numResults == 1); curr->result = getWasmType(); } curr->name = Name::fromInt(wasm.functionTypes.size()); wasm.addFunctionType(curr); } } Name WasmBinaryBuilder::getFunctionIndexName(Index i) { if (i < functionImportIndexes.size()) { auto* import = wasm.getImport(functionImportIndexes[i]); assert(import->kind == ExternalKind::Function); return import->name; } else { i -= functionImportIndexes.size(); return wasm.functions.at(i)->name; } } void WasmBinaryBuilder::getResizableLimits(Address& initial, Address& max, Address defaultIfNoMax) { auto flags = getU32LEB(); initial = getU32LEB(); bool hasMax = flags & 0x1; if (hasMax) max = getU32LEB(); else max = defaultIfNoMax; } void WasmBinaryBuilder::readImports() { if (debug) std::cerr << "== readImports" << std::endl; size_t num = getU32LEB(); if (debug) std::cerr << "num: " << num << std::endl; for (size_t i = 0; i < num; i++) { if (debug) std::cerr << "read one" << std::endl; auto curr = new Import; curr->name = Name(std::string("import$") + std::to_string(i)); curr->module = getInlineString(); curr->base = getInlineString(); curr->kind = (ExternalKind)getU32LEB(); switch (curr->kind) { case ExternalKind::Function: { auto index = getU32LEB(); assert(index < wasm.functionTypes.size()); curr->functionType = wasm.functionTypes[index].get(); assert(curr->functionType->name.is()); functionImportIndexes.push_back(curr->name); break; } case ExternalKind::Table: { auto elementType = getS32LEB(); WASM_UNUSED(elementType); if (elementType != BinaryConsts::EncodedType::AnyFunc) throw ParseException("Imported table type is not AnyFunc"); wasm.table.exists = true; wasm.table.imported = true; getResizableLimits(wasm.table.initial, wasm.table.max, Table::kMaxSize); break; } case ExternalKind::Memory: { wasm.memory.exists = true; wasm.memory.imported = true; getResizableLimits(wasm.memory.initial, wasm.memory.max, Memory::kMaxSize); break; } case ExternalKind::Global: { curr->globalType = getWasmType(); auto globalMutable = getU32LEB(); WASM_UNUSED(globalMutable); assert(!globalMutable); break; } default: WASM_UNREACHABLE(); } wasm.addImport(curr); } } void WasmBinaryBuilder::readFunctionSignatures() { if (debug) std::cerr << "== readFunctionSignatures" << std::endl; size_t num = getU32LEB(); if (debug) std::cerr << "num: " << num << std::endl; for (size_t i = 0; i < num; i++) { if (debug) std::cerr << "read one" << std::endl; auto index = getU32LEB(); functionTypes.push_back(wasm.functionTypes[index].get()); } } void WasmBinaryBuilder::readFunctions() { if (debug) std::cerr << "== readFunctions" << std::endl; size_t total = getU32LEB(); assert(total == functionTypes.size()); for (size_t i = 0; i < total; i++) { if (debug) std::cerr << "read one at " << pos << std::endl; size_t size = getU32LEB(); assert(size > 0); endOfFunction = pos + size; auto type = functionTypes[i]; if (debug) std::cerr << "reading " << i << std::endl; size_t nextVar = 0; auto addVar = [&]() { Name name = cashew::IString(("var$" + std::to_string(nextVar++)).c_str(), false); return name; }; std::vector params, vars; for (size_t j = 0; j < type->params.size(); j++) { params.emplace_back(addVar(), type->params[j]); } size_t numLocalTypes = getU32LEB(); for (size_t t = 0; t < numLocalTypes; t++) { auto num = getU32LEB(); auto type = getWasmType(); while (num > 0) { vars.emplace_back(addVar(), type); num--; } } auto func = Builder(wasm).makeFunction( Name::fromInt(i), std::move(params), type->result, std::move(vars) ); func->type = type->name; currFunction = func; { // process the function body if (debug) std::cerr << "processing function: " << i << std::endl; nextLabel = 0; // process body assert(breakStack.empty()); assert(expressionStack.empty()); assert(depth == 0); func->body = getMaybeBlock(func->result); assert(depth == 0); assert(breakStack.empty()); assert(expressionStack.empty()); assert(pos == endOfFunction); } currFunction = nullptr; functions.push_back(func); } if (debug) std::cerr << " end function bodies" << std::endl; } void WasmBinaryBuilder::readExports() { if (debug) std::cerr << "== readExports" << std::endl; size_t num = getU32LEB(); if (debug) std::cerr << "num: " << num << std::endl; for (size_t i = 0; i < num; i++) { if (debug) std::cerr << "read one" << std::endl; auto curr = new Export; curr->name = getInlineString(); curr->kind = (ExternalKind)getU32LEB(); auto index = getU32LEB(); exportIndexes[curr] = index; } } Expression* WasmBinaryBuilder::readExpression() { assert(depth == 0); processExpressions(); assert(expressionStack.size() == 1); auto* ret = popExpression(); assert(depth == 0); return ret; } void WasmBinaryBuilder::readGlobals() { if (debug) std::cerr << "== readGlobals" << std::endl; size_t num = getU32LEB(); if (debug) std::cerr << "num: " << num << std::endl; for (size_t i = 0; i < num; i++) { if (debug) std::cerr << "read one" << std::endl; auto curr = new Global; curr->type = getWasmType(); auto mutable_ = getU32LEB(); if (bool(mutable_) != mutable_) throw ParseException("Global mutability must be 0 or 1"); curr->mutable_ = mutable_; curr->init = readExpression(); curr->name = Name("global$" + std::to_string(wasm.globals.size())); wasm.addGlobal(curr); } } void WasmBinaryBuilder::processExpressions() { // until an end or else marker, or the end of the function while (1) { Expression* curr; auto ret = readExpression(curr); if (!curr) { lastSeparator = ret; return; } expressionStack.push_back(curr); } } Expression* WasmBinaryBuilder::popExpression() { assert(expressionStack.size() > 0); auto ret = expressionStack.back(); expressionStack.pop_back(); return ret; } Name WasmBinaryBuilder::getGlobalName(Index index) { if (!mappedGlobals.size()) { // Create name => index mapping. for (auto& import : wasm.imports) { if (import->kind != ExternalKind::Global) continue; auto index = mappedGlobals.size(); mappedGlobals[index] = import->name; } for (size_t i = 0; i < wasm.globals.size(); i++) { auto index = mappedGlobals.size(); mappedGlobals[index] = wasm.globals[i]->name; } } assert(mappedGlobals.count(index)); return mappedGlobals[index]; } void WasmBinaryBuilder::processFunctions() { for (auto& func : functions) { wasm.addFunction(func); } // now that we have names for each function, apply things if (startIndex != static_cast(-1)) { wasm.start = getFunctionIndexName(startIndex); } for (auto& iter : exportIndexes) { Export* curr = iter.first; switch (curr->kind) { case ExternalKind::Function: { curr->value = getFunctionIndexName(iter.second); break; } case ExternalKind::Table: curr->value = Name::fromInt(0); break; case ExternalKind::Memory: curr->value = Name::fromInt(0); break; case ExternalKind::Global: curr->value = getGlobalName(iter.second); break; default: WASM_UNREACHABLE(); } wasm.addExport(curr); } for (auto& iter : functionCalls) { size_t index = iter.first; auto& calls = iter.second; for (auto* call : calls) { call->target = wasm.functions[index]->name; } } for (auto& pair : functionTable) { auto i = pair.first; auto& indexes = pair.second; for (auto j : indexes) { wasm.table.segments[i].data.push_back(getFunctionIndexName(j)); } } } void WasmBinaryBuilder::readDataSegments() { if (debug) std::cerr << "== readDataSegments" << std::endl; auto num = getU32LEB(); for (size_t i = 0; i < num; i++) { auto memoryIndex = getU32LEB(); WASM_UNUSED(memoryIndex); assert(memoryIndex == 0); // Only one linear memory in the MVP Memory::Segment curr; auto offset = readExpression(); auto size = getU32LEB(); std::vector buffer; buffer.resize(size); for (size_t j = 0; j < size; j++) { buffer[j] = char(getInt8()); } wasm.memory.segments.emplace_back(offset, (const char*)&buffer[0], size); } } void WasmBinaryBuilder::readFunctionTableDeclaration() { if (debug) std::cerr << "== readFunctionTableDeclaration" << std::endl; auto numTables = getU32LEB(); if (numTables != 1) throw ParseException("Only 1 table definition allowed in MVP"); if (wasm.table.exists) throw ParseException("Table cannot be both imported and defined"); wasm.table.exists = true; auto elemType = getS32LEB(); if (elemType != BinaryConsts::EncodedType::AnyFunc) throw ParseException("ElementType must be AnyFunc in MVP"); getResizableLimits(wasm.table.initial, wasm.table.max, Table::kMaxSize); } void WasmBinaryBuilder::readTableElements() { if (debug) std::cerr << "== readTableElements" << std::endl; auto numSegments = getU32LEB(); if (numSegments >= Table::kMaxSize) throw ParseException("Too many segments"); for (size_t i = 0; i < numSegments; i++) { auto tableIndex = getU32LEB(); if (tableIndex != 0) throw ParseException("Table elements must refer to table 0 in MVP"); wasm.table.segments.emplace_back(readExpression()); auto& indexSegment = functionTable[i]; auto size = getU32LEB(); for (Index j = 0; j < size; j++) { indexSegment.push_back(getU32LEB()); } } } void WasmBinaryBuilder::readNames() { if (debug) std::cerr << "== readNames" << std::endl; auto num = getU32LEB(); if (num == 0) return; for (auto& import : wasm.imports) { if (import->kind == ExternalKind::Function) { getInlineString(); // TODO: use this auto numLocals = getU32LEB(); WASM_UNUSED(numLocals); assert(numLocals == 0); // TODO if (--num == 0) return; } } for (size_t i = 0; i < num; i++) { functions[i]->name = getInlineString(); auto numLocals = getU32LEB(); WASM_UNUSED(numLocals); assert(numLocals == 0); // TODO } } BinaryConsts::ASTNodes WasmBinaryBuilder::readExpression(Expression*& curr) { if (pos == endOfFunction) { throw ParseException("Reached function end without seeing End opcode"); } if (debug) std::cerr << "zz recurse into " << ++depth << " at " << pos << std::endl; uint8_t code = getInt8(); if (debug) std::cerr << "readExpression seeing " << (int)code << std::endl; switch (code) { case BinaryConsts::Block: visitBlock((curr = allocator.alloc())->cast()); break; case BinaryConsts::If: visitIf((curr = allocator.alloc())->cast()); break; case BinaryConsts::Loop: visitLoop((curr = allocator.alloc())->cast()); break; case BinaryConsts::Br: case BinaryConsts::BrIf: visitBreak((curr = allocator.alloc())->cast(), code); break; // code distinguishes br from br_if case BinaryConsts::TableSwitch: visitSwitch((curr = allocator.alloc())->cast()); break; case BinaryConsts::CallFunction: curr = visitCall(); break; // we don't know if it's a call or call_import yet case BinaryConsts::CallIndirect: visitCallIndirect((curr = allocator.alloc())->cast()); break; case BinaryConsts::GetLocal: visitGetLocal((curr = allocator.alloc())->cast()); break; case BinaryConsts::TeeLocal: case BinaryConsts::SetLocal: visitSetLocal((curr = allocator.alloc())->cast(), code); break; case BinaryConsts::GetGlobal: visitGetGlobal((curr = allocator.alloc())->cast()); break; case BinaryConsts::SetGlobal: visitSetGlobal((curr = allocator.alloc())->cast()); break; case BinaryConsts::Select: visitSelect((curr = allocator.alloc()); break; case BinaryConsts::Return: visitReturn((curr = allocator.alloc())->cast()); break; case BinaryConsts::Nop: visitNop((curr = allocator.alloc())->cast()); break; case BinaryConsts::Unreachable: visitUnreachable((curr = allocator.alloc())->cast()); break; case BinaryConsts::Drop: visitDrop((curr = allocator.alloc())->cast()); break; case BinaryConsts::End: case BinaryConsts::Else: curr = nullptr; break; default: { // otherwise, the code is a subcode TODO: optimize if (maybeVisitBinary(curr, code)) break; if (maybeVisitUnary(curr, code)) break; if (maybeVisitConst(curr, code)) break; if (maybeVisitLoad(curr, code)) break; if (maybeVisitStore(curr, code)) break; if (maybeVisitHost(curr, code)) break; std::cerr << "bad code 0x" << std::hex << (int)code << std::endl; abort(); } } if (debug) std::cerr << "zz recurse from " << depth-- << " at " << pos << std::endl; return BinaryConsts::ASTNodes(code); } void WasmBinaryBuilder::visitBlock(Block *curr) { if (debug) std::cerr << "zz node: Block" << std::endl; // special-case Block and de-recurse nested blocks in their first position, as that is // a common pattern that can be very highly nested. std::vector stack; while (1) { curr->type = getWasmType(); curr->name = getNextLabel(); breakStack.push_back({curr->name, curr->type != none}); stack.push_back(curr); if (getInt8() == BinaryConsts::Block) { // a recursion curr = allocator.alloc(); continue; } else { // end of recursion ungetInt8(); break; } } Block* last = nullptr; while (stack.size() > 0) { curr = stack.back(); stack.pop_back(); size_t start = expressionStack.size(); // everything after this, that is left when we see the marker, is ours if (last) { // the previous block is our first-position element expressionStack.push_back(last); } last = curr; processExpressions(); size_t end = expressionStack.size(); assert(end >= start); for (size_t i = start; i < end; i++) { if (debug) std::cerr << " " << size_t(expressionStack[i]) << "\n zz Block element " << curr->list.size() << std::endl; curr->list.push_back(expressionStack[i]); } expressionStack.resize(start); curr->finalize(curr->type); breakStack.pop_back(); } } Expression* WasmBinaryBuilder::getMaybeBlock(WasmType type) { auto start = expressionStack.size(); processExpressions(); size_t end = expressionStack.size(); if (start - end == 1) { return popExpression(); } auto* block = allocator.alloc(); for (size_t i = start; i < end; i++) { block->list.push_back(expressionStack[i]); } block->finalize(type); expressionStack.resize(start); return block; } Expression* WasmBinaryBuilder::getBlock(WasmType type) { Name label = getNextLabel(); breakStack.push_back({label, type != none && type != unreachable}); auto* block = Builder(wasm).blockify(getMaybeBlock(type)); block->finalize(); breakStack.pop_back(); block->cast()->name = label; return block; } void WasmBinaryBuilder::visitIf(If *curr) { if (debug) std::cerr << "zz node: If" << std::endl; curr->type = getWasmType(); curr->condition = popExpression(); curr->ifTrue = getBlock(curr->type); if (lastSeparator == BinaryConsts::Else) { curr->ifFalse = getBlock(curr->type); } curr->finalize(curr->type); assert(lastSeparator == BinaryConsts::End); } void WasmBinaryBuilder::visitLoop(Loop *curr) { if (debug) std::cerr << "zz node: Loop" << std::endl; curr->type = getWasmType(); curr->name = getNextLabel(); breakStack.push_back({curr->name, 0}); curr->body = getMaybeBlock(curr->type); breakStack.pop_back(); curr->finalize(curr->type); } WasmBinaryBuilder::BreakTarget WasmBinaryBuilder::getBreakTarget(int32_t offset) { if (debug) std::cerr << "getBreakTarget "<name = target.name; if (code == BinaryConsts::BrIf) curr->condition = popExpression(); if (target.arity) curr->value = popExpression(); curr->finalize(); } void WasmBinaryBuilder::visitSwitch(Switch *curr) { if (debug) std::cerr << "zz node: Switch" << std::endl; curr->condition = popExpression(); auto numTargets = getU32LEB(); if (debug) std::cerr << "targets: "<< numTargets<targets.push_back(getBreakTarget(getU32LEB()).name); } auto defaultTarget = getBreakTarget(getU32LEB()); curr->default_ = defaultTarget.name; if (debug) std::cerr << "default: "<< curr->default_<value = popExpression(); } Expression* WasmBinaryBuilder::visitCall() { if (debug) std::cerr << "zz node: Call" << std::endl; auto index = getU32LEB(); FunctionType* type; Expression* ret; if (index < functionImportIndexes.size()) { // this is a call of an imported function auto* call = allocator.alloc(); auto* import = wasm.getImport(functionImportIndexes[index]); call->target = import->name; type = import->functionType; fillCall(call, type); ret = call; } else { // this is a call of a defined function auto* call = allocator.alloc(); auto adjustedIndex = index - functionImportIndexes.size(); assert(adjustedIndex < functionTypes.size()); type = functionTypes[adjustedIndex]; fillCall(call, type); functionCalls[adjustedIndex].push_back(call); // we don't know function names yet ret = call; } return ret; } void WasmBinaryBuilder::visitCallIndirect(CallIndirect *curr) { if (debug) std::cerr << "zz node: CallIndirect" << std::endl; auto* fullType = wasm.functionTypes.at(getU32LEB()).get(); auto reserved = getU32LEB(); if (reserved != 0) throw ParseException("Invalid flags field in call_indirect"); curr->fullType = fullType->name; auto num = fullType->params.size(); curr->operands.resize(num); curr->target = popExpression(); for (size_t i = 0; i < num; i++) { curr->operands[num - i - 1] = popExpression(); } curr->type = fullType->result; } void WasmBinaryBuilder::visitGetLocal(GetLocal *curr) { if (debug) std::cerr << "zz node: GetLocal " << pos << std::endl; curr->index = getU32LEB(); assert(curr->index < currFunction->getNumLocals()); curr->type = currFunction->getLocalType(curr->index); } void WasmBinaryBuilder::visitSetLocal(SetLocal *curr, uint8_t code) { if (debug) std::cerr << "zz node: Set|TeeLocal" << std::endl; curr->index = getU32LEB(); assert(curr->index < currFunction->getNumLocals()); curr->value = popExpression(); curr->type = curr->value->type; curr->setTee(code == BinaryConsts::TeeLocal); } void WasmBinaryBuilder::visitGetGlobal(GetGlobal *curr) { if (debug) std::cerr << "zz node: GetGlobal " << pos << std::endl; auto index = getU32LEB(); curr->name = getGlobalName(index); auto* global = wasm.checkGlobal(curr->name); if (global) { curr->type = global->type; return; } auto* import = wasm.checkImport(curr->name); if (import && import->kind == ExternalKind::Global) { curr->type = import->globalType; return; } throw ParseException("bad get_global"); } void WasmBinaryBuilder::visitSetGlobal(SetGlobal *curr) { if (debug) std::cerr << "zz node: SetGlobal" << std::endl; auto index = getU32LEB(); curr->name = getGlobalName(index); curr->value = popExpression(); } void WasmBinaryBuilder::readMemoryAccess(Address& alignment, size_t bytes, Address& offset) { alignment = Pow2(getU32LEB()); offset = getU32LEB(); } bool WasmBinaryBuilder::maybeVisitLoad(Expression*& out, uint8_t code) { Load* curr; switch (code) { case BinaryConsts::I32LoadMem8S: curr = allocator.alloc(); curr->bytes = 1; curr->type = i32; curr->signed_ = true; break; case BinaryConsts::I32LoadMem8U: curr = allocator.alloc(); curr->bytes = 1; curr->type = i32; curr->signed_ = false; break; case BinaryConsts::I32LoadMem16S: curr = allocator.alloc(); curr->bytes = 2; curr->type = i32; curr->signed_ = true; break; case BinaryConsts::I32LoadMem16U: curr = allocator.alloc(); curr->bytes = 2; curr->type = i32; curr->signed_ = false; break; case BinaryConsts::I32LoadMem: curr = allocator.alloc(); curr->bytes = 4; curr->type = i32; break; case BinaryConsts::I64LoadMem8S: curr = allocator.alloc(); curr->bytes = 1; curr->type = i64; curr->signed_ = true; break; case BinaryConsts::I64LoadMem8U: curr = allocator.alloc(); curr->bytes = 1; curr->type = i64; curr->signed_ = false; break; case BinaryConsts::I64LoadMem16S: curr = allocator.alloc(); curr->bytes = 2; curr->type = i64; curr->signed_ = true; break; case BinaryConsts::I64LoadMem16U: curr = allocator.alloc(); curr->bytes = 2; curr->type = i64; curr->signed_ = false; break; case BinaryConsts::I64LoadMem32S: curr = allocator.alloc(); curr->bytes = 4; curr->type = i64; curr->signed_ = true; break; case BinaryConsts::I64LoadMem32U: curr = allocator.alloc(); curr->bytes = 4; curr->type = i64; curr->signed_ = false; break; case BinaryConsts::I64LoadMem: curr = allocator.alloc(); curr->bytes = 8; curr->type = i64; break; case BinaryConsts::F32LoadMem: curr = allocator.alloc(); curr->bytes = 4; curr->type = f32; break; case BinaryConsts::F64LoadMem: curr = allocator.alloc(); curr->bytes = 8; curr->type = f64; break; default: return false; } if (debug) std::cerr << "zz node: Load" << std::endl; readMemoryAccess(curr->align, curr->bytes, curr->offset); curr->ptr = popExpression(); out = curr; return true; } bool WasmBinaryBuilder::maybeVisitStore(Expression*& out, uint8_t code) { Store* curr; switch (code) { case BinaryConsts::I32StoreMem8: curr = allocator.alloc(); curr->bytes = 1; curr->valueType = i32; break; case BinaryConsts::I32StoreMem16: curr = allocator.alloc(); curr->bytes = 2; curr->valueType = i32; break; case BinaryConsts::I32StoreMem: curr = allocator.alloc(); curr->bytes = 4; curr->valueType = i32; break; case BinaryConsts::I64StoreMem8: curr = allocator.alloc(); curr->bytes = 1; curr->valueType = i64; break; case BinaryConsts::I64StoreMem16: curr = allocator.alloc(); curr->bytes = 2; curr->valueType = i64; break; case BinaryConsts::I64StoreMem32: curr = allocator.alloc(); curr->bytes = 4; curr->valueType = i64; break; case BinaryConsts::I64StoreMem: curr = allocator.alloc(); curr->bytes = 8; curr->valueType = i64; break; case BinaryConsts::F32StoreMem: curr = allocator.alloc(); curr->bytes = 4; curr->valueType = f32; break; case BinaryConsts::F64StoreMem: curr = allocator.alloc(); curr->bytes = 8; curr->valueType = f64; break; default: return false; } if (debug) std::cerr << "zz node: Store" << std::endl; readMemoryAccess(curr->align, curr->bytes, curr->offset); curr->value = popExpression(); curr->ptr = popExpression(); curr->finalize(); out = curr; return true; } bool WasmBinaryBuilder::maybeVisitConst(Expression*& out, uint8_t code) { Const* curr; if (debug) std::cerr << "zz node: Const, code " << code << std::endl; switch (code) { case BinaryConsts::I32Const: curr = allocator.alloc(); curr->value = Literal(getS32LEB()); break; case BinaryConsts::I64Const: curr = allocator.alloc(); curr->value = Literal(getS64LEB()); break; case BinaryConsts::F32Const: curr = allocator.alloc(); curr->value = getFloat32Literal(); break; case BinaryConsts::F64Const: curr = allocator.alloc(); curr->value = getFloat64Literal(); break; default: return false; } curr->type = curr->value.type; out = curr; return true; } bool WasmBinaryBuilder::maybeVisitUnary(Expression*& out, uint8_t code) { Unary* curr; switch (code) { case BinaryConsts::I32Clz: curr = allocator.alloc(); curr->op = ClzInt32; curr->type = i32; break; case BinaryConsts::I64Clz: curr = allocator.alloc(); curr->op = ClzInt64; curr->type = i64; break; case BinaryConsts::I32Ctz: curr = allocator.alloc(); curr->op = CtzInt32; curr->type = i32; break; case BinaryConsts::I64Ctz: curr = allocator.alloc(); curr->op = CtzInt64; curr->type = i64; break; case BinaryConsts::I32Popcnt: curr = allocator.alloc(); curr->op = PopcntInt32; curr->type = i32; break; case BinaryConsts::I64Popcnt: curr = allocator.alloc(); curr->op = PopcntInt64; curr->type = i64; break; case BinaryConsts::I32EqZ: curr = allocator.alloc(); curr->op = EqZInt32; curr->type = i32; break; case BinaryConsts::I64EqZ: curr = allocator.alloc(); curr->op = EqZInt64; curr->type = i32; break; case BinaryConsts::F32Neg: curr = allocator.alloc(); curr->op = NegFloat32; curr->type = f32; break; case BinaryConsts::F64Neg: curr = allocator.alloc(); curr->op = NegFloat64; curr->type = f64; break; case BinaryConsts::F32Abs: curr = allocator.alloc(); curr->op = AbsFloat32; curr->type = f32; break; case BinaryConsts::F64Abs: curr = allocator.alloc(); curr->op = AbsFloat64; curr->type = f64; break; case BinaryConsts::F32Ceil: curr = allocator.alloc(); curr->op = CeilFloat32; curr->type = f32; break; case BinaryConsts::F64Ceil: curr = allocator.alloc(); curr->op = CeilFloat64; curr->type = f64; break; case BinaryConsts::F32Floor: curr = allocator.alloc(); curr->op = FloorFloat32; curr->type = f32; break; case BinaryConsts::F64Floor: curr = allocator.alloc(); curr->op = FloorFloat64; curr->type = f64; break; case BinaryConsts::F32NearestInt: curr = allocator.alloc(); curr->op = NearestFloat32; curr->type = f32; break; case BinaryConsts::F64NearestInt: curr = allocator.alloc(); curr->op = NearestFloat64; curr->type = f64; break; case BinaryConsts::F32Sqrt: curr = allocator.alloc(); curr->op = SqrtFloat32; curr->type = f32; break; case BinaryConsts::F64Sqrt: curr = allocator.alloc(); curr->op = SqrtFloat64; curr->type = f64; break; case BinaryConsts::F32UConvertI32: curr = allocator.alloc(); curr->op = ConvertUInt32ToFloat32; curr->type = f32; break; case BinaryConsts::F64UConvertI32: curr = allocator.alloc(); curr->op = ConvertUInt32ToFloat64; curr->type = f64; break; case BinaryConsts::F32SConvertI32: curr = allocator.alloc(); curr->op = ConvertSInt32ToFloat32; curr->type = f32; break; case BinaryConsts::F64SConvertI32: curr = allocator.alloc(); curr->op = ConvertSInt32ToFloat64; curr->type = f64; break; case BinaryConsts::F32UConvertI64: curr = allocator.alloc(); curr->op = ConvertUInt64ToFloat32; curr->type = f32; break; case BinaryConsts::F64UConvertI64: curr = allocator.alloc(); curr->op = ConvertUInt64ToFloat64; curr->type = f64; break; case BinaryConsts::F32SConvertI64: curr = allocator.alloc(); curr->op = ConvertSInt64ToFloat32; curr->type = f32; break; case BinaryConsts::F64SConvertI64: curr = allocator.alloc(); curr->op = ConvertSInt64ToFloat64; curr->type = f64; break; case BinaryConsts::I64STruncI32: curr = allocator.alloc(); curr->op = ExtendSInt32; curr->type = i64; break; case BinaryConsts::I64UTruncI32: curr = allocator.alloc(); curr->op = ExtendUInt32; curr->type = i64; break; case BinaryConsts::I32ConvertI64: curr = allocator.alloc(); curr->op = WrapInt64; curr->type = i32; break; case BinaryConsts::I32UTruncF32: curr = allocator.alloc(); curr->op = TruncUFloat32ToInt32; curr->type = i32; break; case BinaryConsts::I32UTruncF64: curr = allocator.alloc(); curr->op = TruncUFloat64ToInt32; curr->type = i32; break; case BinaryConsts::I32STruncF32: curr = allocator.alloc(); curr->op = TruncSFloat32ToInt32; curr->type = i32; break; case BinaryConsts::I32STruncF64: curr = allocator.alloc(); curr->op = TruncSFloat64ToInt32; curr->type = i32; break; case BinaryConsts::I64UTruncF32: curr = allocator.alloc(); curr->op = TruncUFloat32ToInt64; curr->type = i64; break; case BinaryConsts::I64UTruncF64: curr = allocator.alloc(); curr->op = TruncUFloat64ToInt64; curr->type = i64; break; case BinaryConsts::I64STruncF32: curr = allocator.alloc(); curr->op = TruncSFloat32ToInt64; curr->type = i64; break; case BinaryConsts::I64STruncF64: curr = allocator.alloc(); curr->op = TruncSFloat64ToInt64; curr->type = i64; break; case BinaryConsts::F32Trunc: curr = allocator.alloc(); curr->op = TruncFloat32; curr->type = f32; break; case BinaryConsts::F64Trunc: curr = allocator.alloc(); curr->op = TruncFloat64; curr->type = f64; break; case BinaryConsts::F32ConvertF64: curr = allocator.alloc(); curr->op = DemoteFloat64; curr->type = f32; break; case BinaryConsts::F64ConvertF32: curr = allocator.alloc(); curr->op = PromoteFloat32; curr->type = f64; break; case BinaryConsts::I32ReinterpretF32: curr = allocator.alloc(); curr->op = ReinterpretFloat32; curr->type = i32; break; case BinaryConsts::I64ReinterpretF64: curr = allocator.alloc(); curr->op = ReinterpretFloat64; curr->type = i64; break; case BinaryConsts::F32ReinterpretI32: curr = allocator.alloc(); curr->op = ReinterpretInt32; curr->type = f32; break; case BinaryConsts::F64ReinterpretI64: curr = allocator.alloc(); curr->op = ReinterpretInt64; curr->type = f64; break; default: return false; } if (debug) std::cerr << "zz node: Unary" << std::endl; curr->value = popExpression(); out = curr; return true; } bool WasmBinaryBuilder::maybeVisitBinary(Expression*& out, uint8_t code) { Binary* curr; #define INT_TYPED_CODE(code) { \ case BinaryConsts::I32##code: curr = allocator.alloc(); curr->op = code##Int32; curr->type = i32; break; \ case BinaryConsts::I64##code: curr = allocator.alloc(); curr->op = code##Int64; curr->type = i64; break; \ } #define FLOAT_TYPED_CODE(code) { \ case BinaryConsts::F32##code: curr = allocator.alloc(); curr->op = code##Float32; curr->type = f32; break; \ case BinaryConsts::F64##code: curr = allocator.alloc(); curr->op = code##Float64; curr->type = f64; break; \ } #define TYPED_CODE(code) { \ INT_TYPED_CODE(code) \ FLOAT_TYPED_CODE(code) \ } switch (code) { TYPED_CODE(Add); TYPED_CODE(Sub); TYPED_CODE(Mul); INT_TYPED_CODE(DivS); INT_TYPED_CODE(DivU); INT_TYPED_CODE(RemS); INT_TYPED_CODE(RemU); INT_TYPED_CODE(And); INT_TYPED_CODE(Or); INT_TYPED_CODE(Xor); INT_TYPED_CODE(Shl); INT_TYPED_CODE(ShrU); INT_TYPED_CODE(ShrS); INT_TYPED_CODE(RotL); INT_TYPED_CODE(RotR); FLOAT_TYPED_CODE(Div); FLOAT_TYPED_CODE(CopySign); FLOAT_TYPED_CODE(Min); FLOAT_TYPED_CODE(Max); TYPED_CODE(Eq); TYPED_CODE(Ne); INT_TYPED_CODE(LtS); INT_TYPED_CODE(LtU); INT_TYPED_CODE(LeS); INT_TYPED_CODE(LeU); INT_TYPED_CODE(GtS); INT_TYPED_CODE(GtU); INT_TYPED_CODE(GeS); INT_TYPED_CODE(GeU); FLOAT_TYPED_CODE(Lt); FLOAT_TYPED_CODE(Le); FLOAT_TYPED_CODE(Gt); FLOAT_TYPED_CODE(Ge); default: return false; } if (debug) std::cerr << "zz node: Binary" << std::endl; curr->right = popExpression(); curr->left = popExpression(); curr->finalize(); out = curr; return true; #undef TYPED_CODE #undef INT_TYPED_CODE #undef FLOAT_TYPED_CODE } void WasmBinaryBuilder::visitSelect(Select *curr) { if (debug) std::cerr << "zz node: Select" << std::endl; curr->condition = popExpression(); curr->ifFalse = popExpression(); curr->ifTrue = popExpression(); curr->finalize(); } void WasmBinaryBuilder::visitReturn(Return *curr) { if (debug) std::cerr << "zz node: Return" << std::endl; if (currFunction->result != none) { curr->value = popExpression(); } } bool WasmBinaryBuilder::maybeVisitHost(Expression*& out, uint8_t code) { Host* curr; switch (code) { case BinaryConsts::CurrentMemory: { curr = allocator.alloc(); curr->op = CurrentMemory; curr->type = i32; break; } case BinaryConsts::GrowMemory: { curr = allocator.alloc(); curr->op = GrowMemory; curr->operands.resize(1); curr->operands[0] = popExpression(); break; } default: return false; } if (debug) std::cerr << "zz node: Host" << std::endl; auto reserved = getU32LEB(); if (reserved != 0) throw ParseException("Invalid reserved field on grow_memory/current_memory"); curr->finalize(); out = curr; return true; } void WasmBinaryBuilder::visitNop(Nop *curr) { if (debug) std::cerr << "zz node: Nop" << std::endl; } void WasmBinaryBuilder::visitUnreachable(Unreachable *curr) { if (debug) std::cerr << "zz node: Unreachable" << std::endl; } void WasmBinaryBuilder::visitDrop(Drop *curr) { if (debug) std::cerr << "zz node: Drop" << std::endl; curr->value = popExpression(); } } // namespace wasm