/* * Copyright 2015 WebAssembly Community Group participants * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "wasm-s-parser.h" #include <cctype> #include <cmath> #include <limits> #include "asm_v_wasm.h" #include "asmjs/shared-constants.h" #include "ir/branch-utils.h" #include "shared-constants.h" #include "wasm-binary.h" #define abort_on(str) \ { throw ParseException(std::string("abort_on ") + str); } #define element_assert(condition) \ assert((condition) ? true : (std::cerr << "on: " << *this << '\n' && 0)); using cashew::IString; namespace { int unhex(char c) { if (c >= '0' && c <= '9') { return c - '0'; } if (c >= 'a' && c <= 'f') { return c - 'a' + 10; } if (c >= 'A' && c <= 'F') { return c - 'A' + 10; } throw wasm::ParseException("invalid hexadecimal"); } } // namespace namespace wasm { static Address getAddress(const Element* s) { return atoll(s->c_str()); } static void checkAddress(Address a, const char* errorText, const Element* errorElem) { if (a > std::numeric_limits<Address::address32_t>::max()) { throw ParseException(errorText, errorElem->line, errorElem->col); } } static bool elementStartsWith(Element& s, IString str) { return s.isList() && s.size() > 0 && s[0]->isStr() && s[0]->str() == str; } Element::List& Element::list() { if (!isList()) { throw ParseException("expected list", line, col); } return list_; } Element* Element::operator[](unsigned i) { if (!isList()) { throw ParseException("expected list", line, col); } if (i >= list().size()) { throw ParseException("expected more elements in list", line, col); } return list()[i]; } IString Element::str() const { if (!isStr()) { throw ParseException("expected string", line, col); } return str_; } const char* Element::c_str() const { if (!isStr()) { throw ParseException("expected string", line, col); } return str_.str; } Element* Element::setString(IString str__, bool dollared__, bool quoted__) { isList_ = false; str_ = str__; dollared_ = dollared__; quoted_ = quoted__; return this; } Element* Element::setMetadata(size_t line_, size_t col_, SourceLocation* startLoc_) { line = line_; col = col_; startLoc = startLoc_; return this; } std::ostream& operator<<(std::ostream& o, Element& e) { if (e.isList_) { o << '('; for (auto item : e.list_) { o << ' ' << *item; } o << " )"; } else { o << e.str_.str; } return o; } void Element::dump() { std::cout << "dumping " << this << " : " << *this << ".\n"; } SExpressionParser::SExpressionParser(char* input) : input(input) { root = nullptr; line = 1; lineStart = input; while (!root) { // keep parsing until we pass an initial comment root = parse(); } } Element* SExpressionParser::parse() { std::vector<Element*> stack; std::vector<SourceLocation*> stackLocs; Element* curr = allocator.alloc<Element>(); while (1) { skipWhitespace(); if (input[0] == 0) { break; } if (input[0] == '(') { input++; stack.push_back(curr); curr = allocator.alloc<Element>()->setMetadata( line, input - lineStart - 1, loc); stackLocs.push_back(loc); assert(stack.size() == stackLocs.size()); } else if (input[0] == ')') { input++; curr->endLoc = loc; auto last = curr; if (stack.empty()) { throw ParseException("s-expr stack empty"); } curr = stack.back(); assert(stack.size() == stackLocs.size()); stack.pop_back(); loc = stackLocs.back(); stackLocs.pop_back(); curr->list().push_back(last); } else { curr->list().push_back(parseString()); } } if (stack.size() != 0) { throw ParseException("stack is not empty", curr->line, curr->col); } return curr; } void SExpressionParser::parseDebugLocation() { // Extracting debug location (if valid) char* debugLoc = input + 3; // skipping ";;@" while (debugLoc[0] && debugLoc[0] == ' ') { debugLoc++; } char* debugLocEnd = debugLoc; while (debugLocEnd[0] && debugLocEnd[0] != '\n') { debugLocEnd++; } char* pos = debugLoc; while (pos < debugLocEnd && pos[0] != ':') { pos++; } if (pos >= debugLocEnd) { return; // no line number } std::string name(debugLoc, pos); char* lineStart = ++pos; while (pos < debugLocEnd && pos[0] != ':') { pos++; } std::string lineStr(lineStart, pos); if (pos >= debugLocEnd) { return; // no column number } std::string colStr(++pos, debugLocEnd); void* buf = allocator.allocSpace(sizeof(SourceLocation), alignof(SourceLocation)); loc = new (buf) SourceLocation( IString(name.c_str(), false), atoi(lineStr.c_str()), atoi(colStr.c_str())); } void SExpressionParser::skipWhitespace() { while (1) { while (isspace(input[0])) { if (input[0] == '\n') { line++; lineStart = input + 1; } input++; } if (input[0] == ';' && input[1] == ';') { if (input[2] == '@') { parseDebugLocation(); } while (input[0] && input[0] != '\n') { input++; } line++; if (!input[0]) { return; } lineStart = ++input; } else if (input[0] == '(' && input[1] == ';') { // Skip nested block comments. input += 2; int depth = 1; while (1) { if (!input[0]) { return; } if (input[0] == '(' && input[1] == ';') { input += 2; depth++; } else if (input[0] == ';' && input[1] == ')') { input += 2; --depth; if (depth == 0) { break; } } else if (input[0] == '\n') { line++; lineStart = input; input++; } else { input++; } } } else { return; } } } Element* SExpressionParser::parseString() { bool dollared = false; if (input[0] == '$') { input++; dollared = true; } char* start = input; if (input[0] == '"') { // parse escaping \", but leave code escaped - we'll handle escaping in // memory segments specifically input++; std::string str; while (1) { if (input[0] == 0) { throw ParseException("unterminated string", line, start - lineStart); } if (input[0] == '"') { break; } if (input[0] == '\\') { str += input[0]; if (input[1] == 0) { throw ParseException( "unterminated string escape", line, start - lineStart); } str += input[1]; input += 2; continue; } str += input[0]; input++; } input++; return allocator.alloc<Element>() ->setString(IString(str.c_str(), false), dollared, true) ->setMetadata(line, start - lineStart, loc); } while (input[0] && !isspace(input[0]) && input[0] != ')' && input[0] != '(' && input[0] != ';') { input++; } if (start == input) { throw ParseException("expected string", line, input - lineStart); } char temp = input[0]; input[0] = 0; auto ret = allocator.alloc<Element>() ->setString(IString(start, false), dollared, false) ->setMetadata(line, start - lineStart, loc); input[0] = temp; return ret; } SExpressionWasmBuilder::SExpressionWasmBuilder(Module& wasm, Element& module, IRProfile profile) : wasm(wasm), allocator(wasm.allocator), profile(profile) { if (module.size() == 0) { throw ParseException("empty toplevel, expected module"); } if (module[0]->str() != MODULE) { throw ParseException("toplevel does not start with module"); } if (module.size() == 1) { return; } Index i = 1; if (module[i]->dollared()) { wasm.name = module[i]->str(); i++; } if (i < module.size() && module[i]->isStr()) { // these s-expressions contain a binary module, actually std::vector<char> data; while (i < module.size()) { auto str = module[i++]->c_str(); if (auto size = strlen(str)) { stringToBinary(str, size, data); } } WasmBinaryBuilder binaryBuilder(wasm, data); binaryBuilder.read(); return; } Index implementedFunctions = 0; functionCounter = 0; for (unsigned j = i; j < module.size(); j++) { auto& s = *module[j]; preParseFunctionType(s); preParseImports(s); if (elementStartsWith(s, FUNC) && !isImport(s)) { implementedFunctions++; } } // we go through the functions again, now parsing them, and the counter begins // from where imports ended functionCounter -= implementedFunctions; for (unsigned j = i; j < module.size(); j++) { parseModuleElement(*module[j]); } } bool SExpressionWasmBuilder::isImport(Element& curr) { for (Index i = 0; i < curr.size(); i++) { auto& x = *curr[i]; if (elementStartsWith(x, IMPORT)) { return true; } } return false; } void SExpressionWasmBuilder::preParseImports(Element& curr) { IString id = curr[0]->str(); if (id == IMPORT) { parseImport(curr); } if (isImport(curr)) { if (id == FUNC) { parseFunction(curr, true /* preParseImport */); } else if (id == GLOBAL) { parseGlobal(curr, true /* preParseImport */); } else if (id == TABLE) { parseTable(curr, true /* preParseImport */); } else if (id == MEMORY) { parseMemory(curr, true /* preParseImport */); } else if (id == EVENT) { parseEvent(curr, true /* preParseImport */); } else { throw ParseException( "fancy import we don't support yet", curr.line, curr.col); } } } void SExpressionWasmBuilder::parseModuleElement(Element& curr) { if (isImport(curr)) { return; // already done } IString id = curr[0]->str(); if (id == START) { return parseStart(curr); } if (id == FUNC) { return parseFunction(curr); } if (id == MEMORY) { return parseMemory(curr); } if (id == DATA) { return parseData(curr); } if (id == EXPORT) { return parseExport(curr); } if (id == IMPORT) { return; // already done } if (id == GLOBAL) { return parseGlobal(curr); } if (id == TABLE) { return parseTable(curr); } if (id == ELEM) { return parseElem(curr); } if (id == TYPE) { return; // already done } if (id == EVENT) { return parseEvent(curr); } std::cerr << "bad module element " << id.str << '\n'; throw ParseException("unknown module element", curr.line, curr.col); } Name SExpressionWasmBuilder::getFunctionName(Element& s) { if (s.dollared()) { return s.str(); } else { // index size_t offset = atoi(s.str().c_str()); if (offset >= functionNames.size()) { throw ParseException( "unknown function in getFunctionName", s.line, s.col); } return functionNames[offset]; } } Signature SExpressionWasmBuilder::getFunctionSignature(Element& s) { if (s.dollared()) { auto it = signatureIndices.find(s.str().str); if (it == signatureIndices.end()) { throw ParseException( "unknown function type in getFunctionSignature", s.line, s.col); } return signatures[it->second]; } else { // index size_t offset = atoi(s.str().c_str()); if (offset >= signatures.size()) { throw ParseException( "unknown function type in getFunctionSignature", s.line, s.col); } return signatures[offset]; } } Name SExpressionWasmBuilder::getGlobalName(Element& s) { if (s.dollared()) { return s.str(); } else { // index size_t offset = atoi(s.str().c_str()); if (offset >= globalNames.size()) { throw ParseException("unknown global in getGlobalName", s.line, s.col); } return globalNames[offset]; } } Name SExpressionWasmBuilder::getEventName(Element& s) { if (s.dollared()) { return s.str(); } else { // index size_t offset = atoi(s.str().c_str()); if (offset >= eventNames.size()) { throw ParseException("unknown event in getEventName", s.line, s.col); } return eventNames[offset]; } } // Parse various forms of (param ...) or (local ...) element. This ignores all // parameter or local names when specified. std::vector<Type> SExpressionWasmBuilder::parseParamOrLocal(Element& s) { size_t fakeIndex = 0; std::vector<NameType> namedParams = parseParamOrLocal(s, fakeIndex); std::vector<Type> params; for (auto& p : namedParams) { params.push_back(p.type); } return params; } // Parses various forms of (param ...) or (local ...) element: // (param $name type) (e.g. (param $a i32)) // (param type+) (e.g. (param i32 f64)) // (local $name type) (e.g. (local $a i32)) // (local type+) (e.g. (local i32 f64)) // If the name is unspecified, it will create one using localIndex. std::vector<NameType> SExpressionWasmBuilder::parseParamOrLocal(Element& s, size_t& localIndex) { assert(elementStartsWith(s, PARAM) || elementStartsWith(s, LOCAL)); std::vector<NameType> namedParams; if (s.size() == 1) { // (param) or (local) return namedParams; } for (size_t i = 1; i < s.size(); i++) { IString name; if (s[i]->dollared()) { if (i != 1) { throw ParseException("invalid wasm type", s[i]->line, s[i]->col); } if (i + 1 >= s.size()) { throw ParseException("invalid param entry", s.line, s.col); } name = s[i]->str(); i++; } else { name = Name::fromInt(localIndex); } localIndex++; Type type; if (s[i]->isStr()) { type = stringToType(s[i]->str()); } else { if (elementStartsWith(s, PARAM)) { throw ParseException( "params may not have tuple types", s[i]->line, s[i]->col); } type = elementToType(*s[i]); } namedParams.emplace_back(name, type); } return namedParams; } // Parses (result type) element. (e.g. (result i32)) std::vector<Type> SExpressionWasmBuilder::parseResults(Element& s) { assert(elementStartsWith(s, RESULT)); std::vector<Type> types; for (size_t i = 1; i < s.size(); i++) { types.push_back(stringToType(s[i]->str())); } return types; } // Parses an element that references an entry in the type section. The element // should be in the form of (type name) or (type index). // (e.g. (type $a), (type 0)) Signature SExpressionWasmBuilder::parseTypeRef(Element& s) { assert(elementStartsWith(s, TYPE)); if (s.size() != 2) { throw ParseException("invalid type reference", s.line, s.col); } return getFunctionSignature(*s[1]); } // Prases typeuse, a reference to a type definition. It is in the form of either // (type index) or (type name), possibly augmented by inlined (param) and // (result) nodes. (type) node can be omitted as well. Outputs are returned by // parameter references. // typeuse ::= (type index|name)+ | // (type index|name)+ (param ..)* (result ..)* | // (param ..)* (result ..)* size_t SExpressionWasmBuilder::parseTypeUse(Element& s, size_t startPos, Signature& functionSignature, std::vector<NameType>& namedParams) { std::vector<Type> params, results; size_t i = startPos; bool typeExists = false, paramsOrResultsExist = false; if (i < s.size() && elementStartsWith(*s[i], TYPE)) { typeExists = true; functionSignature = parseTypeRef(*s[i++]); } size_t paramPos = i; size_t localIndex = 0; while (i < s.size() && elementStartsWith(*s[i], PARAM)) { paramsOrResultsExist = true; auto newParams = parseParamOrLocal(*s[i++], localIndex); namedParams.insert(namedParams.end(), newParams.begin(), newParams.end()); for (auto p : newParams) { params.push_back(p.type); } } while (i < s.size() && elementStartsWith(*s[i], RESULT)) { paramsOrResultsExist = true; auto newResults = parseResults(*s[i++]); results.insert(results.end(), newResults.begin(), newResults.end()); } auto inlineSig = Signature(Type(params), Type(results)); // If none of type/param/result exists, this is equivalent to a type that does // not have parameters and returns nothing. if (!typeExists && !paramsOrResultsExist) { paramsOrResultsExist = true; } if (!typeExists) { functionSignature = inlineSig; } else if (paramsOrResultsExist) { // verify that (type) and (params)/(result) match if (inlineSig != functionSignature) { throw ParseException("type and param/result don't match", s[paramPos]->line, s[paramPos]->col); } } // Add implicitly defined type to global list so it has an index if (std::find(signatures.begin(), signatures.end(), functionSignature) == signatures.end()) { signatures.push_back(functionSignature); } // If only (type) is specified, populate `namedParams` if (!paramsOrResultsExist) { size_t index = 0; for (const auto& param : functionSignature.params) { namedParams.emplace_back(Name::fromInt(index++), param); } } return i; } // Parses a typeuse. Use this when only FunctionType* is needed. size_t SExpressionWasmBuilder::parseTypeUse(Element& s, size_t startPos, Signature& functionSignature) { std::vector<NameType> params; return parseTypeUse(s, startPos, functionSignature, params); } void SExpressionWasmBuilder::preParseFunctionType(Element& s) { IString id = s[0]->str(); if (id == TYPE) { return parseType(s); } if (id != FUNC) { return; } size_t i = 1; Name name, exportName; i = parseFunctionNames(s, name, exportName); if (!name.is()) { // unnamed, use an index name = Name::fromInt(functionCounter); } functionNames.push_back(name); functionCounter++; Signature sig; parseTypeUse(s, i, sig); functionTypes[name] = sig.results; } size_t SExpressionWasmBuilder::parseFunctionNames(Element& s, Name& name, Name& exportName) { size_t i = 1; while (i < s.size() && i < 3 && s[i]->isStr()) { if (s[i]->quoted()) { // an export name exportName = s[i]->str(); i++; } else if (s[i]->dollared()) { name = s[i]->str(); i++; } else { break; } } if (i < s.size() && s[i]->isList()) { auto& inner = *s[i]; if (elementStartsWith(inner, EXPORT)) { exportName = inner[1]->str(); i++; } } #if 0 if (exportName.is() && !name.is()) { name = exportName; // useful for debugging } #endif return i; } void SExpressionWasmBuilder::parseFunction(Element& s, bool preParseImport) { brokeToAutoBlock = false; Name name, exportName; size_t i = parseFunctionNames(s, name, exportName); if (!preParseImport) { if (!name.is()) { // unnamed, use an index name = Name::fromInt(functionCounter); } functionCounter++; } else { // just preparsing, functionCounter was incremented by preParseFunctionType if (!name.is()) { // unnamed, use an index name = functionNames[functionCounter - 1]; } } if (exportName.is()) { auto ex = make_unique<Export>(); ex->name = exportName; ex->value = name; ex->kind = ExternalKind::Function; if (wasm.getExportOrNull(ex->name)) { throw ParseException("duplicate export", s.line, s.col); } wasm.addExport(ex.release()); } // parse import Name importModule, importBase; if (i < s.size() && elementStartsWith(*s[i], IMPORT)) { Element& curr = *s[i]; importModule = curr[1]->str(); importBase = curr[2]->str(); i++; } // parse typeuse: type/param/result Signature sig; std::vector<NameType> params; i = parseTypeUse(s, i, sig, params); // when (import) is inside a (func) element, this is not a function definition // but an import. if (importModule.is()) { if (!importBase.size()) { throw ParseException("module but no base for import", s.line, s.col); } if (!preParseImport) { throw ParseException("!preParseImport in func", s.line, s.col); } auto im = make_unique<Function>(); im->name = name; im->module = importModule; im->base = importBase; im->sig = sig; functionTypes[name] = sig.results; if (wasm.getFunctionOrNull(im->name)) { throw ParseException("duplicate import", s.line, s.col); } wasm.addFunction(im.release()); if (currFunction) { throw ParseException("import module inside function dec", s.line, s.col); } nameMapper.clear(); return; } // at this point this not an import but a real function definition. if (preParseImport) { throw ParseException("preParseImport in func", s.line, s.col); } size_t localIndex = params.size(); // local index for params and locals // parse locals std::vector<NameType> vars; while (i < s.size() && elementStartsWith(*s[i], LOCAL)) { auto newVars = parseParamOrLocal(*s[i++], localIndex); vars.insert(vars.end(), newVars.begin(), newVars.end()); } // make a new function currFunction = std::unique_ptr<Function>(Builder(wasm).makeFunction( name, std::move(params), sig.results, std::move(vars))); currFunction->profile = profile; // parse body Block* autoBlock = nullptr; // may need to add a block for the very top level auto ensureAutoBlock = [&]() { if (!autoBlock) { autoBlock = allocator.alloc<Block>(); autoBlock->list.push_back(currFunction->body); currFunction->body = autoBlock; } }; while (i < s.size()) { Expression* ex = parseExpression(*s[i++]); if (!currFunction->body) { currFunction->body = ex; } else { ensureAutoBlock(); autoBlock->list.push_back(ex); } } if (brokeToAutoBlock) { ensureAutoBlock(); autoBlock->name = FAKE_RETURN; } if (autoBlock) { autoBlock->finalize(sig.results); } if (!currFunction->body) { currFunction->body = allocator.alloc<Nop>(); } if (s.startLoc) { currFunction->prologLocation.insert(getDebugLocation(*s.startLoc)); } if (s.endLoc) { currFunction->epilogLocation.insert(getDebugLocation(*s.endLoc)); } if (wasm.getFunctionOrNull(currFunction->name)) { throw ParseException("duplicate function", s.line, s.col); } wasm.addFunction(currFunction.release()); nameMapper.clear(); } Type SExpressionWasmBuilder::stringToType(const char* str, bool allowError, bool prefix) { if (str[0] == 'i') { if (str[1] == '3' && str[2] == '2' && (prefix || str[3] == 0)) { return Type::i32; } if (str[1] == '6' && str[2] == '4' && (prefix || str[3] == 0)) { return Type::i64; } } if (str[0] == 'f') { if (str[1] == '3' && str[2] == '2' && (prefix || str[3] == 0)) { return Type::f32; } if (str[1] == '6' && str[2] == '4' && (prefix || str[3] == 0)) { return Type::f64; } } if (str[0] == 'v') { if (str[1] == '1' && str[2] == '2' && str[3] == '8' && (prefix || str[4] == 0)) { return Type::v128; } } if (strncmp(str, "funcref", 7) == 0 && (prefix || str[7] == 0)) { return Type::funcref; } if (strncmp(str, "externref", 9) == 0 && (prefix || str[9] == 0)) { return Type::externref; } if (strncmp(str, "exnref", 6) == 0 && (prefix || str[6] == 0)) { return Type::exnref; } if (strncmp(str, "anyref", 6) == 0 && (prefix || str[6] == 0)) { return Type::anyref; } if (allowError) { return Type::none; } throw ParseException(std::string("invalid wasm type: ") + str); } HeapType SExpressionWasmBuilder::stringToHeapType(const char* str, bool prefix) { if (str[0] == 'a') { if (str[1] == 'n' && str[2] == 'y' && (prefix || str[3] == 0)) { return HeapType::AnyKind; } } if (str[0] == 'e') { if (str[1] == 'q' && (prefix || str[2] == 0)) { return HeapType::EqKind; } if (str[1] == 'x') { if (str[2] == 'n' && (prefix || str[3] == 0)) { return HeapType::ExnKind; } if (str[2] == 't' && str[3] == 'e' && str[4] == 'r' && str[5] == 'n' && (prefix || str[6] == 0)) { return HeapType::ExternKind; } } } if (str[0] == 'i') { if (str[1] == '3' && str[2] == '1' && (prefix || str[3] == 0)) { return HeapType::I31Kind; } } if (str[0] == 'f') { if (str[1] == 'u' && str[2] == 'n' && str[3] == 'c' && (prefix || str[4] == 0)) { return HeapType::FuncKind; } } throw ParseException(std::string("invalid wasm heap type: ") + str); } Type SExpressionWasmBuilder::elementToType(Element& s) { if (s.isStr()) { return stringToType(s.str(), false, false); } auto& tuple = s.list(); std::vector<Type> types; for (size_t i = 0; i < s.size(); ++i) { types.push_back(stringToType(tuple[i]->str())); } return Type(types); } Type SExpressionWasmBuilder::stringToLaneType(const char* str) { if (strcmp(str, "i8x16") == 0) { return Type::i32; } if (strcmp(str, "i16x8") == 0) { return Type::i32; } if (strcmp(str, "i32x4") == 0) { return Type::i32; } if (strcmp(str, "i64x2") == 0) { return Type::i64; } if (strcmp(str, "f32x4") == 0) { return Type::f32; } if (strcmp(str, "f64x2") == 0) { return Type::f64; } return Type::none; } Function::DebugLocation SExpressionWasmBuilder::getDebugLocation(const SourceLocation& loc) { IString file = loc.filename; auto& debugInfoFileNames = wasm.debugInfoFileNames; auto iter = debugInfoFileIndices.find(file); if (iter == debugInfoFileIndices.end()) { Index index = debugInfoFileNames.size(); debugInfoFileNames.push_back(file.c_str()); debugInfoFileIndices[file] = index; } uint32_t fileIndex = debugInfoFileIndices[file]; return {fileIndex, loc.line, loc.column}; } Expression* SExpressionWasmBuilder::parseExpression(Element& s) { Expression* result = makeExpression(s); if (s.startLoc && currFunction) { currFunction->debugLocations[result] = getDebugLocation(*s.startLoc); } return result; } Expression* SExpressionWasmBuilder::makeExpression(Element& s){ #define INSTRUCTION_PARSER #include "gen-s-parser.inc" } Expression* SExpressionWasmBuilder::makeUnreachable() { return allocator.alloc<Unreachable>(); } Expression* SExpressionWasmBuilder::makeNop() { return allocator.alloc<Nop>(); } Expression* SExpressionWasmBuilder::makeBinary(Element& s, BinaryOp op) { auto ret = allocator.alloc<Binary>(); ret->op = op; ret->left = parseExpression(s[1]); ret->right = parseExpression(s[2]); ret->finalize(); return ret; } Expression* SExpressionWasmBuilder::makeUnary(Element& s, UnaryOp op) { auto ret = allocator.alloc<Unary>(); ret->op = op; ret->value = parseExpression(s[1]); ret->finalize(); return ret; } Expression* SExpressionWasmBuilder::makeSelect(Element& s) { auto ret = allocator.alloc<Select>(); Index i = 1; Type type = parseOptionalResultType(s, i); ret->ifTrue = parseExpression(s[i++]); ret->ifFalse = parseExpression(s[i++]); ret->condition = parseExpression(s[i]); if (type.isConcrete()) { ret->finalize(type); } else { ret->finalize(); } return ret; } Expression* SExpressionWasmBuilder::makeDrop(Element& s) { auto ret = allocator.alloc<Drop>(); ret->value = parseExpression(s[1]); ret->finalize(); return ret; } Expression* SExpressionWasmBuilder::makeMemorySize(Element& s) { auto ret = allocator.alloc<MemorySize>(); if (wasm.memory.is64()) { ret->make64(); } ret->finalize(); return ret; } Expression* SExpressionWasmBuilder::makeMemoryGrow(Element& s) { auto ret = allocator.alloc<MemoryGrow>(); if (wasm.memory.is64()) { ret->make64(); } ret->delta = parseExpression(s[1]); ret->finalize(); return ret; } Index SExpressionWasmBuilder::getLocalIndex(Element& s) { if (!currFunction) { throw ParseException("local access in non-function scope", s.line, s.col); } if (s.dollared()) { auto ret = s.str(); if (currFunction->localIndices.count(ret) == 0) { throw ParseException("bad local name", s.line, s.col); } return currFunction->getLocalIndex(ret); } // this is a numeric index Index ret = atoi(s.c_str()); if (ret >= currFunction->getNumLocals()) { throw ParseException("bad local index", s.line, s.col); } return ret; } Expression* SExpressionWasmBuilder::makeLocalGet(Element& s) { auto ret = allocator.alloc<LocalGet>(); ret->index = getLocalIndex(*s[1]); ret->type = currFunction->getLocalType(ret->index); return ret; } Expression* SExpressionWasmBuilder::makeLocalTee(Element& s) { auto ret = allocator.alloc<LocalSet>(); ret->index = getLocalIndex(*s[1]); ret->value = parseExpression(s[2]); ret->makeTee(currFunction->getLocalType(ret->index)); ret->finalize(); return ret; } Expression* SExpressionWasmBuilder::makeLocalSet(Element& s) { auto ret = allocator.alloc<LocalSet>(); ret->index = getLocalIndex(*s[1]); ret->value = parseExpression(s[2]); ret->makeSet(); ret->finalize(); return ret; } Expression* SExpressionWasmBuilder::makeGlobalGet(Element& s) { auto ret = allocator.alloc<GlobalGet>(); ret->name = getGlobalName(*s[1]); auto* global = wasm.getGlobalOrNull(ret->name); if (!global) { throw ParseException("bad global.get name", s.line, s.col); } ret->type = global->type; return ret; } Expression* SExpressionWasmBuilder::makeGlobalSet(Element& s) { auto ret = allocator.alloc<GlobalSet>(); ret->name = getGlobalName(*s[1]); if (wasm.getGlobalOrNull(ret->name) && !wasm.getGlobalOrNull(ret->name)->mutable_) { throw ParseException("global.set of immutable", s.line, s.col); } ret->value = parseExpression(s[2]); ret->finalize(); return ret; } Expression* SExpressionWasmBuilder::makeBlock(Element& s) { if (!currFunction) { throw ParseException( "block is unallowed outside of functions", s.line, s.col); } // special-case Block, because Block nesting (in their first element) can be // incredibly deep auto curr = allocator.alloc<Block>(); auto* sp = &s; std::vector<std::pair<Element*, Block*>> stack; while (1) { stack.emplace_back(sp, curr); auto& s = *sp; Index i = 1; Name sName; if (i < s.size() && s[i]->isStr()) { // could be a name or a type if (s[i]->dollared() || stringToType(s[i]->str(), true /* allowError */) == Type::none) { sName = s[i++]->str(); } else { sName = "block"; } } else { sName = "block"; } curr->name = nameMapper.pushLabelName(sName); // block signature curr->type = parseOptionalResultType(s, i); if (i >= s.size()) { break; // empty block } auto& first = *s[i]; if (elementStartsWith(first, BLOCK)) { // recurse curr = allocator.alloc<Block>(); if (first.startLoc) { currFunction->debugLocations[curr] = getDebugLocation(*first.startLoc); } sp = &first; continue; } break; } // we now have a stack of Blocks, with their labels, but no contents yet for (int t = int(stack.size()) - 1; t >= 0; t--) { auto* sp = stack[t].first; auto* curr = stack[t].second; auto& s = *sp; size_t i = 1; if (i < s.size()) { while (i < s.size() && s[i]->isStr()) { i++; } if (i < s.size() && elementStartsWith(*s[i], RESULT)) { i++; } if (t < int(stack.size()) - 1) { // first child is one of our recursions curr->list.push_back(stack[t + 1].second); i++; } for (; i < s.size(); i++) { curr->list.push_back(parseExpression(s[i])); } } nameMapper.popLabelName(curr->name); curr->finalize(curr->type); } return stack[0].second; } // Similar to block, but the label is handled by the enclosing if (since there // might not be a then or else, ick) Expression* SExpressionWasmBuilder::makeThenOrElse(Element& s) { auto ret = allocator.alloc<Block>(); size_t i = 1; if (s[1]->isStr()) { i++; } for (; i < s.size(); i++) { ret->list.push_back(parseExpression(s[i])); } ret->finalize(); return ret; } template<int Lanes> static Literal makeLanes(Element& s, MixedArena& allocator, Type lane_t) { std::array<Literal, Lanes> lanes; for (size_t i = 0; i < Lanes; ++i) { Expression* lane = parseConst(s[i + 2]->str(), lane_t, allocator); if (lane) { lanes[i] = lane->cast<Const>()->value; } else { throw ParseException( "Could not parse v128 lane", s[i + 2]->line, s[i + 2]->col); } } return Literal(lanes); } Expression* SExpressionWasmBuilder::makeConst(Element& s, Type type) { if (type != Type::v128) { auto ret = parseConst(s[1]->str(), type, allocator); if (!ret) { throw ParseException("bad const", s[1]->line, s[1]->col); } return ret; } auto ret = allocator.alloc<Const>(); Type lane_t = stringToLaneType(s[1]->str().str); size_t lanes = s.size() - 2; switch (lanes) { case 2: { if (lane_t != Type::i64 && lane_t != Type::f64) { throw ParseException( "Unexpected v128 literal lane type", s[1]->line, s[1]->col); } ret->value = makeLanes<2>(s, allocator, lane_t); break; } case 4: { if (lane_t != Type::i32 && lane_t != Type::f32) { throw ParseException( "Unexpected v128 literal lane type", s[1]->line, s[1]->col); } ret->value = makeLanes<4>(s, allocator, lane_t); break; } case 8: { if (lane_t != Type::i32) { throw ParseException( "Unexpected v128 literal lane type", s[1]->line, s[1]->col); } ret->value = makeLanes<8>(s, allocator, lane_t); break; } case 16: { if (lane_t != Type::i32) { throw ParseException( "Unexpected v128 literal lane type", s[1]->line, s[1]->col); } ret->value = makeLanes<16>(s, allocator, lane_t); break; } default: throw ParseException( "Unexpected number of lanes in v128 literal", s[1]->line, s[1]->col); } ret->finalize(); return ret; } static uint8_t parseMemBytes(const char*& s, uint8_t fallback) { uint8_t ret; if (s[0] == '8') { ret = 1; s++; } else if (s[0] == '1') { if (s[1] != '6') { throw ParseException(std::string("expected 16 for memop size: ") + s); } ret = 2; s += 2; } else if (s[0] == '3') { if (s[1] != '2') { throw ParseException(std::string("expected 32 for memop size: ") + s); }; ret = 4; s += 2; } else { ret = fallback; } return ret; } static size_t parseMemAttributes(Element& s, Address& offset, Address& align, Address fallbackAlign) { size_t i = 1; offset = 0; align = fallbackAlign; while (!s[i]->isList()) { const char* str = s[i]->c_str(); const char* eq = strchr(str, '='); if (!eq) { throw ParseException( "missing = in memory attribute", s[i]->line, s[i]->col); } eq++; if (*eq == 0) { throw ParseException( "missing value in memory attribute", s[i]->line, s[i]->col); } char* endptr; uint64_t value = strtoll(eq, &endptr, 10); if (*endptr != 0) { throw ParseException( "bad memory attribute immediate", s[i]->line, s[i]->col); } if (str[0] == 'a') { if (value > std::numeric_limits<uint32_t>::max()) { throw ParseException("bad align", s[i]->line, s[i]->col); } align = value; } else if (str[0] == 'o') { if (value > std::numeric_limits<uint32_t>::max()) { throw ParseException("bad offset", s[i]->line, s[i]->col); } offset = value; } else { throw ParseException("bad memory attribute", s[i]->line, s[i]->col); } i++; } return i; } static const char* findMemExtra(const Element& s, size_t skip, bool isAtomic) { auto* str = s.c_str(); auto size = strlen(str); auto* ret = strchr(str, '.'); if (!ret) { throw ParseException("missing '.' in memory access", s.line, s.col); } ret += skip; if (isAtomic) { ret += 7; // after "type.atomic.load" } if (ret > str + size) { throw ParseException("memory access ends abruptly", s.line, s.col); } return ret; } Expression* SExpressionWasmBuilder::makeLoad(Element& s, Type type, bool isAtomic) { const char* extra = findMemExtra(*s[0], 5 /* after "type.load" */, isAtomic); auto* ret = allocator.alloc<Load>(); ret->isAtomic = isAtomic; ret->type = type; ret->bytes = parseMemBytes(extra, type.getByteSize()); ret->signed_ = extra[0] && extra[1] == 's'; size_t i = parseMemAttributes(s, ret->offset, ret->align, ret->bytes); ret->ptr = parseExpression(s[i]); ret->finalize(); return ret; } Expression* SExpressionWasmBuilder::makeStore(Element& s, Type type, bool isAtomic) { const char* extra = findMemExtra(*s[0], 6 /* after "type.store" */, isAtomic); auto ret = allocator.alloc<Store>(); ret->isAtomic = isAtomic; ret->valueType = type; ret->bytes = parseMemBytes(extra, type.getByteSize()); size_t i = parseMemAttributes(s, ret->offset, ret->align, ret->bytes); ret->ptr = parseExpression(s[i]); ret->value = parseExpression(s[i + 1]); ret->finalize(); return ret; } Expression* SExpressionWasmBuilder::makeAtomicRMWOrCmpxchg(Element& s, Type type) { const char* extra = findMemExtra( *s[0], 11 /* after "type.atomic.rmw" */, /* isAtomic = */ false); auto bytes = parseMemBytes(extra, type.getByteSize()); extra = strchr(extra, '.'); // after the optional '_u' and before the opcode if (!extra) { throw ParseException("malformed atomic rmw instruction", s.line, s.col); } extra++; // after the '.' if (!strncmp(extra, "cmpxchg", 7)) { return makeAtomicCmpxchg(s, type, bytes, extra); } return makeAtomicRMW(s, type, bytes, extra); } Expression* SExpressionWasmBuilder::makeAtomicRMW(Element& s, Type type, uint8_t bytes, const char* extra) { auto ret = allocator.alloc<AtomicRMW>(); ret->type = type; ret->bytes = bytes; if (!strncmp(extra, "add", 3)) { ret->op = Add; } else if (!strncmp(extra, "and", 3)) { ret->op = And; } else if (!strncmp(extra, "or", 2)) { ret->op = Or; } else if (!strncmp(extra, "sub", 3)) { ret->op = Sub; } else if (!strncmp(extra, "xor", 3)) { ret->op = Xor; } else if (!strncmp(extra, "xchg", 4)) { ret->op = Xchg; } else { throw ParseException("bad atomic rmw operator", s.line, s.col); } Address align; size_t i = parseMemAttributes(s, ret->offset, align, ret->bytes); if (align != ret->bytes) { throw ParseException("Align of Atomic RMW must match size", s.line, s.col); } ret->ptr = parseExpression(s[i]); ret->value = parseExpression(s[i + 1]); ret->finalize(); return ret; } Expression* SExpressionWasmBuilder::makeAtomicCmpxchg(Element& s, Type type, uint8_t bytes, const char* extra) { auto ret = allocator.alloc<AtomicCmpxchg>(); ret->type = type; ret->bytes = bytes; Address align; size_t i = parseMemAttributes(s, ret->offset, align, ret->bytes); if (align != ret->bytes) { throw ParseException( "Align of Atomic Cmpxchg must match size", s.line, s.col); } ret->ptr = parseExpression(s[i]); ret->expected = parseExpression(s[i + 1]); ret->replacement = parseExpression(s[i + 2]); ret->finalize(); return ret; } Expression* SExpressionWasmBuilder::makeAtomicWait(Element& s, Type type) { auto ret = allocator.alloc<AtomicWait>(); ret->type = Type::i32; ret->expectedType = type; Address align; Address expectedAlign; if (type == Type::i32) { expectedAlign = 4; } else if (type == Type::i64) { expectedAlign = 8; } else { WASM_UNREACHABLE("Invalid prefix for atomic.wait"); } size_t i = parseMemAttributes(s, ret->offset, align, expectedAlign); if (align != expectedAlign) { throw ParseException("Align of atomic.wait must match size", s.line, s.col); } ret->ptr = parseExpression(s[i]); ret->expected = parseExpression(s[i + 1]); ret->timeout = parseExpression(s[i + 2]); ret->finalize(); return ret; } Expression* SExpressionWasmBuilder::makeAtomicNotify(Element& s) { auto ret = allocator.alloc<AtomicNotify>(); ret->type = Type::i32; Address align; size_t i = parseMemAttributes(s, ret->offset, align, 4); if (align != 4) { throw ParseException("Align of atomic.notify must be 4", s.line, s.col); } ret->ptr = parseExpression(s[i]); ret->notifyCount = parseExpression(s[i + 1]); ret->finalize(); return ret; } Expression* SExpressionWasmBuilder::makeAtomicFence(Element& s) { return allocator.alloc<AtomicFence>(); } static uint8_t parseLaneIndex(const Element* s, size_t lanes) { const char* str = s->c_str(); char* end; auto n = static_cast<unsigned long long>(strtoll(str, &end, 10)); if (end == str || *end != '\0') { throw ParseException("Expected lane index", s->line, s->col); } if (n > lanes) { throw ParseException( "lane index must be less than " + std::to_string(lanes), s->line, s->col); } return uint8_t(n); } Expression* SExpressionWasmBuilder::makeSIMDExtract(Element& s, SIMDExtractOp op, size_t lanes) { auto ret = allocator.alloc<SIMDExtract>(); ret->op = op; ret->index = parseLaneIndex(s[1], lanes); ret->vec = parseExpression(s[2]); ret->finalize(); return ret; } Expression* SExpressionWasmBuilder::makeSIMDReplace(Element& s, SIMDReplaceOp op, size_t lanes) { auto ret = allocator.alloc<SIMDReplace>(); ret->op = op; ret->index = parseLaneIndex(s[1], lanes); ret->vec = parseExpression(s[2]); ret->value = parseExpression(s[3]); ret->finalize(); return ret; } Expression* SExpressionWasmBuilder::makeSIMDShuffle(Element& s) { auto ret = allocator.alloc<SIMDShuffle>(); for (size_t i = 0; i < 16; ++i) { ret->mask[i] = parseLaneIndex(s[i + 1], 32); } ret->left = parseExpression(s[17]); ret->right = parseExpression(s[18]); ret->finalize(); return ret; } Expression* SExpressionWasmBuilder::makeSIMDTernary(Element& s, SIMDTernaryOp op) { auto ret = allocator.alloc<SIMDTernary>(); ret->op = op; ret->a = parseExpression(s[1]); ret->b = parseExpression(s[2]); ret->c = parseExpression(s[3]); ret->finalize(); return ret; } Expression* SExpressionWasmBuilder::makeSIMDShift(Element& s, SIMDShiftOp op) { auto ret = allocator.alloc<SIMDShift>(); ret->op = op; ret->vec = parseExpression(s[1]); ret->shift = parseExpression(s[2]); ret->finalize(); return ret; } Expression* SExpressionWasmBuilder::makeSIMDLoad(Element& s, SIMDLoadOp op) { auto ret = allocator.alloc<SIMDLoad>(); ret->op = op; Address defaultAlign; switch (op) { case LoadSplatVec8x16: defaultAlign = 1; break; case LoadSplatVec16x8: defaultAlign = 2; break; case LoadSplatVec32x4: case Load32Zero: defaultAlign = 4; break; case LoadSplatVec64x2: case LoadExtSVec8x8ToVecI16x8: case LoadExtUVec8x8ToVecI16x8: case LoadExtSVec16x4ToVecI32x4: case LoadExtUVec16x4ToVecI32x4: case LoadExtSVec32x2ToVecI64x2: case LoadExtUVec32x2ToVecI64x2: case Load64Zero: defaultAlign = 8; break; } size_t i = parseMemAttributes(s, ret->offset, ret->align, defaultAlign); ret->ptr = parseExpression(s[i]); ret->finalize(); return ret; } Expression* SExpressionWasmBuilder::makeMemoryInit(Element& s) { auto ret = allocator.alloc<MemoryInit>(); ret->segment = atoi(s[1]->str().c_str()); ret->dest = parseExpression(s[2]); ret->offset = parseExpression(s[3]); ret->size = parseExpression(s[4]); ret->finalize(); return ret; } Expression* SExpressionWasmBuilder::makeDataDrop(Element& s) { auto ret = allocator.alloc<DataDrop>(); ret->segment = atoi(s[1]->str().c_str()); ret->finalize(); return ret; } Expression* SExpressionWasmBuilder::makeMemoryCopy(Element& s) { auto ret = allocator.alloc<MemoryCopy>(); ret->dest = parseExpression(s[1]); ret->source = parseExpression(s[2]); ret->size = parseExpression(s[3]); ret->finalize(); return ret; } Expression* SExpressionWasmBuilder::makeMemoryFill(Element& s) { auto ret = allocator.alloc<MemoryFill>(); ret->dest = parseExpression(s[1]); ret->value = parseExpression(s[2]); ret->size = parseExpression(s[3]); ret->finalize(); return ret; } Expression* SExpressionWasmBuilder::makePop(Element& s) { auto ret = allocator.alloc<Pop>(); std::vector<Type> types; for (size_t i = 1; i < s.size(); ++i) { types.push_back(stringToType(s[i]->str())); } ret->type = Type(types); ret->finalize(); return ret; } Expression* SExpressionWasmBuilder::makeIf(Element& s) { auto ret = allocator.alloc<If>(); Index i = 1; Name sName; if (s[i]->dollared()) { // the if is labeled sName = s[i++]->str(); } else { sName = "if"; } auto label = nameMapper.pushLabelName(sName); // if signature Type type = parseOptionalResultType(s, i); ret->condition = parseExpression(s[i++]); ret->ifTrue = parseExpression(*s[i++]); if (i < s.size()) { ret->ifFalse = parseExpression(*s[i++]); } ret->finalize(type); nameMapper.popLabelName(label); // create a break target if we must if (BranchUtils::BranchSeeker::has(ret, label)) { auto* block = allocator.alloc<Block>(); block->name = label; block->list.push_back(ret); block->finalize(type); return block; } return ret; } Expression* SExpressionWasmBuilder::makeMaybeBlock(Element& s, size_t i, Type type) { Index stopAt = -1; if (s.size() == i) { return allocator.alloc<Nop>(); } if (s.size() == i + 1) { return parseExpression(s[i]); } auto ret = allocator.alloc<Block>(); for (; i < s.size() && i < stopAt; i++) { ret->list.push_back(parseExpression(s[i])); } ret->finalize(type); // Note that we do not name these implicit/synthetic blocks. They // are the effects of syntactic sugar, and nothing can branch to // them anyhow. return ret; } Type SExpressionWasmBuilder::parseOptionalResultType(Element& s, Index& i) { if (s.size() == i) { return Type::none; } // TODO(sbc): Remove support for old result syntax (bare streing) once the // spec tests are updated. if (s[i]->isStr()) { return stringToType(s[i++]->str()); } Element& results = *s[i]; IString id = results[0]->str(); if (id == RESULT) { i++; return Type(parseResults(results)); } return Type::none; } Expression* SExpressionWasmBuilder::makeLoop(Element& s) { auto ret = allocator.alloc<Loop>(); Index i = 1; Name sName; if (s.size() > i && s[i]->dollared()) { sName = s[i++]->str(); } else { sName = "loop-in"; } ret->name = nameMapper.pushLabelName(sName); ret->type = parseOptionalResultType(s, i); ret->body = makeMaybeBlock(s, i, ret->type); nameMapper.popLabelName(ret->name); ret->finalize(ret->type); return ret; } Expression* SExpressionWasmBuilder::makeCall(Element& s, bool isReturn) { auto target = getFunctionName(*s[1]); auto ret = allocator.alloc<Call>(); ret->target = target; ret->type = functionTypes[ret->target]; parseCallOperands(s, 2, s.size(), ret); ret->isReturn = isReturn; ret->finalize(); return ret; } Expression* SExpressionWasmBuilder::makeCallIndirect(Element& s, bool isReturn) { if (!wasm.table.exists) { throw ParseException("no table", s.line, s.col); } Index i = 1; auto ret = allocator.alloc<CallIndirect>(); i = parseTypeUse(s, i, ret->sig); parseCallOperands(s, i, s.size() - 1, ret); ret->target = parseExpression(s[s.size() - 1]); ret->isReturn = isReturn; ret->finalize(); return ret; } Name SExpressionWasmBuilder::getLabel(Element& s) { if (s.dollared()) { return nameMapper.sourceToUnique(s.str()); } else { // offset, break to nth outside label uint64_t offset; try { offset = std::stoll(s.c_str(), nullptr, 0); } catch (std::invalid_argument&) { throw ParseException("invalid break offset", s.line, s.col); } catch (std::out_of_range&) { throw ParseException("out of range break offset", s.line, s.col); } if (offset > nameMapper.labelStack.size()) { throw ParseException("invalid label", s.line, s.col); } if (offset == nameMapper.labelStack.size()) { // a break to the function's scope. this means we need an automatic block, // with a name brokeToAutoBlock = true; return FAKE_RETURN; } return nameMapper.labelStack[nameMapper.labelStack.size() - 1 - offset]; } } Expression* SExpressionWasmBuilder::makeBreak(Element& s) { auto ret = allocator.alloc<Break>(); size_t i = 1; ret->name = getLabel(*s[i]); i++; if (i == s.size()) { return ret; } if (elementStartsWith(s, BR_IF)) { if (i + 1 < s.size()) { ret->value = parseExpression(s[i]); i++; } ret->condition = parseExpression(s[i]); } else { ret->value = parseExpression(s[i]); } ret->finalize(); return ret; } Expression* SExpressionWasmBuilder::makeBreakTable(Element& s) { auto ret = allocator.alloc<Switch>(); size_t i = 1; while (!s[i]->isList()) { ret->targets.push_back(getLabel(*s[i++])); } if (ret->targets.size() == 0) { throw ParseException("switch with no targets", s.line, s.col); } ret->default_ = ret->targets.back(); ret->targets.pop_back(); ret->condition = parseExpression(s[i++]); if (i < s.size()) { ret->value = ret->condition; ret->condition = parseExpression(s[i++]); } return ret; } Expression* SExpressionWasmBuilder::makeReturn(Element& s) { auto ret = allocator.alloc<Return>(); if (s.size() >= 2) { ret->value = parseExpression(s[1]); } return ret; } Expression* SExpressionWasmBuilder::makeRefNull(Element& s) { if (s.size() != 2) { throw ParseException("invalid heap type reference", s.line, s.col); } auto heapType = stringToHeapType(s[1]->str()); auto ret = allocator.alloc<RefNull>(); ret->finalize(heapType); return ret; } Expression* SExpressionWasmBuilder::makeRefIsNull(Element& s) { auto ret = allocator.alloc<RefIsNull>(); ret->value = parseExpression(s[1]); ret->finalize(); return ret; } Expression* SExpressionWasmBuilder::makeRefFunc(Element& s) { auto func = getFunctionName(*s[1]); auto ret = allocator.alloc<RefFunc>(); ret->func = func; ret->finalize(); return ret; } // try-catch-end is written in the folded wast format as // (try // ... // (catch // ... // ) // ) // The parenthesis wrapping 'catch' is just a syntax and does not affect nested // depths of instructions within. Expression* SExpressionWasmBuilder::makeTry(Element& s) { auto ret = allocator.alloc<Try>(); Index i = 1; Name sName; if (s[i]->dollared()) { // the try is labeled sName = s[i++]->str(); } else { sName = "try"; } auto label = nameMapper.pushLabelName(sName); Type type = parseOptionalResultType(s, i); // signature if (!elementStartsWith(*s[i], "do")) { throw ParseException( "try body should start with 'do'", s[i]->line, s[i]->col); } ret->body = makeTryOrCatchBody(*s[i++], type, true); if (!elementStartsWith(*s[i], "catch")) { throw ParseException("catch clause does not exist", s[i]->line, s[i]->col); } ret->catchBody = makeTryOrCatchBody(*s[i++], type, false); ret->finalize(type); nameMapper.popLabelName(label); // create a break target if we must if (BranchUtils::BranchSeeker::has(ret, label)) { auto* block = allocator.alloc<Block>(); block->name = label; block->list.push_back(ret); block->finalize(type); return block; } return ret; } Expression* SExpressionWasmBuilder::makeTryOrCatchBody(Element& s, Type type, bool isTry) { if (isTry && !elementStartsWith(s, "do")) { throw ParseException("invalid try do clause", s.line, s.col); } if (!isTry && !elementStartsWith(s, "catch")) { throw ParseException("invalid catch clause", s.line, s.col); } if (s.size() == 1) { // (do) or (catch) without instructions return makeNop(); } auto ret = allocator.alloc<Block>(); for (size_t i = 1; i < s.size(); i++) { ret->list.push_back(parseExpression(s[i])); } if (ret->list.size() == 1) { return ret->list[0]; } ret->finalize(type); return ret; } Expression* SExpressionWasmBuilder::makeThrow(Element& s) { auto ret = allocator.alloc<Throw>(); Index i = 1; ret->event = getEventName(*s[i++]); if (!wasm.getEventOrNull(ret->event)) { throw ParseException("bad event name", s[1]->line, s[1]->col); } for (; i < s.size(); i++) { ret->operands.push_back(parseExpression(s[i])); } ret->finalize(); return ret; } Expression* SExpressionWasmBuilder::makeRethrow(Element& s) { auto ret = allocator.alloc<Rethrow>(); ret->exnref = parseExpression(*s[1]); ret->finalize(); return ret; } Expression* SExpressionWasmBuilder::makeBrOnExn(Element& s) { auto ret = allocator.alloc<BrOnExn>(); size_t i = 1; ret->name = getLabel(*s[i++]); ret->event = getEventName(*s[i++]); if (!wasm.getEventOrNull(ret->event)) { throw ParseException("bad event name", s[1]->line, s[1]->col); } ret->exnref = parseExpression(s[i]); Event* event = wasm.getEventOrNull(ret->event); assert(event && "br_on_exn's event must exist"); // Copy params info into BrOnExn, because it is necessary when BrOnExn is // refinalized without the module. ret->sent = event->sig.params; ret->finalize(); return ret; } Expression* SExpressionWasmBuilder::makeTupleMake(Element& s) { auto ret = allocator.alloc<TupleMake>(); parseCallOperands(s, 1, s.size(), ret); ret->finalize(); return ret; } Expression* SExpressionWasmBuilder::makeTupleExtract(Element& s) { auto ret = allocator.alloc<TupleExtract>(); ret->index = atoi(s[1]->str().c_str()); ret->tuple = parseExpression(s[2]); ret->finalize(); return ret; } // converts an s-expression string representing binary data into an output // sequence of raw bytes this appends to data, which may already contain // content. void SExpressionWasmBuilder::stringToBinary(const char* input, size_t size, std::vector<char>& data) { auto originalSize = data.size(); data.resize(originalSize + size); char* write = data.data() + originalSize; while (1) { if (input[0] == 0) { break; } if (input[0] == '\\') { if (input[1] == '"') { *write++ = '"'; input += 2; continue; } else if (input[1] == '\'') { *write++ = '\''; input += 2; continue; } else if (input[1] == '\\') { *write++ = '\\'; input += 2; continue; } else if (input[1] == 'n') { *write++ = '\n'; input += 2; continue; } else if (input[1] == 't') { *write++ = '\t'; input += 2; continue; } else { *write++ = (char)(unhex(input[1]) * 16 + unhex(input[2])); input += 3; continue; } } *write++ = input[0]; input++; } assert(write >= data.data()); size_t actual = write - data.data(); assert(actual <= data.size()); data.resize(actual); } Index SExpressionWasmBuilder::parseMemoryIndex(Element& s, Index i) { if (i < s.size() && s[i]->isStr()) { if (s[i]->str() == "i64") { i++; wasm.memory.indexType = Type::i64; } else if (s[i]->str() == "i32") { i++; wasm.memory.indexType = Type::i32; } } return i; } Index SExpressionWasmBuilder::parseMemoryLimits(Element& s, Index i) { i = parseMemoryIndex(s, i); if (i == s.size()) { throw ParseException("missing memory limits", s.line, s.col); } auto initElem = s[i++]; wasm.memory.initial = getAddress(initElem); if (!wasm.memory.is64()) { checkAddress(wasm.memory.initial, "excessive memory init", initElem); } if (i == s.size()) { wasm.memory.max = Memory::kUnlimitedSize; } else { auto maxElem = s[i++]; wasm.memory.max = getAddress(maxElem); if (!wasm.memory.is64() && wasm.memory.max > Memory::kMaxSize32) { throw ParseException( "total memory must be <= 4GB", maxElem->line, maxElem->col); } } return i; } void SExpressionWasmBuilder::parseMemory(Element& s, bool preParseImport) { if (wasm.memory.exists) { throw ParseException("too many memories", s.line, s.col); } wasm.memory.exists = true; wasm.memory.shared = false; Index i = 1; if (s[i]->dollared()) { wasm.memory.name = s[i++]->str(); } i = parseMemoryIndex(s, i); Name importModule, importBase; if (s[i]->isList()) { auto& inner = *s[i]; if (elementStartsWith(inner, EXPORT)) { auto ex = make_unique<Export>(); ex->name = inner[1]->str(); ex->value = wasm.memory.name; ex->kind = ExternalKind::Memory; if (wasm.getExportOrNull(ex->name)) { throw ParseException("duplicate export", inner.line, inner.col); } wasm.addExport(ex.release()); i++; } else if (elementStartsWith(inner, IMPORT)) { wasm.memory.module = inner[1]->str(); wasm.memory.base = inner[2]->str(); i++; } else if (elementStartsWith(inner, SHARED)) { wasm.memory.shared = true; parseMemoryLimits(inner, 1); i++; } else { if (!(inner.size() > 0 ? inner[0]->str() != IMPORT : true)) { throw ParseException("bad import ending", inner.line, inner.col); } // (memory (data ..)) format auto j = parseMemoryIndex(inner, 1); auto offset = allocator.alloc<Const>()->set(Literal(int32_t(0))); parseInnerData(inner, j, offset, false); wasm.memory.initial = wasm.memory.segments[0].data.size(); return; } } if (!wasm.memory.shared) { i = parseMemoryLimits(s, i); } // Parse memory initializers. while (i < s.size()) { Element& curr = *s[i]; size_t j = 1; Address offsetValue; if (elementStartsWith(curr, DATA)) { offsetValue = 0; } else { auto offsetElem = curr[j++]; offsetValue = getAddress(offsetElem); if (!wasm.memory.is64()) { checkAddress(offsetValue, "excessive memory offset", offsetElem); } } const char* input = curr[j]->c_str(); auto* offset = allocator.alloc<Const>(); offset->type = Type::i32; offset->value = Literal(int32_t(offsetValue)); if (auto size = strlen(input)) { std::vector<char> data; stringToBinary(input, size, data); wasm.memory.segments.emplace_back(offset, data.data(), data.size()); } else { wasm.memory.segments.emplace_back(offset, "", 0); } i++; } } void SExpressionWasmBuilder::parseData(Element& s) { if (!wasm.memory.exists) { throw ParseException("data but no memory", s.line, s.col); } bool isPassive = false; Expression* offset = nullptr; Index i = 1; if (s[i]->isStr()) { // data is passive or named if (s[i]->str() == PASSIVE) { isPassive = true; } i++; } if (!isPassive) { offset = parseExpression(s[i]); } if (s.size() != 3 && s.size() != 4) { throw ParseException("Unexpected data items", s.line, s.col); } parseInnerData(s, s.size() - 1, offset, isPassive); } void SExpressionWasmBuilder::parseInnerData(Element& s, Index i, Expression* offset, bool isPassive) { std::vector<char> data; while (i < s.size()) { const char* input = s[i++]->c_str(); if (auto size = strlen(input)) { stringToBinary(input, size, data); } } wasm.memory.segments.emplace_back( isPassive, offset, data.data(), data.size()); } void SExpressionWasmBuilder::parseExport(Element& s) { std::unique_ptr<Export> ex = make_unique<Export>(); ex->name = s[1]->str(); if (s[2]->isList()) { auto& inner = *s[2]; ex->value = inner[1]->str(); if (elementStartsWith(inner, FUNC)) { ex->kind = ExternalKind::Function; } else if (elementStartsWith(inner, MEMORY)) { ex->kind = ExternalKind::Memory; } else if (elementStartsWith(inner, TABLE)) { ex->kind = ExternalKind::Table; } else if (elementStartsWith(inner, GLOBAL)) { ex->kind = ExternalKind::Global; } else if (inner[0]->str() == EVENT) { ex->kind = ExternalKind::Event; } else { throw ParseException("invalid export", inner.line, inner.col); } } else { // function ex->value = s[2]->str(); ex->kind = ExternalKind::Function; } if (wasm.getExportOrNull(ex->name)) { throw ParseException("duplicate export", s.line, s.col); } wasm.addExport(ex.release()); } void SExpressionWasmBuilder::parseImport(Element& s) { size_t i = 1; // (import "env" "STACKTOP" (global $stackTop i32)) bool newStyle = s.size() == 4 && s[3]->isList(); auto kind = ExternalKind::Invalid; if (newStyle) { if (elementStartsWith(*s[3], FUNC)) { kind = ExternalKind::Function; } else if (elementStartsWith(*s[3], MEMORY)) { kind = ExternalKind::Memory; if (wasm.memory.exists) { throw ParseException("more than one memory", s[3]->line, s[3]->col); } wasm.memory.exists = true; } else if (elementStartsWith(*s[3], TABLE)) { kind = ExternalKind::Table; if (wasm.table.exists) { throw ParseException("more than one table", s[3]->line, s[3]->col); } wasm.table.exists = true; } else if (elementStartsWith(*s[3], GLOBAL)) { kind = ExternalKind::Global; } else if ((*s[3])[0]->str() == EVENT) { kind = ExternalKind::Event; } else { newStyle = false; // either (param..) or (result..) } } Index newStyleInner = 1; Name name; if (s.size() > 3 && s[3]->isStr()) { name = s[i++]->str(); } else if (newStyle && newStyleInner < s[3]->size() && (*s[3])[newStyleInner]->dollared()) { name = (*s[3])[newStyleInner++]->str(); } if (!name.is()) { if (kind == ExternalKind::Function) { name = Name("import$function$" + std::to_string(functionCounter++)); functionNames.push_back(name); } else if (kind == ExternalKind::Global) { name = Name("import$global" + std::to_string(globalCounter++)); globalNames.push_back(name); } else if (kind == ExternalKind::Memory) { name = Name("import$memory$" + std::to_string(0)); } else if (kind == ExternalKind::Table) { name = Name("import$table$" + std::to_string(0)); } else if (kind == ExternalKind::Event) { name = Name("import$event" + std::to_string(eventCounter++)); eventNames.push_back(name); } else { throw ParseException("invalid import", s[3]->line, s[3]->col); } } if (!newStyle) { kind = ExternalKind::Function; } auto module = s[i++]->str(); if (!s[i]->isStr()) { throw ParseException("no name for import", s[i]->line, s[i]->col); } auto base = s[i]->str(); if (!module.size() || !base.size()) { throw ParseException( "imports must have module and base", s[i]->line, s[i]->col); } i++; // parse internals Element& inner = newStyle ? *s[3] : s; Index j = newStyle ? newStyleInner : i; if (kind == ExternalKind::Function) { auto func = make_unique<Function>(); j = parseTypeUse(inner, j, func->sig); func->name = name; func->module = module; func->base = base; functionTypes[name] = func->sig.results; wasm.addFunction(func.release()); } else if (kind == ExternalKind::Global) { Type type; bool mutable_ = false; if (inner[j]->isStr()) { type = stringToType(inner[j++]->str()); } else { auto& inner2 = *inner[j++]; if (inner2[0]->str() != MUT) { throw ParseException("expected mut", inner2.line, inner2.col); } type = stringToType(inner2[1]->str()); mutable_ = true; } auto global = make_unique<Global>(); global->name = name; global->module = module; global->base = base; global->type = type; global->mutable_ = mutable_; wasm.addGlobal(global.release()); } else if (kind == ExternalKind::Table) { wasm.table.module = module; wasm.table.base = base; if (j < inner.size() - 1) { auto initElem = inner[j++]; wasm.table.initial = getAddress(initElem); checkAddress(wasm.table.initial, "excessive table init size", initElem); } if (j < inner.size() - 1) { auto maxElem = inner[j++]; wasm.table.max = getAddress(maxElem); checkAddress(wasm.table.max, "excessive table max size", maxElem); } else { wasm.table.max = Table::kUnlimitedSize; } j++; // funcref // ends with the table element type } else if (kind == ExternalKind::Memory) { wasm.memory.module = module; wasm.memory.base = base; if (inner[j]->isList()) { auto& limits = *inner[j]; if (!elementStartsWith(limits, SHARED)) { throw ParseException( "bad memory limit declaration", inner[j]->line, inner[j]->col); } wasm.memory.shared = true; j = parseMemoryLimits(limits, 1); } else { j = parseMemoryLimits(inner, j); } } else if (kind == ExternalKind::Event) { auto event = make_unique<Event>(); if (j >= inner.size()) { throw ParseException("event does not have an attribute", s.line, s.col); } auto& attrElem = *inner[j++]; if (!elementStartsWith(attrElem, ATTR) || attrElem.size() != 2) { throw ParseException("invalid attribute", attrElem.line, attrElem.col); } event->attribute = atoi(attrElem[1]->c_str()); j = parseTypeUse(inner, j, event->sig); event->name = name; event->module = module; event->base = base; wasm.addEvent(event.release()); } // If there are more elements, they are invalid if (j < inner.size()) { throw ParseException("invalid element", inner[j]->line, inner[j]->col); } } void SExpressionWasmBuilder::parseGlobal(Element& s, bool preParseImport) { std::unique_ptr<Global> global = make_unique<Global>(); size_t i = 1; if (s[i]->dollared() && !(s[i]->isStr() && isType(s[i]->str()))) { global->name = s[i++]->str(); } else { global->name = Name::fromInt(globalCounter); } globalCounter++; globalNames.push_back(global->name); bool mutable_ = false; Type type = Type::none; bool exported = false; Name importModule, importBase; while (i < s.size() && s[i]->isList()) { auto& inner = *s[i++]; if (elementStartsWith(inner, EXPORT)) { auto ex = make_unique<Export>(); ex->name = inner[1]->str(); ex->value = global->name; ex->kind = ExternalKind::Global; if (wasm.getExportOrNull(ex->name)) { throw ParseException("duplicate export", s.line, s.col); } wasm.addExport(ex.release()); exported = true; } else if (elementStartsWith(inner, IMPORT)) { importModule = inner[1]->str(); importBase = inner[2]->str(); } else if (elementStartsWith(inner, MUT)) { mutable_ = true; type = elementToType(*inner[1]); break; } else { type = elementToType(inner); break; } } if (exported && mutable_) { throw ParseException("cannot export a mutable global", s.line, s.col); } if (type == Type::none) { type = stringToType(s[i++]->str()); } if (importModule.is()) { // this is an import, actually if (!importBase.size()) { throw ParseException("module but no base for import", s.line, s.col); } if (!preParseImport) { throw ParseException("!preParseImport in global", s.line, s.col); } auto im = make_unique<Global>(); im->name = global->name; im->module = importModule; im->base = importBase; im->type = type; im->mutable_ = mutable_; if (wasm.getGlobalOrNull(im->name)) { throw ParseException("duplicate import", s.line, s.col); } wasm.addGlobal(im.release()); return; } if (preParseImport) { throw ParseException("preParseImport in global", s.line, s.col); } global->type = type; if (i < s.size()) { global->init = parseExpression(s[i++]); } else { throw ParseException("global without init", s.line, s.col); } global->mutable_ = mutable_; if (i != s.size()) { throw ParseException("extra import elements", s.line, s.col); } if (wasm.getGlobalOrNull(global->name)) { throw ParseException("duplicate import", s.line, s.col); } wasm.addGlobal(global.release()); } void SExpressionWasmBuilder::parseTable(Element& s, bool preParseImport) { if (wasm.table.exists) { throw ParseException("more than one table", s.line, s.col); } wasm.table.exists = true; Index i = 1; if (i == s.size()) { return; // empty table in old notation } if (s[i]->dollared()) { wasm.table.name = s[i++]->str(); } if (i == s.size()) { return; } Name importModule, importBase; if (s[i]->isList()) { auto& inner = *s[i]; if (elementStartsWith(inner, EXPORT)) { auto ex = make_unique<Export>(); ex->name = inner[1]->str(); ex->value = wasm.table.name; ex->kind = ExternalKind::Table; if (wasm.getExportOrNull(ex->name)) { throw ParseException("duplicate export", inner.line, inner.col); } wasm.addExport(ex.release()); i++; } else if (elementStartsWith(inner, IMPORT)) { if (!preParseImport) { throw ParseException("!preParseImport in table", inner.line, inner.col); } wasm.table.module = inner[1]->str(); wasm.table.base = inner[2]->str(); i++; } else { throw ParseException("invalid table", inner.line, inner.col); } } if (i == s.size()) { return; } if (!s[i]->dollared()) { if (s[i]->str() == FUNCREF) { // (table type (elem ..)) parseInnerElem(*s[i + 1]); if (wasm.table.segments.size() > 0) { wasm.table.initial = wasm.table.max = wasm.table.segments[0].data.size(); } else { wasm.table.initial = wasm.table.max = 0; } return; } // first element isn't dollared, and isn't funcref. this could be old syntax // for (table 0 1) which means function 0 and 1, or it could be (table // initial max? type), look for type if (s[s.size() - 1]->str() == FUNCREF) { // (table initial max? type) if (i < s.size() - 1) { wasm.table.initial = atoi(s[i++]->c_str()); } if (i < s.size() - 1) { wasm.table.max = atoi(s[i++]->c_str()); } return; } } // old notation (table func1 func2 ..) parseInnerElem(s, i); if (wasm.table.segments.size() > 0) { wasm.table.initial = wasm.table.max = wasm.table.segments[0].data.size(); } else { wasm.table.initial = wasm.table.max = 0; } } void SExpressionWasmBuilder::parseElem(Element& s) { Index i = 1; if (!s[i]->isList()) { // the table is named i++; } auto* offset = parseExpression(s[i++]); parseInnerElem(s, i, offset); } void SExpressionWasmBuilder::parseInnerElem(Element& s, Index i, Expression* offset) { if (!wasm.table.exists) { throw ParseException("elem without table", s.line, s.col); } if (!offset) { offset = allocator.alloc<Const>()->set(Literal(int32_t(0))); } Table::Segment segment(offset); for (; i < s.size(); i++) { segment.data.push_back(getFunctionName(*s[i])); } wasm.table.segments.push_back(segment); } void SExpressionWasmBuilder::parseType(Element& s) { std::vector<Type> params; std::vector<Type> results; size_t i = 1; if (s[i]->isStr()) { std::string name = s[i]->str().str; if (signatureIndices.find(name) != signatureIndices.end()) { throw ParseException("duplicate function type", s.line, s.col); } signatureIndices[name] = signatures.size(); i++; } Element& func = *s[i]; for (size_t k = 1; k < func.size(); k++) { Element& curr = *func[k]; if (elementStartsWith(curr, PARAM)) { auto newParams = parseParamOrLocal(curr); params.insert(params.end(), newParams.begin(), newParams.end()); } else if (elementStartsWith(curr, RESULT)) { auto newResults = parseResults(curr); results.insert(results.end(), newResults.begin(), newResults.end()); } } signatures.emplace_back(Type(params), Type(results)); } void SExpressionWasmBuilder::parseEvent(Element& s, bool preParseImport) { auto event = make_unique<Event>(); size_t i = 1; // Parse name if (s[i]->isStr() && s[i]->dollared()) { auto& inner = *s[i++]; event->name = inner.str(); if (wasm.getEventOrNull(event->name)) { throw ParseException("duplicate event", inner.line, inner.col); } } else { event->name = Name::fromInt(eventCounter); assert(!wasm.getEventOrNull(event->name)); } eventCounter++; eventNames.push_back(event->name); // Parse import, if any if (i < s.size() && elementStartsWith(*s[i], IMPORT)) { assert(preParseImport && "import element in non-preParseImport mode"); auto& importElem = *s[i++]; if (importElem.size() != 3) { throw ParseException("invalid import", importElem.line, importElem.col); } if (!importElem[1]->isStr() || importElem[1]->dollared()) { throw ParseException( "invalid import module name", importElem[1]->line, importElem[1]->col); } if (!importElem[2]->isStr() || importElem[2]->dollared()) { throw ParseException( "invalid import base name", importElem[2]->line, importElem[2]->col); } event->module = importElem[1]->str(); event->base = importElem[2]->str(); } // Parse export, if any if (i < s.size() && elementStartsWith(*s[i], EXPORT)) { auto& exportElem = *s[i++]; if (event->module.is()) { throw ParseException("import and export cannot be specified together", exportElem.line, exportElem.col); } if (exportElem.size() != 2) { throw ParseException("invalid export", exportElem.line, exportElem.col); } if (!exportElem[1]->isStr() || exportElem[1]->dollared()) { throw ParseException( "invalid export name", exportElem[1]->line, exportElem[1]->col); } auto ex = make_unique<Export>(); ex->name = exportElem[1]->str(); if (wasm.getExportOrNull(ex->name)) { throw ParseException( "duplicate export", exportElem[1]->line, exportElem[1]->col); } ex->value = event->name; ex->kind = ExternalKind::Event; } // Parse attribute if (i >= s.size()) { throw ParseException("event does not have an attribute", s.line, s.col); } auto& attrElem = *s[i++]; if (!elementStartsWith(attrElem, ATTR) || attrElem.size() != 2) { throw ParseException("invalid attribute", attrElem.line, attrElem.col); } if (!attrElem[1]->isStr()) { throw ParseException( "invalid attribute", attrElem[1]->line, attrElem[1]->col); } event->attribute = atoi(attrElem[1]->c_str()); // Parse typeuse i = parseTypeUse(s, i, event->sig); // If there are more elements, they are invalid if (i < s.size()) { throw ParseException("invalid element", s[i]->line, s[i]->col); } wasm.addEvent(event.release()); } } // namespace wasm