summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--candle-examples/examples/chinese_clip/main.rs224
-rw-r--r--candle-transformers/src/models/chinese_clip/mod.rs208
-rw-r--r--candle-transformers/src/models/chinese_clip/text_model.rs540
-rw-r--r--candle-transformers/src/models/chinese_clip/vision_model.rs385
-rw-r--r--candle-transformers/src/models/mod.rs1
5 files changed, 1358 insertions, 0 deletions
diff --git a/candle-examples/examples/chinese_clip/main.rs b/candle-examples/examples/chinese_clip/main.rs
new file mode 100644
index 00000000..5cee1fc8
--- /dev/null
+++ b/candle-examples/examples/chinese_clip/main.rs
@@ -0,0 +1,224 @@
+#[cfg(feature = "mkl")]
+extern crate intel_mkl_src;
+
+#[cfg(feature = "accelerate")]
+extern crate accelerate_src;
+
+use candle::{DType, Device, Tensor};
+use candle_nn as nn;
+use candle_transformers::models::chinese_clip::{ChineseClipConfig, ChineseClipModel};
+use clap::Parser;
+use tokenizers::Tokenizer;
+
+#[derive(Parser)]
+struct Args {
+ #[arg(long)]
+ model: Option<String>,
+
+ #[arg(long)]
+ tokenizer: Option<String>,
+
+ #[arg(long, use_value_delimiter = true)]
+ images: Option<Vec<String>>,
+
+ #[arg(long)]
+ cpu: bool,
+
+ #[arg(long, use_value_delimiter = true)]
+ sequences: Option<Vec<String>>,
+}
+
+fn main() -> anyhow::Result<()> {
+ let args = Args::parse();
+
+ tracing_subscriber::fmt::init();
+
+ let device = candle_examples::device(args.cpu)?;
+ let var = load_weights(args.model, &device)?;
+ let clip_model = ChineseClipModel::new(var, &ChineseClipConfig::clip_vit_base_patch16())?;
+ tracing::info!("Transformer loaded. ");
+
+ let (pixel_values, vec_imgs) = load_images(args.images, &device)?;
+ tracing::info!("Images loaded. ");
+
+ let tokenizer = load_tokenizer()?;
+ let (input_ids, type_ids, attention_mask, text_sequences) =
+ tokenize_sequences(args.sequences, &tokenizer, &device)?;
+
+ tracing::info!("Computing ... ");
+ let (_logits_per_text, logits_per_image) = clip_model.forward(
+ &pixel_values,
+ &input_ids,
+ Some(&type_ids),
+ Some(&attention_mask),
+ )?;
+ let softmax_image = nn::ops::softmax(&logits_per_image, 1)?;
+
+ let softmax_image_vec = softmax_image.flatten_all()?.to_vec1::<f32>()?;
+
+ let probability_vec = softmax_image_vec
+ .iter()
+ .map(|v| v * 100.0)
+ .collect::<Vec<f32>>();
+
+ let probability_per_image = probability_vec.len() / vec_imgs.len();
+
+ for (i, img) in vec_imgs.iter().enumerate() {
+ let start = i * probability_per_image;
+ let end = start + probability_per_image;
+ let prob = &probability_vec[start..end];
+ tracing::info!("\n\nResults for image: {}\n", img);
+
+ for (i, p) in prob.iter().enumerate() {
+ tracing::info!("Probability: {:.4}% Text: {} ", p, text_sequences[i]);
+ }
+ }
+
+ Ok(())
+}
+
+pub fn load_weights(model: Option<String>, device: &Device) -> anyhow::Result<nn::VarBuilder> {
+ let model_file = match model {
+ None => {
+ let api = hf_hub::api::sync::Api::new()?;
+ let repo = hf_hub::Repo::with_revision(
+ "OFA-Sys/chinese-clip-vit-base-patch16".to_string(),
+ hf_hub::RepoType::Model,
+ "refs/pr/3".to_string(),
+ );
+ let api = api.repo(repo);
+ api.get("model.safetensors")?
+ }
+ Some(model) => model.into(),
+ };
+
+ Ok(unsafe { nn::VarBuilder::from_mmaped_safetensors(&[model_file], DType::F32, device)? })
+}
+
+pub fn load_tokenizer() -> anyhow::Result<Tokenizer> {
+ let tokenizer_file = {
+ let api = hf_hub::api::sync::Api::new()?;
+ let repo = hf_hub::Repo::with_revision(
+ "OFA-Sys/chinese-clip-vit-base-patch16".to_string(),
+ hf_hub::RepoType::Model,
+ "refs/pr/3".to_string(),
+ );
+ let api = api.repo(repo);
+ api.get("tokenizer.json")?
+ };
+
+ Tokenizer::from_file(tokenizer_file).map_err(anyhow::Error::msg)
+}
+
+pub fn tokenize_sequences(
+ sequences: Option<Vec<String>>,
+ tokenizer: &Tokenizer,
+ device: &Device,
+) -> anyhow::Result<(Tensor, Tensor, Tensor, Vec<String>)> {
+ let vec_seq = match sequences {
+ Some(seq) => seq,
+ None => vec![
+ "自行车比赛".to_string(),
+ "两只猫咪".to_string(),
+ "拿着蜡烛的机器人".to_string(),
+ ],
+ };
+
+ let mut input_ids = vec![];
+ let mut type_ids = vec![];
+ let mut attention_mask = vec![];
+ let mut max_len = 0;
+
+ for seq in vec_seq.clone() {
+ let encoding = tokenizer.encode(seq, true).map_err(anyhow::Error::msg)?;
+ input_ids.push(encoding.get_ids().to_vec());
+ type_ids.push(encoding.get_type_ids().to_vec());
+ attention_mask.push(encoding.get_attention_mask().to_vec());
+ if encoding.get_ids().len() > max_len {
+ max_len = encoding.get_ids().len();
+ }
+ }
+
+ let pad_id = *tokenizer
+ .get_vocab(true)
+ .get("[PAD]")
+ .ok_or(anyhow::Error::msg("No pad token"))?;
+
+ let input_ids: Vec<Vec<u32>> = input_ids
+ .iter_mut()
+ .map(|item| {
+ item.extend(vec![pad_id; max_len - item.len()]);
+ item.to_vec()
+ })
+ .collect();
+
+ let type_ids: Vec<Vec<u32>> = type_ids
+ .iter_mut()
+ .map(|item| {
+ item.extend(vec![0; max_len - item.len()]);
+ item.to_vec()
+ })
+ .collect();
+
+ let attention_mask: Vec<Vec<u32>> = attention_mask
+ .iter_mut()
+ .map(|item| {
+ item.extend(vec![0; max_len - item.len()]);
+ item.to_vec()
+ })
+ .collect();
+
+ let input_ids = Tensor::new(input_ids, device)?;
+ let type_ids = Tensor::new(type_ids, device)?;
+ let attention_mask = Tensor::new(attention_mask, device)?;
+
+ Ok((input_ids, type_ids, attention_mask, vec_seq))
+}
+
+pub fn load_images(
+ images: Option<Vec<String>>,
+ device: &Device,
+) -> anyhow::Result<(Tensor, Vec<String>)> {
+ let vec_imgs = match images {
+ Some(imgs) => imgs,
+ None => vec![
+ "candle-examples/examples/stable-diffusion/assets/stable-diffusion-xl.jpg".to_string(),
+ "candle-examples/examples/yolo-v8/assets/bike.jpg".to_string(),
+ ],
+ };
+
+ let mut images = vec![];
+
+ for path in vec_imgs.iter() {
+ let tensor = load_image(path, 224, device)?;
+ images.push(tensor);
+ }
+
+ let images = Tensor::stack(&images, 0)?.to_device(device)?;
+ Ok((images, vec_imgs))
+}
+
+fn load_image<T: AsRef<std::path::Path>>(
+ path: T,
+ image_size: usize,
+ device: &Device,
+) -> anyhow::Result<Tensor> {
+ let img = image::ImageReader::open(path)?.decode()?;
+ let (height, width) = (image_size, image_size);
+ let img = img.resize_to_fill(
+ width as u32,
+ height as u32,
+ image::imageops::FilterType::Triangle,
+ );
+
+ let img = img.to_rgb8().into_raw();
+ let img = Tensor::from_vec(img, (height, width, 3), device)?.permute((2, 0, 1))?;
+ let mean = Tensor::new(&[0.48145466f32, 0.4578275, 0.40821073], device)?.reshape((3, 1, 1))?;
+ let std =
+ Tensor::new(&[0.26862954f32, 0.261_302_6, 0.275_777_1], device)?.reshape((3, 1, 1))?;
+ let img = (img.to_dtype(DType::F32)? / 255.)?
+ .broadcast_sub(&mean)?
+ .broadcast_div(&std)?;
+
+ Ok(img)
+}
diff --git a/candle-transformers/src/models/chinese_clip/mod.rs b/candle-transformers/src/models/chinese_clip/mod.rs
new file mode 100644
index 00000000..88472f0b
--- /dev/null
+++ b/candle-transformers/src/models/chinese_clip/mod.rs
@@ -0,0 +1,208 @@
+//! Chinese contrastive Language-Image Pre-Training
+//!
+//! Chinese contrastive Language-Image Pre-Training (CLIP) is an architecture trained on
+//! pairs of images with related texts.
+//!
+//! https://github.com/OFA-Sys/Chinese-CLIP
+//! https://github.com/huggingface/transformers/blob/5af7d41e49bbfc8319f462eb45253dcb3863dfb7/src/transformers/models/chinese_clip/modeling_chinese_clip.py
+
+use candle::{Module, Result, Tensor, D};
+use candle_nn as nn;
+
+use text_model::ChineseClipTextTransformer;
+use vision_model::ChineseClipVisionTransformer;
+
+pub mod text_model;
+pub mod vision_model;
+
+#[derive(Debug, Clone, Copy)]
+pub enum Activation {
+ QuickGelu,
+ Gelu,
+ GeluNew,
+ Relu,
+}
+
+impl From<String> for Activation {
+ fn from(value: String) -> Self {
+ match value.as_str() {
+ "quick_gelu" => Activation::QuickGelu,
+ "gelu" => Activation::Gelu,
+ "gelu_new" => Activation::GeluNew,
+ "relu" => Activation::Relu,
+ _ => panic!("Invalid activation function: {}", value),
+ }
+ }
+}
+
+impl Module for Activation {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ match self {
+ Activation::QuickGelu => xs * nn::ops::sigmoid(&(xs * 1.702f64)?)?,
+ Activation::Gelu => xs.gelu_erf(),
+ Activation::GeluNew => xs.gelu(),
+ Activation::Relu => xs.relu(),
+ }
+ }
+}
+
+#[derive(Clone, Debug)]
+pub struct ChineseClipConfig {
+ pub text_config: text_model::ChineseClipTextConfig,
+ pub vision_config: vision_model::ChineseClipVisionConfig,
+ pub projection_dim: usize,
+ pub logit_scale_init_value: f32,
+ pub image_size: usize,
+}
+
+impl ChineseClipConfig {
+ /// referer: https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16/blob/main/config.json
+ pub fn clip_vit_base_patch16() -> Self {
+ let text_config = text_model::ChineseClipTextConfig::clip_vit_base_patch16();
+ let vision_config = vision_model::ChineseClipVisionConfig::clip_vit_base_patch16();
+
+ Self {
+ text_config,
+ vision_config,
+ projection_dim: 512,
+ logit_scale_init_value: 2.6592,
+ image_size: 512,
+ }
+ }
+}
+
+#[derive(Clone, Debug)]
+pub enum EncoderConfig {
+ Text(text_model::ChineseClipTextConfig),
+ Vision(vision_model::ChineseClipVisionConfig),
+}
+
+impl EncoderConfig {
+ pub fn embed_dim(&self) -> usize {
+ match self {
+ Self::Text(c) => c.hidden_size,
+ Self::Vision(c) => c.hidden_size,
+ }
+ }
+
+ pub fn num_attention_heads(&self) -> usize {
+ match self {
+ Self::Text(c) => c.num_attention_heads,
+ Self::Vision(c) => c.num_attention_heads,
+ }
+ }
+
+ pub fn intermediate_size(&self) -> usize {
+ match self {
+ Self::Text(c) => c.intermediate_size,
+ Self::Vision(c) => c.intermediate_size,
+ }
+ }
+
+ pub fn num_hidden_layers(&self) -> usize {
+ match self {
+ Self::Text(c) => c.num_hidden_layers,
+ Self::Vision(c) => c.num_hidden_layers,
+ }
+ }
+
+ pub fn activation(&self) -> Activation {
+ match self {
+ Self::Text(c) => c.hidden_act,
+ Self::Vision(c) => c.hidden_act,
+ }
+ }
+
+ pub fn layer_norm_eps(&self) -> f64 {
+ match self {
+ Self::Text(c) => c.layer_norm_eps,
+ Self::Vision(c) => c.layer_norm_eps,
+ }
+ }
+}
+
+#[derive(Clone, Debug)]
+pub struct ChineseClipModel {
+ text_model: ChineseClipTextTransformer,
+ vision_model: ChineseClipVisionTransformer,
+ visual_projection: nn::Linear,
+ text_projection: nn::Linear,
+ logit_scale: Tensor,
+}
+
+impl ChineseClipModel {
+ pub fn new(vs: nn::VarBuilder, c: &ChineseClipConfig) -> Result<Self> {
+ let text_model = ChineseClipTextTransformer::new(vs.pp("text_model"), &c.text_config)?;
+
+ let vision_model =
+ ChineseClipVisionTransformer::new(vs.pp("vision_model"), &c.vision_config)?;
+
+ let vision_embed_dim = c.vision_config.hidden_size;
+ let vision_projection = nn::linear_no_bias(
+ vision_embed_dim,
+ c.projection_dim,
+ vs.pp("visual_projection"),
+ )?;
+
+ let text_embed_dim = c.text_config.hidden_size;
+ let text_projection =
+ nn::linear_no_bias(text_embed_dim, c.projection_dim, vs.pp("text_projection"))?;
+
+ let logit_scale = if vs.contains_tensor("logit_scale") {
+ vs.get(&[], "logit_scale")?
+ } else {
+ Tensor::new(&[c.logit_scale_init_value], vs.device())?
+ };
+
+ Ok(Self {
+ text_model,
+ vision_model,
+ visual_projection: vision_projection,
+ text_projection,
+ logit_scale,
+ })
+ }
+
+ pub fn get_text_features(
+ &self,
+ input_ids: &Tensor,
+ token_type_ids: Option<&Tensor>,
+ attention_mask: Option<&Tensor>,
+ ) -> Result<Tensor> {
+ let output = self
+ .text_model
+ .forward(input_ids, token_type_ids, attention_mask)?;
+ self.text_projection.forward(&output)
+ }
+
+ pub fn get_image_features(&self, pixel_values: &Tensor) -> Result<Tensor> {
+ pixel_values
+ .apply(&self.vision_model)?
+ .apply(&self.visual_projection)
+ }
+
+ pub fn forward(
+ &self,
+ pixel_values: &Tensor,
+ input_ids: &Tensor,
+ token_type_ids: Option<&Tensor>,
+ attention_mask: Option<&Tensor>,
+ ) -> Result<(Tensor, Tensor)> {
+ let image_features = self.get_image_features(pixel_values)?;
+ let text_features = self.get_text_features(input_ids, token_type_ids, attention_mask)?;
+
+ let image_features_normalized = div_l2_norm(&image_features)?;
+ let text_features_normalized = div_l2_norm(&text_features)?;
+
+ let logits_per_text = text_features_normalized.matmul(&image_features_normalized.t()?)?;
+ let logit_scale = self.logit_scale.exp()?;
+ let logits_per_text = logits_per_text.broadcast_mul(&logit_scale)?;
+ let logits_per_image = logits_per_text.t()?;
+ Ok((logits_per_text, logits_per_image))
+ }
+}
+
+pub fn div_l2_norm(v: &Tensor) -> Result<Tensor> {
+ let l2_norm = v.sqr()?.sum_keepdim(D::Minus1)?.sqrt()?;
+ v.broadcast_div(&l2_norm)
+}
diff --git a/candle-transformers/src/models/chinese_clip/text_model.rs b/candle-transformers/src/models/chinese_clip/text_model.rs
new file mode 100644
index 00000000..19499709
--- /dev/null
+++ b/candle-transformers/src/models/chinese_clip/text_model.rs
@@ -0,0 +1,540 @@
+//! Chinese contrastive Language-Image Pre-Training
+//!
+//! Chinese contrastive Language-Image Pre-Training (CLIP) is an architecture trained on
+//! pairs of images with related texts.
+//!
+//! https://github.com/OFA-Sys/Chinese-CLIP
+//! https://github.com/huggingface/transformers/blob/5af7d41e49bbfc8319f462eb45253dcb3863dfb7/src/transformers/models/chinese_clip/modeling_chinese_clip.py
+
+use candle::{DType, Device, IndexOp, Module, Result, Tensor};
+use candle_nn as nn;
+
+use super::Activation;
+
+/// Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
+/// positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
+/// [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
+/// For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
+/// with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
+#[derive(Clone, Debug)]
+pub enum PositionEmbeddingType {
+ Absolute,
+ RelativeKey,
+ RelativeKeyQuery,
+}
+
+#[derive(Clone, Debug)]
+pub struct ChineseClipTextConfig {
+ pub vocab_size: usize,
+ pub hidden_size: usize,
+ pub num_hidden_layers: usize,
+ pub num_attention_heads: usize,
+ pub intermediate_size: usize,
+ pub hidden_act: Activation,
+ pub hidden_dropout_prob: f32,
+ pub attention_probs_dropout_prob: f64,
+ pub max_position_embeddings: usize,
+ pub type_vocab_size: usize,
+ pub initializer_range: f64,
+ pub initializer_factor: f64,
+ pub layer_norm_eps: f64,
+ pub pad_token_id: usize,
+ pub position_embedding_type: PositionEmbeddingType,
+ pub use_cache: bool,
+}
+
+impl Default for ChineseClipTextConfig {
+ fn default() -> Self {
+ Self {
+ vocab_size: 30522,
+ hidden_size: 768,
+ num_hidden_layers: 12,
+ num_attention_heads: 12,
+ intermediate_size: 3072,
+ hidden_act: Activation::Gelu,
+ hidden_dropout_prob: 0.1,
+ attention_probs_dropout_prob: 0.1,
+ max_position_embeddings: 512,
+ type_vocab_size: 2,
+ initializer_range: 0.02,
+ initializer_factor: 1.0,
+ layer_norm_eps: 1e-12,
+ pad_token_id: 0,
+ position_embedding_type: PositionEmbeddingType::Absolute,
+ use_cache: true,
+ }
+ }
+}
+
+impl ChineseClipTextConfig {
+ /// referer: https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16/blob/main/config.json
+ pub fn clip_vit_base_patch16() -> Self {
+ Self {
+ vocab_size: 21128,
+ hidden_size: 768,
+ num_hidden_layers: 12,
+ num_attention_heads: 12,
+ intermediate_size: 3072,
+ hidden_act: Activation::Gelu,
+ hidden_dropout_prob: 0.1,
+ attention_probs_dropout_prob: 0.1,
+ max_position_embeddings: 512,
+ type_vocab_size: 2,
+ initializer_range: 0.02,
+ initializer_factor: 1.0,
+ layer_norm_eps: 1e-12,
+ pad_token_id: 0,
+ position_embedding_type: PositionEmbeddingType::Absolute,
+ use_cache: true,
+ }
+ }
+}
+
+#[derive(Clone, Debug)]
+pub struct ChineseClipTextEmbeddings {
+ word_embeddings: nn::Embedding,
+ position_embeddings: nn::Embedding,
+ token_type_embeddings: nn::Embedding,
+ layer_norm: nn::LayerNorm,
+ dropout: nn::Dropout,
+ position_embedding_type: PositionEmbeddingType,
+ position_ids: Tensor,
+ token_type_ids: Tensor,
+}
+
+impl ChineseClipTextEmbeddings {
+ pub fn new(var: nn::VarBuilder, config: &ChineseClipTextConfig) -> Result<Self> {
+ let word_embeddings = nn::embedding(
+ config.vocab_size,
+ config.hidden_size,
+ var.pp("word_embeddings"),
+ )?;
+ let position_embeddings = nn::embedding(
+ config.max_position_embeddings,
+ config.hidden_size,
+ var.pp("position_embeddings"),
+ )?;
+ let token_type_embeddings = nn::embedding(
+ config.type_vocab_size,
+ config.hidden_size,
+ var.pp("token_type_embeddings"),
+ )?;
+ let layer_norm = nn::layer_norm::<f64>(
+ config.hidden_size,
+ config.layer_norm_eps,
+ var.pp("LayerNorm"),
+ )?;
+ let dropout = nn::Dropout::new(config.hidden_dropout_prob);
+ let position_ids =
+ Tensor::arange(0u32, config.max_position_embeddings as u32, var.device())?
+ .unsqueeze(0)?;
+ let token_type_ids = Tensor::zeros(position_ids.shape(), DType::I64, var.device())?;
+
+ Ok(Self {
+ word_embeddings,
+ position_embeddings,
+ token_type_embeddings,
+ layer_norm,
+ dropout,
+ position_embedding_type: config.position_embedding_type.clone(),
+ position_ids,
+ token_type_ids,
+ })
+ }
+
+ fn forward(&self, xs: &Tensor, token_type_ids: Option<&Tensor>) -> Result<Tensor> {
+ let (_batch_size, seq_length) = xs.dims2()?;
+ let position_ids = (0..seq_length as u32).collect::<Vec<_>>();
+ let position_ids = self.position_ids.index_select(
+ &Tensor::new(&position_ids[..], self.position_ids.device())?,
+ 1,
+ )?;
+
+ let word_embeddings = self.word_embeddings.forward(xs)?;
+
+ let token_type_ids = match token_type_ids {
+ Some(token_type_ids) => token_type_ids,
+ None => &self.token_type_ids.i((.., 0..seq_length))?,
+ };
+ let token_type_ids = token_type_ids.expand(xs.shape())?;
+ let token_type_embeddings = self.token_type_embeddings.forward(&token_type_ids)?;
+
+ let embeddings = (&word_embeddings + token_type_embeddings)?;
+ let embeddings = match self.position_embedding_type {
+ PositionEmbeddingType::Absolute => {
+ let position_embeddings = self.position_embeddings.forward(&position_ids)?;
+ let position_embeddings = position_embeddings.expand(embeddings.shape())?;
+ (embeddings + position_embeddings)?
+ }
+ _ => embeddings,
+ };
+ let embeddings = self.layer_norm.forward(&embeddings)?;
+ let embeddings = self.dropout.forward(&embeddings, false)?;
+ Ok(embeddings)
+ }
+}
+
+/// Copied from [`crate::models::bert::BertSelfOutput`] to [`ChineseClipTextSelfOutput`]
+#[derive(Clone, Debug)]
+struct ChineseClipTextSelfOutput {
+ dense: nn::Linear,
+ layer_norm: nn::LayerNorm,
+ dropout: nn::Dropout,
+ span: tracing::Span,
+}
+
+impl ChineseClipTextSelfOutput {
+ fn new(var: nn::VarBuilder, config: &ChineseClipTextConfig) -> Result<Self> {
+ let dense = nn::linear(config.hidden_size, config.hidden_size, var.pp("dense"))?;
+ let layer_norm = nn::layer_norm(
+ config.hidden_size,
+ config.layer_norm_eps,
+ var.pp("LayerNorm"),
+ )?;
+ let dropout = nn::Dropout::new(config.hidden_dropout_prob);
+ Ok(Self {
+ dense,
+ layer_norm,
+ dropout,
+ span: tracing::span!(tracing::Level::TRACE, "self-out"),
+ })
+ }
+
+ fn forward(&self, hidden_states: &Tensor, input_tensor: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ let hidden_states = self.dense.forward(hidden_states)?;
+ let hidden_states = self.dropout.forward(&hidden_states, false)?;
+ self.layer_norm.forward(&(hidden_states + input_tensor)?)
+ }
+}
+
+/// Copied from [`crate::models::bert::BertSelfAttention`] to [`ChineseClipTextSelfAttention`]
+#[derive(Clone, Debug)]
+struct ChineseClipTextSelfAttention {
+ query: nn::Linear,
+ key: nn::Linear,
+ value: nn::Linear,
+ dropout: nn::Dropout,
+ num_attention_heads: usize,
+ attention_head_size: usize,
+ span: tracing::Span,
+ span_softmax: tracing::Span,
+}
+
+impl ChineseClipTextSelfAttention {
+ fn new(var: nn::VarBuilder, config: &ChineseClipTextConfig) -> Result<Self> {
+ let attention_head_size = config.hidden_size / config.num_attention_heads;
+ let all_head_size = config.num_attention_heads * attention_head_size;
+ let dropout = nn::Dropout::new(config.hidden_dropout_prob);
+ let hidden_size = config.hidden_size;
+ let query = nn::linear(hidden_size, all_head_size, var.pp("query"))?;
+ let value = nn::linear(hidden_size, all_head_size, var.pp("value"))?;
+ let key = nn::linear(hidden_size, all_head_size, var.pp("key"))?;
+ Ok(Self {
+ query,
+ key,
+ value,
+ dropout,
+ num_attention_heads: config.num_attention_heads,
+ attention_head_size,
+ span: tracing::span!(tracing::Level::TRACE, "self-attn"),
+ span_softmax: tracing::span!(tracing::Level::TRACE, "softmax"),
+ })
+ }
+
+ fn transpose_for_scores(&self, xs: &Tensor) -> Result<Tensor> {
+ let mut new_x_shape = xs.dims().to_vec();
+ new_x_shape.pop();
+ new_x_shape.push(self.num_attention_heads);
+ new_x_shape.push(self.attention_head_size);
+ let xs = xs.reshape(new_x_shape.as_slice())?.transpose(1, 2)?;
+ xs.contiguous()
+ }
+
+ fn forward(&self, hidden_states: &Tensor, attention_mask: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ let query_layer = self.query.forward(hidden_states)?;
+ let key_layer = self.key.forward(hidden_states)?;
+ let value_layer = self.value.forward(hidden_states)?;
+
+ let query_layer = self.transpose_for_scores(&query_layer)?;
+ let key_layer = self.transpose_for_scores(&key_layer)?;
+ let value_layer = self.transpose_for_scores(&value_layer)?;
+
+ let attention_scores = query_layer.matmul(&key_layer.t()?)?;
+ let attention_scores = (attention_scores / (self.attention_head_size as f64).sqrt())?;
+ let attention_scores = attention_scores.broadcast_add(attention_mask)?;
+ let attention_probs = {
+ let _enter_sm = self.span_softmax.enter();
+ nn::ops::softmax(&attention_scores, candle::D::Minus1)?
+ };
+ let attention_probs = self.dropout.forward(&attention_probs, false)?;
+
+ let context_layer = attention_probs.matmul(&value_layer)?;
+ let context_layer = context_layer.transpose(1, 2)?.contiguous()?;
+ let context_layer = context_layer.flatten_from(candle::D::Minus2)?;
+ Ok(context_layer)
+ }
+}
+
+/// Copied from [`crate::models::bert::BertAttention`] to [`ChineseClipTextAttention`]
+#[derive(Clone, Debug)]
+struct ChineseClipTextAttention {
+ self_attention: ChineseClipTextSelfAttention,
+ self_output: ChineseClipTextSelfOutput,
+ span: tracing::Span,
+}
+
+impl ChineseClipTextAttention {
+ fn new(var: nn::VarBuilder, config: &ChineseClipTextConfig) -> Result<Self> {
+ let self_attention = ChineseClipTextSelfAttention::new(var.pp("self"), config)?;
+ let self_output = ChineseClipTextSelfOutput::new(var.pp("output"), config)?;
+ Ok(Self {
+ self_attention,
+ self_output,
+ span: tracing::span!(tracing::Level::TRACE, "attn"),
+ })
+ }
+
+ fn forward(&self, hidden_states: &Tensor, attention_mask: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ let self_outputs = self.self_attention.forward(hidden_states, attention_mask)?;
+ let attention_output = self.self_output.forward(&self_outputs, hidden_states)?;
+ Ok(attention_output)
+ }
+}
+
+type HiddenActLayer = Activation;
+
+/// Copied from [`crate::models::bert::BertIntermediate`] to [`ChineseClipTextIntermediate`]
+#[derive(Clone, Debug)]
+struct ChineseClipTextIntermediate {
+ dense: nn::Linear,
+ intermediate_act: HiddenActLayer,
+ span: tracing::Span,
+}
+
+impl ChineseClipTextIntermediate {
+ fn new(var: nn::VarBuilder, config: &ChineseClipTextConfig) -> Result<Self> {
+ let dense = nn::linear(
+ config.hidden_size,
+ config.intermediate_size,
+ var.pp("dense"),
+ )?;
+ Ok(Self {
+ dense,
+ intermediate_act: config.hidden_act,
+ span: tracing::span!(tracing::Level::TRACE, "inter"),
+ })
+ }
+}
+
+impl Module for ChineseClipTextIntermediate {
+ fn forward(&self, hidden_states: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ let hidden_states = self.dense.forward(hidden_states)?;
+ let ys = self.intermediate_act.forward(&hidden_states)?;
+ Ok(ys)
+ }
+}
+
+/// Copied from [`crate::models::bert::BertOutput`] to [`ChineseClipTextOutput`]
+#[derive(Clone, Debug)]
+struct ChineseClipTextOutput {
+ dense: nn::Linear,
+ layer_norm: nn::LayerNorm,
+ dropout: nn::Dropout,
+ span: tracing::Span,
+}
+
+impl ChineseClipTextOutput {
+ fn new(var: nn::VarBuilder, config: &ChineseClipTextConfig) -> Result<Self> {
+ let dense = nn::linear(
+ config.intermediate_size,
+ config.hidden_size,
+ var.pp("dense"),
+ )?;
+ let layer_norm = nn::layer_norm(
+ config.hidden_size,
+ config.layer_norm_eps,
+ var.pp("LayerNorm"),
+ )?;
+ let dropout = nn::Dropout::new(config.hidden_dropout_prob);
+ Ok(Self {
+ dense,
+ layer_norm,
+ dropout,
+ span: tracing::span!(tracing::Level::TRACE, "out"),
+ })
+ }
+
+ fn forward(&self, hidden_states: &Tensor, input_tensor: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ let hidden_states = self.dense.forward(hidden_states)?;
+ let hidden_states = self.dropout.forward(&hidden_states, false)?;
+ self.layer_norm.forward(&(hidden_states + input_tensor)?)
+ }
+}
+
+/// Copied from [`crate::models::bert::BertLayer`] to [`ChineseClipTextLayer`]
+#[derive(Clone, Debug)]
+struct ChineseClipTextLayer {
+ attention: ChineseClipTextAttention,
+ intermediate: ChineseClipTextIntermediate,
+ output: ChineseClipTextOutput,
+ span: tracing::Span,
+}
+
+impl ChineseClipTextLayer {
+ fn new(var: nn::VarBuilder, config: &ChineseClipTextConfig) -> Result<Self> {
+ let attention = ChineseClipTextAttention::new(var.pp("attention"), config)?;
+ let intermediate = ChineseClipTextIntermediate::new(var.pp("intermediate"), config)?;
+ let output = ChineseClipTextOutput::new(var.pp("output"), config)?;
+ Ok(Self {
+ attention,
+ intermediate,
+ output,
+ span: tracing::span!(tracing::Level::TRACE, "layer"),
+ })
+ }
+
+ fn forward(&self, hidden_states: &Tensor, attention_mask: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ let attention_output = self.attention.forward(hidden_states, attention_mask)?;
+ // https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L523
+ let intermediate_output = self.intermediate.forward(&attention_output)?;
+ let layer_output = self
+ .output
+ .forward(&intermediate_output, &attention_output)?;
+ Ok(layer_output)
+ }
+}
+
+#[derive(Clone, Debug)]
+struct Tanh;
+
+impl Tanh {
+ pub fn new() -> Self {
+ Self {}
+ }
+}
+impl Module for Tanh {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ xs.tanh()
+ }
+}
+
+#[derive(Clone, Debug)]
+struct ChineseClipTextPooler {
+ dense: nn::Linear,
+ activation: Tanh,
+}
+
+impl ChineseClipTextPooler {
+ pub fn new(var: nn::VarBuilder, config: &ChineseClipTextConfig) -> Result<Self> {
+ let dense = nn::linear(config.hidden_size, config.hidden_size, var.pp("dense"))?;
+ let activation = Tanh::new();
+ Ok(Self { dense, activation })
+ }
+}
+
+impl Module for ChineseClipTextPooler {
+ fn forward(&self, hidden_states: &Tensor) -> Result<Tensor> {
+ let first_token_tensor = hidden_states.i((.., 0))?;
+ let pooled_output = self.dense.forward(&first_token_tensor)?;
+ let pooled_output = self.activation.forward(&pooled_output)?;
+ Ok(pooled_output)
+ }
+}
+
+#[derive(Clone, Debug)]
+struct ChineseClipTextEncoder {
+ layers: Vec<ChineseClipTextLayer>,
+ span: tracing::Span,
+}
+
+impl ChineseClipTextEncoder {
+ fn new(var: nn::VarBuilder, config: &ChineseClipTextConfig) -> Result<Self> {
+ let layers = (0..config.num_hidden_layers)
+ .map(|index| ChineseClipTextLayer::new(var.pp(format!("layer.{index}")), config))
+ .collect::<Result<Vec<_>>>()?;
+ let span = tracing::span!(tracing::Level::TRACE, "encoder");
+ Ok(ChineseClipTextEncoder { layers, span })
+ }
+
+ fn forward(&self, hidden_states: &Tensor, attention_mask: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ let mut hidden_states = hidden_states.clone();
+ // Use a loop rather than a fold as it's easier to modify when adding debug/...
+ for layer in self.layers.iter() {
+ hidden_states = layer.forward(&hidden_states, attention_mask)?
+ }
+ Ok(hidden_states)
+ }
+}
+
+#[derive(Clone, Debug)]
+pub struct ChineseClipTextTransformer {
+ embeddings: ChineseClipTextEmbeddings,
+ encoder: ChineseClipTextEncoder,
+ pooler: Option<ChineseClipTextPooler>,
+ pub device: Device,
+ span: tracing::Span,
+}
+
+impl ChineseClipTextTransformer {
+ pub fn new(var: nn::VarBuilder, config: &ChineseClipTextConfig) -> Result<Self> {
+ let embeddings = ChineseClipTextEmbeddings::new(var.pp("embeddings"), config)?;
+ let encoder = ChineseClipTextEncoder::new(var.pp("encoder"), config)?;
+ // see: https://github.com/huggingface/transformers/blob/e40bb4845e0eefb52ec1e9cac9c2446ab36aef81/src/transformers/models/chinese_clip/modeling_chinese_clip.py#L1362
+ // In the original Python version of the code, the pooler is not used, and there are no parameters for the pooler in the weight file.
+ let pooler = if var.contains_tensor("pooler") {
+ Some(ChineseClipTextPooler::new(var.pp("pooler"), config)?)
+ } else {
+ None
+ };
+ Ok(Self {
+ embeddings,
+ encoder,
+ pooler,
+ device: var.device().clone(),
+ span: tracing::span!(tracing::Level::TRACE, "model"),
+ })
+ }
+
+ pub fn forward(
+ &self,
+ input_ids: &Tensor,
+ token_type_ids: Option<&Tensor>,
+ attention_mask: Option<&Tensor>,
+ ) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ let embedding_output = self.embeddings.forward(input_ids, token_type_ids)?;
+ let attention_mask = match attention_mask {
+ Some(attention_mask) => attention_mask.clone(),
+ None => input_ids.ones_like()?,
+ };
+ // https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L995
+ let attention_mask = get_extended_attention_mask(&attention_mask, DType::F32)?;
+ let encoder_outputs = self.encoder.forward(&embedding_output, &attention_mask)?;
+ let encoder_output = encoder_outputs.i((.., 0, ..))?;
+ let pooled_output = match &self.pooler {
+ Some(pooler) => pooler.forward(&encoder_output)?,
+ None => encoder_output,
+ };
+
+ Ok(pooled_output)
+ }
+}
+
+fn get_extended_attention_mask(attention_mask: &Tensor, dtype: DType) -> Result<Tensor> {
+ let attention_mask = match attention_mask.rank() {
+ 3 => attention_mask.unsqueeze(1)?,
+ 2 => attention_mask.unsqueeze(1)?.unsqueeze(1)?,
+ _ => candle::bail!("Wrong shape for input_ids or attention_mask"),
+ };
+ let attention_mask = attention_mask.to_dtype(dtype)?;
+ // torch.finfo(dtype).min
+ (attention_mask.ones_like()? - &attention_mask)?
+ .broadcast_mul(&Tensor::try_from(f32::MIN)?.to_device(attention_mask.device())?)
+}
diff --git a/candle-transformers/src/models/chinese_clip/vision_model.rs b/candle-transformers/src/models/chinese_clip/vision_model.rs
new file mode 100644
index 00000000..2d345e0f
--- /dev/null
+++ b/candle-transformers/src/models/chinese_clip/vision_model.rs
@@ -0,0 +1,385 @@
+//! Chinese contrastive Language-Image Pre-Training
+//!
+//! Chinese contrastive Language-Image Pre-Training (CLIP) is an architecture trained on
+//! pairs of images with related texts.
+//!
+//! https://github.com/OFA-Sys/Chinese-CLIP
+//! https://github.com/huggingface/transformers/blob/5af7d41e49bbfc8319f462eb45253dcb3863dfb7/src/transformers/models/chinese_clip/modeling_chinese_clip.py
+
+use candle::{DType, IndexOp, Module, Result, Shape, Tensor, D};
+use candle_nn as nn;
+
+use super::{Activation, EncoderConfig};
+
+#[derive(Clone, Debug)]
+pub struct ChineseClipVisionConfig {
+ pub hidden_size: usize,
+ pub intermediate_size: usize,
+ pub projection_dim: usize,
+ pub num_hidden_layers: usize,
+ pub num_attention_heads: usize,
+ pub num_channels: usize,
+ pub image_size: usize,
+ pub patch_size: usize,
+ pub hidden_act: Activation,
+ pub layer_norm_eps: f64,
+ pub attention_dropout: f32,
+ pub initializer_range: f32,
+ pub initializer_factor: f32,
+}
+
+impl Default for ChineseClipVisionConfig {
+ fn default() -> Self {
+ ChineseClipVisionConfig {
+ hidden_size: 768,
+ intermediate_size: 3072,
+ projection_dim: 512,
+ num_hidden_layers: 12,
+ num_attention_heads: 12,
+ num_channels: 3,
+ image_size: 224,
+ patch_size: 32,
+ hidden_act: Activation::QuickGelu,
+ layer_norm_eps: 1e-5,
+ attention_dropout: 0.0,
+ initializer_range: 0.02,
+ initializer_factor: 1.0,
+ }
+ }
+}
+
+impl ChineseClipVisionConfig {
+ /// referer: https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16/blob/main/config.json
+ pub fn clip_vit_base_patch16() -> Self {
+ Self {
+ hidden_size: 768,
+ intermediate_size: 3072,
+ projection_dim: 512,
+ num_hidden_layers: 12,
+ num_attention_heads: 12,
+ num_channels: 3,
+ image_size: 224,
+ patch_size: 16,
+ hidden_act: Activation::QuickGelu,
+ layer_norm_eps: 1e-5,
+ attention_dropout: 0.0,
+ initializer_range: 0.02,
+ initializer_factor: 1.0,
+ }
+ }
+}
+
+#[derive(Clone, Debug)]
+pub struct ChineseClipVisionEmbeddings {
+ patch_embedding: nn::Conv2d,
+ position_ids: Tensor,
+ class_embedding: Tensor,
+ position_embedding: nn::Embedding,
+}
+
+impl ChineseClipVisionEmbeddings {
+ pub fn new(var: nn::VarBuilder, config: &ChineseClipVisionConfig) -> Result<Self> {
+ let embed_dim = config.hidden_size;
+ // originally nn.Parameter
+ let class_embedding = if var.contains_tensor("class_embedding") {
+ var.get(embed_dim, "class_embedding")?
+ } else {
+ Tensor::randn(0f32, 1f32, embed_dim, var.device())?
+ };
+
+ let num_patches = (config.image_size / config.patch_size).pow(2);
+ let num_positions = num_patches + 1;
+ let position_ids = Tensor::arange(0, num_positions as i64, var.device())?;
+
+ let conv2dconfig = nn::Conv2dConfig {
+ stride: config.patch_size,
+ ..Default::default()
+ };
+ let position_embedding =
+ nn::embedding(num_positions, embed_dim, var.pp("position_embedding"))?;
+ let patch_embedding = nn::conv2d_no_bias(
+ config.num_channels,
+ embed_dim,
+ config.patch_size,
+ conv2dconfig,
+ var.pp("patch_embedding"),
+ )?;
+ Ok(Self {
+ patch_embedding,
+ position_ids,
+ class_embedding,
+ position_embedding,
+ })
+ }
+}
+
+impl Module for ChineseClipVisionEmbeddings {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let batch_size = xs.shape().dims();
+ let patch_embeds = self
+ .patch_embedding
+ .forward(xs)?
+ .flatten_from(2)?
+ .transpose(1, 2)?;
+ let shape = Shape::from((batch_size[0], 1, self.class_embedding.dim(D::Minus1)?));
+ let class_embeds = self.class_embedding.expand(shape)?;
+ let embeddings = Tensor::cat(&[class_embeds, patch_embeds], 1)?;
+ let position_embedding = self.position_embedding.forward(&self.position_ids)?;
+ embeddings.broadcast_add(&position_embedding)
+ }
+}
+
+#[derive(Clone, Debug)]
+struct ChineseClipVisionAttention {
+ k_proj: nn::Linear,
+ v_proj: nn::Linear,
+ q_proj: nn::Linear,
+ out_proj: nn::Linear,
+ head_dim: usize,
+ scale: f64,
+ num_attention_heads: usize,
+}
+
+impl ChineseClipVisionAttention {
+ fn new(var: nn::VarBuilder, config: &EncoderConfig) -> Result<Self> {
+ let embed_dim = config.embed_dim();
+ let num_attention_heads = config.num_attention_heads();
+ let k_proj = nn::linear(embed_dim, embed_dim, var.pp("k_proj"))?;
+ let v_proj = nn::linear(embed_dim, embed_dim, var.pp("v_proj"))?;
+ let q_proj = nn::linear(embed_dim, embed_dim, var.pp("q_proj"))?;
+ let out_proj = nn::linear(embed_dim, embed_dim, var.pp("out_proj"))?;
+ let head_dim = embed_dim / num_attention_heads;
+ let scale = (head_dim as f64).powf(-0.5);
+
+ Ok(ChineseClipVisionAttention {
+ k_proj,
+ v_proj,
+ q_proj,
+ out_proj,
+ head_dim,
+ scale,
+ num_attention_heads,
+ })
+ }
+
+ fn shape(&self, xs: &Tensor, seq_len: usize, bsz: usize) -> Result<Tensor> {
+ xs.reshape((bsz, seq_len, self.num_attention_heads, self.head_dim))?
+ .transpose(1, 2)?
+ .contiguous()
+ }
+
+ fn forward(&self, xs: &Tensor, causal_attention_mask: Option<&Tensor>) -> Result<Tensor> {
+ let in_dtype = xs.dtype();
+ let (bsz, seq_len, embed_dim) = xs.dims3()?;
+
+ let proj_shape = (bsz * self.num_attention_heads, seq_len, self.head_dim);
+ let query_states = self
+ .shape(&(self.q_proj.forward(xs)? * self.scale)?, seq_len, bsz)?
+ .reshape(proj_shape)?
+ .to_dtype(DType::F32)?;
+ let key_states = self
+ .shape(&self.k_proj.forward(xs)?, seq_len, bsz)?
+ .reshape(proj_shape)?
+ .to_dtype(DType::F32)?;
+ let value_states = self
+ .shape(&self.v_proj.forward(xs)?, seq_len, bsz)?
+ .reshape(proj_shape)?
+ .to_dtype(DType::F32)?;
+
+ let attn_weights = query_states.matmul(&key_states.transpose(1, 2)?)?;
+
+ let src_len = key_states.dim(1)?;
+
+ let attn_weights = if let Some(causal_attention_mask) = causal_attention_mask {
+ attn_weights
+ .reshape((bsz, self.num_attention_heads, seq_len, src_len))?
+ .broadcast_add(causal_attention_mask)?
+ .reshape((bsz * self.num_attention_heads, seq_len, src_len))?
+ } else {
+ attn_weights
+ };
+
+ let attn_weights = nn::ops::softmax(&attn_weights, D::Minus1)?;
+
+ let attn_output = attn_weights.matmul(&value_states)?.to_dtype(in_dtype)?;
+ let attn_output = attn_output
+ .reshape((bsz, self.num_attention_heads, seq_len, self.head_dim))?
+ .transpose(1, 2)?
+ .reshape((bsz, seq_len, embed_dim))?;
+ self.out_proj.forward(&attn_output)
+ }
+}
+
+#[derive(Clone, Debug)]
+struct ChineseClipVisionMlp {
+ fc1: nn::Linear,
+ fc2: nn::Linear,
+ activation: Activation,
+}
+
+impl ChineseClipVisionMlp {
+ fn new(var: nn::VarBuilder, config: &EncoderConfig) -> Result<Self> {
+ let fc1 = nn::linear(
+ config.embed_dim(),
+ config.intermediate_size(),
+ var.pp("fc1"),
+ )?;
+ let fc2 = nn::linear(
+ config.intermediate_size(),
+ config.embed_dim(),
+ var.pp("fc2"),
+ )?;
+
+ Ok(ChineseClipVisionMlp {
+ fc1,
+ fc2,
+ activation: config.activation(),
+ })
+ }
+}
+
+impl ChineseClipVisionMlp {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let xs = self.fc1.forward(xs)?;
+ self.fc2.forward(&self.activation.forward(&xs)?)
+ }
+}
+
+#[derive(Clone, Debug)]
+struct ChineseClipVisionEncoderLayer {
+ self_attn: ChineseClipVisionAttention,
+ layer_norm1: nn::LayerNorm,
+ mlp: ChineseClipVisionMlp,
+ layer_norm2: nn::LayerNorm,
+}
+
+impl ChineseClipVisionEncoderLayer {
+ fn new(var: nn::VarBuilder, config: &EncoderConfig) -> Result<Self> {
+ let self_attn = ChineseClipVisionAttention::new(var.pp("self_attn"), config)?;
+ let layer_norm1 = nn::layer_norm(
+ config.embed_dim(),
+ config.layer_norm_eps(),
+ var.pp("layer_norm1"),
+ )?;
+ let mlp = ChineseClipVisionMlp::new(var.pp("mlp"), config)?;
+ let layer_norm2 = nn::layer_norm(
+ config.embed_dim(),
+ config.layer_norm_eps(),
+ var.pp("layer_norm2"),
+ )?;
+
+ Ok(ChineseClipVisionEncoderLayer {
+ self_attn,
+ layer_norm1,
+ mlp,
+ layer_norm2,
+ })
+ }
+
+ fn forward(&self, xs: &Tensor, causal_attention_mask: Option<&Tensor>) -> Result<Tensor> {
+ let residual = xs;
+ let xs = self.layer_norm1.forward(xs)?;
+ let xs = self.self_attn.forward(&xs, causal_attention_mask)?;
+ let xs = (xs + residual)?;
+
+ let residual = &xs;
+ let xs = self.layer_norm2.forward(&xs)?;
+ let xs = self.mlp.forward(&xs)?;
+ xs + residual
+ }
+}
+
+#[derive(Clone, Debug)]
+pub struct ChineseClipVisionEncoder {
+ layers: Vec<ChineseClipVisionEncoderLayer>,
+}
+
+impl ChineseClipVisionEncoder {
+ pub fn new(var: nn::VarBuilder, config: &EncoderConfig) -> Result<Self> {
+ let vs = var.pp("layers");
+ let mut layers: Vec<ChineseClipVisionEncoderLayer> = Vec::new();
+ for index in 0..config.num_hidden_layers() {
+ let layer = ChineseClipVisionEncoderLayer::new(vs.pp(index.to_string()), config)?;
+ layers.push(layer)
+ }
+ Ok(ChineseClipVisionEncoder { layers })
+ }
+
+ pub fn forward(&self, xs: &Tensor, causal_attention_mask: Option<&Tensor>) -> Result<Tensor> {
+ let mut xs = xs.clone();
+ for layer in self.layers.iter() {
+ xs = layer.forward(&xs, causal_attention_mask)?;
+ }
+ Ok(xs)
+ }
+
+ // required by LLaVA
+ pub fn output_hidden_states(
+ &self,
+ xs: &Tensor,
+ causal_attention_mask: Option<&Tensor>,
+ ) -> Result<Vec<Tensor>> {
+ let mut xs = xs.clone();
+ let mut hidden_states = Vec::new();
+ for layer in self.layers.iter() {
+ xs = layer.forward(&xs, causal_attention_mask)?;
+ hidden_states.push(xs.clone());
+ }
+ Ok(hidden_states)
+ }
+}
+
+#[derive(Clone, Debug)]
+pub struct ChineseClipVisionTransformer {
+ embeddings: ChineseClipVisionEmbeddings,
+ encoder: ChineseClipVisionEncoder,
+ pre_layer_norm: nn::LayerNorm,
+ final_layer_norm: nn::LayerNorm,
+}
+
+impl ChineseClipVisionTransformer {
+ pub fn new(var: nn::VarBuilder, config: &ChineseClipVisionConfig) -> Result<Self> {
+ let embed_dim = config.hidden_size;
+ let embeddings = ChineseClipVisionEmbeddings::new(var.pp("embeddings"), config)?;
+ let pre_layer_norm =
+ nn::layer_norm(embed_dim, config.layer_norm_eps, var.pp("pre_layrnorm"))?;
+ let encoder = ChineseClipVisionEncoder::new(
+ var.pp("encoder"),
+ &EncoderConfig::Vision(config.clone()),
+ )?;
+ let final_layer_norm =
+ nn::layer_norm(embed_dim, config.layer_norm_eps, var.pp("post_layernorm"))?;
+ Ok(Self {
+ embeddings,
+ encoder,
+ final_layer_norm,
+ pre_layer_norm,
+ })
+ }
+ // required by LLaVA
+ pub fn output_hidden_states(&self, pixel_values: &Tensor) -> Result<Vec<Tensor>> {
+ let hidden_states = pixel_values
+ .apply(&self.embeddings)?
+ .apply(&self.pre_layer_norm)?;
+
+ let mut result = self.encoder.output_hidden_states(&hidden_states, None)?;
+ let encoder_outputs = result.last().unwrap();
+ let pooled_output = encoder_outputs.i((.., 0, ..))?;
+ result.push(self.final_layer_norm.forward(&pooled_output)?.clone());
+ Ok(result)
+ }
+}
+
+impl Module for ChineseClipVisionTransformer {
+ fn forward(&self, pixel_values: &Tensor) -> Result<Tensor> {
+ let hidden_states = pixel_values
+ .apply(&self.embeddings)?
+ .apply(&self.pre_layer_norm)?;
+
+ let encoder_outputs = self.encoder.forward(&hidden_states, None)?;
+
+ // referer: https://github.com/huggingface/transformers/blob/f6fa0f0bf0796ac66f201f23bdb8585de1609add/src/transformers/models/clip/modeling_clip.py#L787
+ let pooled_output = encoder_outputs.i((.., 0, ..))?;
+ self.final_layer_norm.forward(&pooled_output)
+ }
+}
diff --git a/candle-transformers/src/models/mod.rs b/candle-transformers/src/models/mod.rs
index 80cd4f81..6ed7a8b5 100644
--- a/candle-transformers/src/models/mod.rs
+++ b/candle-transformers/src/models/mod.rs
@@ -5,6 +5,7 @@ pub mod bigcode;
pub mod blip;
pub mod blip_text;
pub mod chatglm;
+pub mod chinese_clip;
pub mod clip;
pub mod codegeex4_9b;
pub mod colpali;