summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--candle-examples/examples/phi/main.rs46
-rw-r--r--candle-nn/src/activation.rs1
-rw-r--r--candle-transformers/src/models/mod.rs1
-rw-r--r--candle-transformers/src/models/phi.rs365
4 files changed, 402 insertions, 11 deletions
diff --git a/candle-examples/examples/phi/main.rs b/candle-examples/examples/phi/main.rs
index c5c7de28..ea99c706 100644
--- a/candle-examples/examples/phi/main.rs
+++ b/candle-examples/examples/phi/main.rs
@@ -8,6 +8,7 @@ use anyhow::{Error as E, Result};
use clap::{Parser, ValueEnum};
use candle_transformers::models::mixformer::{Config, MixFormerSequentialForCausalLM as MixFormer};
+use candle_transformers::models::phi::{Config as PhiConfig, Model as Phi};
use candle_transformers::models::quantized_mixformer::MixFormerSequentialForCausalLM as QMixFormer;
use candle::{DType, Device, Tensor};
@@ -18,6 +19,7 @@ use tokenizers::Tokenizer;
enum Model {
MixFormer(MixFormer),
+ Phi(Phi),
Quantized(QMixFormer),
}
@@ -84,6 +86,7 @@ impl TextGeneration {
let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
let logits = match &mut self.model {
Model::MixFormer(m) => m.forward(&input)?,
+ Model::Phi(m) => m.forward(&input)?,
Model::Quantized(m) => m.forward(&input)?,
};
let logits = logits.squeeze(0)?.to_dtype(DType::F32)?;
@@ -117,7 +120,7 @@ impl TextGeneration {
}
}
-#[derive(Clone, Copy, Debug, ValueEnum)]
+#[derive(Clone, Copy, Debug, ValueEnum, PartialEq, Eq)]
enum WhichModel {
#[value(name = "1")]
V1,
@@ -125,6 +128,9 @@ enum WhichModel {
V1_5,
#[value(name = "2")]
V2,
+ // TODO: Make this the default once it has been battle tested.
+ #[value(name = "2-new")]
+ V2New,
PuffinPhiV2,
PhiHermes,
}
@@ -230,7 +236,7 @@ fn main() -> Result<()> {
match args.model {
WhichModel::V1 => "microsoft/phi-1".to_string(),
WhichModel::V1_5 => "microsoft/phi-1_5".to_string(),
- WhichModel::V2 => "microsoft/phi-2".to_string(),
+ WhichModel::V2 | WhichModel::V2New => "microsoft/phi-2".to_string(),
WhichModel::PuffinPhiV2 | WhichModel::PhiHermes => {
"lmz/candle-quantized-phi".to_string()
}
@@ -248,7 +254,9 @@ fn main() -> Result<()> {
WhichModel::V1 => "refs/pr/2".to_string(),
WhichModel::V1_5 => "refs/pr/18".to_string(),
WhichModel::V2 => "834565c23f9b28b96ccbeabe614dd906b6db551a".to_string(),
- WhichModel::PuffinPhiV2 | WhichModel::PhiHermes => "main".to_string(),
+ WhichModel::V2New | WhichModel::PuffinPhiV2 | WhichModel::PhiHermes => {
+ "main".to_string()
+ }
}
}
}
@@ -257,7 +265,9 @@ fn main() -> Result<()> {
let tokenizer_filename = match args.tokenizer {
Some(file) => std::path::PathBuf::from(file),
None => match args.model {
- WhichModel::V1 | WhichModel::V1_5 | WhichModel::V2 => repo.get("tokenizer.json")?,
+ WhichModel::V1 | WhichModel::V1_5 | WhichModel::V2 | WhichModel::V2New => {
+ repo.get("tokenizer.json")?
+ }
WhichModel::PuffinPhiV2 | WhichModel::PhiHermes => {
repo.get("tokenizer-puffin-phi-v2.json")?
}
@@ -270,14 +280,14 @@ fn main() -> Result<()> {
match args.model {
WhichModel::V1 => vec![repo.get("model-v1-q4k.gguf")?],
WhichModel::V1_5 => vec![repo.get("model-q4k.gguf")?],
- WhichModel::V2 => vec![repo.get("model-v2-q4k.gguf")?],
+ WhichModel::V2 | WhichModel::V2New => vec![repo.get("model-v2-q4k.gguf")?],
WhichModel::PuffinPhiV2 => vec![repo.get("model-puffin-phi-v2-q4k.gguf")?],
WhichModel::PhiHermes => vec![repo.get("model-phi-hermes-1_3B-q4k.gguf")?],
}
} else {
match args.model {
WhichModel::V1 | WhichModel::V1_5 => vec![repo.get("model.safetensors")?],
- WhichModel::V2 => candle_examples::hub_load_safetensors(
+ WhichModel::V2 | WhichModel::V2New => candle_examples::hub_load_safetensors(
&repo,
"model.safetensors.index.json",
)?,
@@ -291,25 +301,35 @@ fn main() -> Result<()> {
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
let start = std::time::Instant::now();
- let config = match args.model {
+ let config = || match args.model {
WhichModel::V1 => Config::v1(),
WhichModel::V1_5 => Config::v1_5(),
- WhichModel::V2 => Config::v2(),
+ WhichModel::V2 | WhichModel::V2New => Config::v2(),
WhichModel::PuffinPhiV2 => Config::puffin_phi_v2(),
WhichModel::PhiHermes => Config::phi_hermes_1_3b(),
};
- let (model, device) = if args.quantized {
+ let (model, device) = if args.model == WhichModel::V2New {
+ let device = candle_examples::device(args.cpu)?;
+ let config_filename = repo.get("config.json")?;
+ let config = std::fs::read_to_string(config_filename)?;
+ let config: PhiConfig = serde_json::from_str(&config)?;
+ let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, DType::F32, &device)? };
+ let phi = Phi::new(&config, vb)?;
+ (Model::Phi(phi), device)
+ } else if args.quantized {
let vb = candle_transformers::quantized_var_builder::VarBuilder::from_gguf(&filenames[0])?;
+ let config = config();
let model = match args.model {
- WhichModel::V2 => QMixFormer::new_v2(&config, vb)?,
+ WhichModel::V2 | WhichModel::V2New => QMixFormer::new_v2(&config, vb)?,
_ => QMixFormer::new(&config, vb)?,
};
(Model::Quantized(model), Device::Cpu)
} else {
let device = candle_examples::device(args.cpu)?;
+ let config = config();
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, DType::F32, &device)? };
let model = match args.model {
- WhichModel::V2 => MixFormer::new_v2(&config, vb)?,
+ WhichModel::V2 | WhichModel::V2New => MixFormer::new_v2(&config, vb)?,
_ => MixFormer::new(&config, vb)?,
};
(Model::MixFormer(model), device)
@@ -392,6 +412,10 @@ fn mmlu<P: AsRef<std::path::Path>>(
m.clear_kv_cache();
m.forward(&input)?
}
+ Model::Phi(m) => {
+ m.clear_kv_cache();
+ m.forward(&input)?
+ }
Model::Quantized(m) => {
m.clear_kv_cache();
m.forward(&input)?
diff --git a/candle-nn/src/activation.rs b/candle-nn/src/activation.rs
index 80b750ed..e00463f0 100644
--- a/candle-nn/src/activation.rs
+++ b/candle-nn/src/activation.rs
@@ -6,6 +6,7 @@ use serde::Deserialize;
pub enum Activation {
#[default]
Gelu,
+ #[serde(alias = "gelu_new")]
NewGelu,
Relu,
Relu2,
diff --git a/candle-transformers/src/models/mod.rs b/candle-transformers/src/models/mod.rs
index a60b5a06..9af6df69 100644
--- a/candle-transformers/src/models/mod.rs
+++ b/candle-transformers/src/models/mod.rs
@@ -17,6 +17,7 @@ pub mod mixformer;
pub mod mixtral;
pub mod mpt;
pub mod persimmon;
+pub mod phi;
pub mod quantized_blip;
pub mod quantized_blip_text;
pub mod quantized_llama;
diff --git a/candle-transformers/src/models/phi.rs b/candle-transformers/src/models/phi.rs
new file mode 100644
index 00000000..a635f3ce
--- /dev/null
+++ b/candle-transformers/src/models/phi.rs
@@ -0,0 +1,365 @@
+use crate::models::with_tracing::{layer_norm, linear, Embedding, LayerNorm, Linear};
+/// Phi model.
+/// https://huggingface.co/microsoft/phi-2
+/// There is an alternative implementation of the phi model in mixformers.rs.
+/// This corresponds to the model update made with the following commit:
+/// https://huggingface.co/microsoft/phi-2/commit/cb2f4533604d8b67de604e7df03bfe6f3ca22869
+use candle::{DType, Device, IndexOp, Module, Result, Tensor, D};
+use candle_nn::{Activation, VarBuilder};
+use serde::Deserialize;
+
+// https://huggingface.co/microsoft/phi-2/blob/main/configuration_phi.py
+#[derive(Debug, Clone, PartialEq, Deserialize)]
+pub struct Config {
+ pub(crate) vocab_size: usize,
+ pub(crate) hidden_size: usize,
+ pub(crate) intermediate_size: usize,
+ pub(crate) num_hidden_layers: usize,
+ pub(crate) num_attention_heads: usize,
+ pub(crate) num_key_value_heads: Option<usize>,
+ pub(crate) hidden_act: Activation,
+ pub(crate) max_position_embeddings: usize,
+ pub(crate) layer_norm_eps: f64,
+ pub(crate) tie_word_embeddings: bool,
+ pub(crate) rope_theta: f32,
+ pub(crate) partial_rotary_factor: f64,
+ pub(crate) qk_layernorm: bool,
+}
+
+impl Config {
+ fn num_key_value_heads(&self) -> usize {
+ self.num_key_value_heads.unwrap_or(self.num_attention_heads)
+ }
+
+ fn head_dim(&self) -> usize {
+ self.hidden_size / self.num_attention_heads
+ }
+}
+
+#[derive(Debug, Clone)]
+struct RotaryEmbedding {
+ sin: Tensor,
+ cos: Tensor,
+}
+
+impl RotaryEmbedding {
+ fn new(cfg: &Config, dev: &Device) -> Result<Self> {
+ let dim = (cfg.partial_rotary_factor * cfg.head_dim() as f64) as usize;
+ let inv_freq: Vec<_> = (0..dim)
+ .step_by(2)
+ .map(|i| 1f32 / cfg.rope_theta.powf(i as f32 / dim as f32))
+ .collect();
+ let inv_freq_len = inv_freq.len();
+ let inv_freq = Tensor::from_vec(inv_freq, (1, inv_freq_len), dev)?;
+ let t = Tensor::arange(0u32, cfg.max_position_embeddings as u32, dev)?
+ .to_dtype(DType::F32)?
+ .reshape((cfg.max_position_embeddings, 1))?;
+ let freqs = t.matmul(&inv_freq)?;
+ Ok(Self {
+ sin: freqs.sin()?,
+ cos: freqs.cos()?,
+ })
+ }
+
+ fn apply_rotary_emb(&self, xs: &Tensor, seqlen_offset: usize) -> Result<Tensor> {
+ let (_b_size, seqlen, _, _headdim) = xs.dims4()?;
+ let (_rotary_seqlen, rotary_dim) = self.cos.dims2()?;
+ let rotary_dim = rotary_dim * 2;
+ let xs_rot = xs.i((.., .., .., ..rotary_dim))?;
+ let xs_pass = xs.i((.., .., .., rotary_dim..))?;
+ let xs12 = xs_rot.chunk(2, D::Minus1)?;
+ let (xs1, xs2) = (&xs12[0], &xs12[1]);
+ let c = self.cos.narrow(0, seqlen_offset, seqlen)?.unsqueeze(1)?;
+ let s = self.sin.narrow(0, seqlen_offset, seqlen)?.unsqueeze(1)?;
+ let xs_rot = Tensor::cat(
+ &[
+ (xs1.broadcast_mul(&c)? - xs2.broadcast_mul(&s)?)?,
+ (xs1.broadcast_mul(&s)? + xs2.broadcast_mul(&c)?)?,
+ ],
+ D::Minus1,
+ )?;
+ Tensor::cat(&[&xs_rot, &xs_pass], D::Minus1)
+ }
+}
+
+#[derive(Debug, Clone)]
+#[allow(clippy::upper_case_acronyms)]
+struct MLP {
+ fc1: Linear,
+ fc2: Linear,
+ act: Activation,
+}
+
+impl MLP {
+ fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let fc1 = linear(cfg.hidden_size, cfg.intermediate_size, vb.pp("fc1"))?;
+ let fc2 = linear(cfg.intermediate_size, cfg.hidden_size, vb.pp("fc2"))?;
+ Ok(Self {
+ fc1,
+ fc2,
+ act: cfg.hidden_act,
+ })
+ }
+}
+
+impl Module for MLP {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ xs.apply(&self.fc1)?.apply(&self.act)?.apply(&self.fc2)
+ }
+}
+
+#[derive(Clone)]
+struct Attention {
+ q_proj: Linear,
+ k_proj: Linear,
+ v_proj: Linear,
+ dense: Linear,
+ kv_cache: Option<(Tensor, Tensor)>,
+ q_layernorm: Option<LayerNorm>,
+ k_layernorm: Option<LayerNorm>,
+ rotary_emb: RotaryEmbedding,
+ softmax_scale: f64,
+ num_heads: usize,
+ num_kv_heads: usize,
+ head_dim: usize,
+ span: tracing::Span,
+}
+
+fn get_mask(size: usize, device: &Device) -> Result<Tensor> {
+ let mask: Vec<_> = (0..size)
+ .flat_map(|i| (0..size).map(move |j| u8::from(j > i)))
+ .collect();
+ Tensor::from_slice(&mask, (size, size), device)
+}
+
+fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> Result<Tensor> {
+ let shape = mask.shape();
+ let on_true = Tensor::new(on_true, on_false.device())?.broadcast_as(shape.dims())?;
+ let m = mask.where_cond(&on_true, on_false)?;
+ Ok(m)
+}
+
+impl Attention {
+ fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let num_heads = cfg.num_attention_heads;
+ let num_kv_heads = cfg.num_key_value_heads();
+ let head_dim = cfg.head_dim();
+ let q_proj = linear(cfg.hidden_size, num_heads * head_dim, vb.pp("q_proj"))?;
+ let k_proj = linear(cfg.hidden_size, num_kv_heads * head_dim, vb.pp("k_proj"))?;
+ let v_proj = linear(cfg.hidden_size, num_kv_heads * head_dim, vb.pp("v_proj"))?;
+ let dense = linear(num_heads * head_dim, cfg.hidden_size, vb.pp("dense"))?;
+ // Alternative rope scalings are not supported.
+ let rotary_emb = RotaryEmbedding::new(cfg, vb.device())?;
+ let (q_layernorm, k_layernorm) = if cfg.qk_layernorm {
+ let q_layernorm = layer_norm(head_dim, cfg.layer_norm_eps, vb.pp("q_layernorm"))?;
+ let k_layernorm = layer_norm(head_dim, cfg.layer_norm_eps, vb.pp("k_layernorm"))?;
+ (Some(q_layernorm), Some(k_layernorm))
+ } else {
+ (None, None)
+ };
+ let softmax_scale = 1f64 / (head_dim as f64).sqrt();
+ Ok(Self {
+ q_proj,
+ k_proj,
+ v_proj,
+ dense,
+ kv_cache: None,
+ q_layernorm,
+ k_layernorm,
+ rotary_emb,
+ softmax_scale,
+ num_heads,
+ num_kv_heads,
+ head_dim,
+ span: tracing::span!(tracing::Level::TRACE, "attention"),
+ })
+ }
+
+ fn repeat_kv(&self, xs: Tensor) -> Result<Tensor> {
+ let n_rep = self.num_heads / self.num_kv_heads;
+ if n_rep == 1 {
+ Ok(xs)
+ } else {
+ let (b_sz, num_kv_heads, seq_len, head_dim) = xs.dims4()?;
+ xs.unsqueeze(2)?
+ .expand((b_sz, num_kv_heads, n_rep, seq_len, head_dim))?
+ .reshape((b_sz, num_kv_heads * n_rep, seq_len, head_dim))
+ }
+ }
+
+ fn forward(&mut self, xs: &Tensor, mask: Option<&Tensor>) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ let (b_size, seq_len, _n_embd) = xs.dims3()?;
+ let query_states = self.q_proj.forward(xs)?;
+ let key_states = self.k_proj.forward(xs)?;
+ let value_states = self.v_proj.forward(xs)?;
+
+ let query_states = match &self.q_layernorm {
+ None => query_states,
+ Some(ln) => query_states.apply(ln)?,
+ };
+ let key_states = match &self.k_layernorm {
+ None => key_states,
+ Some(ln) => key_states.apply(ln)?,
+ };
+
+ let query_states = query_states
+ .reshape((b_size, seq_len, self.num_heads, self.head_dim))?
+ .transpose(1, 2)?;
+ let key_states = key_states
+ .reshape((b_size, seq_len, self.num_kv_heads, self.head_dim))?
+ .transpose(1, 2)?;
+ let value_states = value_states
+ .reshape((b_size, seq_len, self.num_kv_heads, self.head_dim))?
+ .transpose(1, 2)?;
+
+ // Rotary embeddings.
+ let seqlen_offset = match &self.kv_cache {
+ None => 0,
+ Some((prev_k, _)) => prev_k.dim(1)?,
+ };
+ let query_states = self
+ .rotary_emb
+ .apply_rotary_emb(&query_states, seqlen_offset)?;
+ let key_states = self
+ .rotary_emb
+ .apply_rotary_emb(&key_states, seqlen_offset)?;
+
+ // KV cache.
+ let (key_states, value_states) = match &self.kv_cache {
+ None => (key_states, value_states),
+ Some((prev_k, prev_v)) => {
+ let k = Tensor::cat(&[prev_k, &key_states], 2)?;
+ let v = Tensor::cat(&[prev_v, &value_states], 2)?;
+ (k, v)
+ }
+ };
+ self.kv_cache = Some((key_states.clone(), value_states.clone()));
+
+ // Repeat kv.
+ let key_states = self.repeat_kv(key_states)?.contiguous()?;
+ let value_states = self.repeat_kv(value_states)?.contiguous()?;
+
+ let attn_weights = (query_states
+ .to_dtype(DType::F32)?
+ .contiguous()?
+ .matmul(&key_states.to_dtype(DType::F32)?.t()?)?
+ * self.softmax_scale)?;
+ let attn_weights = match mask {
+ None => attn_weights,
+ Some(mask) => masked_fill(
+ &attn_weights,
+ &mask.broadcast_left((b_size, self.num_heads))?,
+ f32::NEG_INFINITY,
+ )?,
+ };
+ let attn_weights =
+ candle_nn::ops::softmax_last_dim(&attn_weights)?.to_dtype(value_states.dtype())?;
+ let attn_output = attn_weights.matmul(&value_states)?;
+ let attn_output = attn_output
+ .transpose(1, 2)?
+ .reshape((b_size, seq_len, ()))?;
+ attn_output.apply(&self.dense)
+ }
+
+ fn clear_kv_cache(&mut self) {
+ self.kv_cache = None
+ }
+}
+
+#[derive(Clone)]
+struct DecoderLayer {
+ self_attn: Attention,
+ mlp: MLP,
+ input_layernorm: LayerNorm,
+ span: tracing::Span,
+}
+
+impl DecoderLayer {
+ fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let self_attn = Attention::new(cfg, vb.pp("self_attn"))?;
+ let mlp = MLP::new(cfg, vb.pp("mlp"))?;
+ let input_layernorm = layer_norm(
+ cfg.hidden_size,
+ cfg.layer_norm_eps,
+ vb.pp("input_layernorm"),
+ )?;
+ Ok(Self {
+ self_attn,
+ mlp,
+ input_layernorm,
+ span: tracing::span!(tracing::Level::TRACE, "block"),
+ })
+ }
+
+ fn forward(&mut self, xs: &Tensor, mask: Option<&Tensor>) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ let residual = xs;
+ let xs = xs.apply(&self.input_layernorm)?;
+ let attn_outputs = self.self_attn.forward(&xs, mask)?;
+ let feed_forward_hidden_states = self.mlp.forward(&xs)?;
+ attn_outputs + feed_forward_hidden_states + residual
+ }
+
+ fn clear_kv_cache(&mut self) {
+ self.self_attn.clear_kv_cache()
+ }
+}
+
+#[derive(Clone)]
+pub struct Model {
+ embed_tokens: Embedding,
+ layers: Vec<DecoderLayer>,
+ final_layernorm: LayerNorm,
+ lm_head: Linear,
+ span: tracing::Span,
+}
+
+impl Model {
+ pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let vb_m = vb.pp("model");
+ let embed_tokens =
+ Embedding::new(cfg.vocab_size, cfg.hidden_size, vb_m.pp("embed_tokens"))?;
+ let final_layernorm = layer_norm(
+ cfg.hidden_size,
+ cfg.layer_norm_eps,
+ vb_m.pp("final_layernorm"),
+ )?;
+ let mut layers = Vec::with_capacity(cfg.num_hidden_layers);
+ let vb_m = vb_m.pp("layers");
+ for layer_idx in 0..cfg.num_hidden_layers {
+ let layer = DecoderLayer::new(cfg, vb_m.pp(layer_idx))?;
+ layers.push(layer)
+ }
+ let lm_head = linear(cfg.hidden_size, cfg.vocab_size, vb.pp("lm_head"))?;
+ Ok(Self {
+ embed_tokens,
+ layers,
+ final_layernorm,
+ lm_head,
+ span: tracing::span!(tracing::Level::TRACE, "model"),
+ })
+ }
+
+ pub fn forward(&mut self, xs: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ let (_b_size, seq_len) = xs.dims2()?;
+ let mut xs = xs.apply(&self.embed_tokens)?;
+ let mask = if seq_len <= 1 {
+ None
+ } else {
+ Some(get_mask(seq_len, xs.device())?)
+ };
+ for layer in self.layers.iter_mut() {
+ xs = layer.forward(&xs, mask.as_ref())?
+ }
+ xs.apply(&self.final_layernorm)?
+ .narrow(1, seq_len - 1, 1)?
+ .apply(&self.lm_head)?
+ .squeeze(1)
+ }
+
+ pub fn clear_kv_cache(&mut self) {
+ self.layers.iter_mut().for_each(|b| b.clear_kv_cache())
+ }
+}