summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--candle-examples/examples/stable-diffusion/clip.rs3
-rw-r--r--candle-examples/examples/stable-diffusion/utils.rs5
-rw-r--r--candle-nn/src/group_norm.rs47
-rw-r--r--candle-nn/src/ops.rs6
-rw-r--r--candle-nn/tests/group_norm.rs103
5 files changed, 150 insertions, 14 deletions
diff --git a/candle-examples/examples/stable-diffusion/clip.rs b/candle-examples/examples/stable-diffusion/clip.rs
index be798ad0..227660b1 100644
--- a/candle-examples/examples/stable-diffusion/clip.rs
+++ b/candle-examples/examples/stable-diffusion/clip.rs
@@ -6,6 +6,7 @@
//!
//! https://github.com/openai/CLIP
use candle::{Device, Result, Tensor, D};
+use candle_nn as nn;
#[derive(Debug, Clone, Copy)]
pub enum Activation {
@@ -16,7 +17,7 @@ pub enum Activation {
impl Activation {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
match self {
- Activation::QuickGelu => xs * crate::utils::sigmoid(&(xs * 1.702f64)?)?,
+ Activation::QuickGelu => xs * nn::ops::sigmoid(&(xs * 1.702f64)?)?,
Activation::Gelu => xs.gelu(),
}
}
diff --git a/candle-examples/examples/stable-diffusion/utils.rs b/candle-examples/examples/stable-diffusion/utils.rs
index 90fe3f9a..4294d823 100644
--- a/candle-examples/examples/stable-diffusion/utils.rs
+++ b/candle-examples/examples/stable-diffusion/utils.rs
@@ -1,10 +1,5 @@
use candle::{Device, Result, Tensor};
-pub fn sigmoid(xs: &Tensor) -> Result<Tensor> {
- // TODO: Add sigmoid as binary ops.
- (xs.neg()?.exp()? - 1.0)?.recip()
-}
-
pub fn avg_pool2d(_: &Tensor) -> Result<Tensor> {
todo!()
}
diff --git a/candle-nn/src/group_norm.rs b/candle-nn/src/group_norm.rs
index 4b9bed73..e277ae85 100644
--- a/candle-nn/src/group_norm.rs
+++ b/candle-nn/src/group_norm.rs
@@ -1,10 +1,9 @@
//! Group Normalization.
//!
//! This layer applies Group Normalization over a mini-batch of inputs.
-use candle::{Result, Tensor};
+use candle::{DType, Result, Tensor};
// This group norm version handles both weight and bias so removes the mean.
-#[allow(dead_code)]
#[derive(Debug)]
pub struct GroupNorm {
weight: Tensor,
@@ -21,18 +20,50 @@ impl GroupNorm {
num_channels: usize,
num_groups: usize,
eps: f64,
- ) -> Self {
- Self {
+ ) -> Result<Self> {
+ if num_channels % num_groups != 0 {
+ candle::bail!(
+ "GroupNorm: num_groups ({num_groups}) must divide num_channels ({num_channels})"
+ )
+ }
+ Ok(Self {
weight,
bias,
eps,
num_channels,
num_groups,
- }
+ })
}
- pub fn forward(&self, _: &Tensor) -> Result<Tensor> {
- todo!()
+ pub fn forward(&self, x: &Tensor) -> Result<Tensor> {
+ let x_shape = x.dims();
+ if x_shape.len() <= 2 {
+ candle::bail!("input rank for GroupNorm should be at least 3");
+ }
+ let (b_sz, n_channels) = (x_shape[0], x_shape[1]);
+ let hidden_size = x_shape[2..].iter().product::<usize>() * n_channels / self.num_groups;
+ if n_channels != self.num_channels {
+ candle::bail!(
+ "unexpected num-channels in GroupNorm ({n_channels} <> {}",
+ self.num_channels
+ )
+ }
+ let x_dtype = x.dtype();
+ let internal_dtype = match x_dtype {
+ DType::F16 | DType::BF16 => DType::F32,
+ d => d,
+ };
+ let x = x.reshape((b_sz, self.num_groups, hidden_size))?;
+ let x = x.to_dtype(internal_dtype)?;
+ let mean_x = (x.sum_keepdim(2)? / hidden_size as f64)?;
+ let x = x.broadcast_sub(&mean_x)?;
+ let norm_x = (x.sqr()?.sum_keepdim(2)? / hidden_size as f64)?;
+ let x_normed = x.broadcast_div(&(norm_x + self.eps)?.sqrt()?)?;
+ x_normed
+ .to_dtype(x_dtype)?
+ .broadcast_mul(&self.weight)?
+ .broadcast_add(&self.bias)?
+ .reshape(x_shape)
}
}
@@ -44,5 +75,5 @@ pub fn group_norm(
) -> Result<GroupNorm> {
let weight = vb.get_or_init(num_channels, "weight", crate::Init::Const(1.))?;
let bias = vb.get_or_init(num_channels, "bias", crate::Init::Const(0.))?;
- Ok(GroupNorm::new(weight, bias, num_channels, num_groups, eps))
+ GroupNorm::new(weight, bias, num_channels, num_groups, eps)
}
diff --git a/candle-nn/src/ops.rs b/candle-nn/src/ops.rs
index 29cc6973..397674f3 100644
--- a/candle-nn/src/ops.rs
+++ b/candle-nn/src/ops.rs
@@ -34,5 +34,11 @@ pub fn log_softmax<D: candle::shape::Dim>(xs: &Tensor, d: D) -> Result<Tensor> {
}
pub fn silu(xs: &Tensor) -> Result<Tensor> {
+ // TODO: Should we have a specialized op for this?
xs / (xs.neg()?.exp()? + 1.0)?
}
+
+pub fn sigmoid(xs: &Tensor) -> Result<Tensor> {
+ // TODO: Should we have a specialized op for this?
+ (xs.neg()?.exp()? + 1.0)?.recip()
+}
diff --git a/candle-nn/tests/group_norm.rs b/candle-nn/tests/group_norm.rs
new file mode 100644
index 00000000..d48b69f6
--- /dev/null
+++ b/candle-nn/tests/group_norm.rs
@@ -0,0 +1,103 @@
+/* Equivalent PyTorch code.
+import torch
+from torch.nn.functional import group_norm
+t = torch.tensor(
+ [[[-0.3034, 0.2726, -0.9659],
+ [-1.1845, -1.3236, 0.0172],
+ [ 1.9507, 1.2554, -0.8625],
+ [ 1.0682, 0.3604, 0.3985],
+ [-0.4957, -0.4461, -0.9721],
+ [ 1.5157, -0.1546, -0.5596]],
+
+ [[-1.6698, -0.4040, -0.7927],
+ [ 0.3736, -0.0975, -0.1351],
+ [-0.9461, 0.5461, -0.6334],
+ [-1.0919, -0.1158, 0.1213],
+ [-0.9535, 0.1281, 0.4372],
+ [-0.2845, 0.3488, 0.5641]]])
+print(group_norm(t, num_groups=2))
+print(group_norm(t, num_groups=3))
+*/
+#[cfg(feature = "mkl")]
+extern crate intel_mkl_src;
+
+use anyhow::Result;
+use candle::{Device, Tensor};
+use candle_nn::GroupNorm;
+mod test_utils;
+use test_utils::to_vec3_round;
+
+#[test]
+fn group_norm() -> Result<()> {
+ let device = &Device::Cpu;
+ let w = Tensor::new(&[1f32], device)?;
+ let b = Tensor::new(&[0f32], device)?;
+ let gn2 = GroupNorm::new(w.clone(), b.clone(), 6, 2, 1e-5)?;
+ let gn3 = GroupNorm::new(w, b, 6, 3, 1e-5)?;
+
+ let input = Tensor::new(
+ &[
+ [
+ [-0.3034f32, 0.2726, -0.9659],
+ [-1.1845, -1.3236, 0.0172],
+ [1.9507, 1.2554, -0.8625],
+ [1.0682, 0.3604, 0.3985],
+ [-0.4957, -0.4461, -0.9721],
+ [1.5157, -0.1546, -0.5596],
+ ],
+ [
+ [-1.6698, -0.4040, -0.7927],
+ [0.3736, -0.0975, -0.1351],
+ [-0.9461, 0.5461, -0.6334],
+ [-1.0919, -0.1158, 0.1213],
+ [-0.9535, 0.1281, 0.4372],
+ [-0.2845, 0.3488, 0.5641],
+ ],
+ ],
+ device,
+ )?;
+ assert_eq!(
+ to_vec3_round(gn2.forward(&input)?, 4)?,
+ &[
+ [
+ [-0.1653, 0.3748, -0.7866],
+ [-0.9916, -1.1220, 0.1353],
+ [1.9485, 1.2965, -0.6896],
+ [1.2769, 0.3628, 0.4120],
+ [-0.7427, -0.6786, -1.3578],
+ [1.8547, -0.3022, -0.8252]
+ ],
+ [
+ [-1.9342, 0.0211, -0.5793],
+ [1.2223, 0.4945, 0.4365],
+ [-0.8163, 1.4887, -0.3333],
+ [-1.7960, -0.0392, 0.3875],
+ [-1.5469, 0.3998, 0.9561],
+ [-0.3428, 0.7970, 1.1845]
+ ]
+ ]
+ );
+ assert_eq!(
+ to_vec3_round(gn3.forward(&input)?, 4)?,
+ &[
+ [
+ [0.4560, 1.4014, -0.6313],
+ [-0.9901, -1.2184, 0.9822],
+ [1.4254, 0.6360, -1.7682],
+ [0.4235, -0.3800, -0.3367],
+ [-0.3890, -0.3268, -0.9862],
+ [2.1325, 0.0386, -0.4691]
+ ],
+ [
+ [-1.8797, 0.0777, -0.5234],
+ [1.2802, 0.5517, 0.4935],
+ [-1.0102, 1.5327, -0.4773],
+ [-1.2587, 0.4047, 0.8088],
+ [-1.9074, 0.1691, 0.7625],
+ [-0.6230, 0.5928, 1.0061]
+ ]
+ ]
+ );
+
+ Ok(())
+}