summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--candle-core/src/error.rs2
-rw-r--r--candle-core/src/shape.rs8
-rw-r--r--candle-examples/examples/segment-anything/main.rs106
-rw-r--r--candle-examples/examples/segment-anything/model_image_encoder.rs153
-rw-r--r--candle-examples/examples/segment-anything/model_mask_decoder.rs22
-rw-r--r--candle-examples/examples/segment-anything/model_prompt_encoder.rs54
-rw-r--r--candle-examples/examples/segment-anything/model_sam.rs37
-rw-r--r--candle-examples/examples/segment-anything/model_transformer.rs13
-rw-r--r--candle-nn/src/layer_norm.rs8
-rw-r--r--candle-nn/src/linear.rs5
10 files changed, 303 insertions, 105 deletions
diff --git a/candle-core/src/error.rs b/candle-core/src/error.rs
index d030fab1..be8f7b07 100644
--- a/candle-core/src/error.rs
+++ b/candle-core/src/error.rs
@@ -30,7 +30,7 @@ pub enum Error {
UnsupportedDTypeForOp(DType, &'static str),
// === Dimension Index Errors ===
- #[error("{op}: dimension index {dim} out of range for {shape:?}")]
+ #[error("{op}: dimension index {dim} out of range for shape {shape:?}")]
DimOutOfRange {
shape: Shape,
dim: i32,
diff --git a/candle-core/src/shape.rs b/candle-core/src/shape.rs
index 578e8ac9..9617d1ac 100644
--- a/candle-core/src/shape.rs
+++ b/candle-core/src/shape.rs
@@ -73,6 +73,14 @@ impl From<(usize, usize, usize, usize, usize)> for Shape {
}
}
+impl From<(usize, usize, usize, usize, usize, usize)> for Shape {
+ fn from(d123456: (usize, usize, usize, usize, usize, usize)) -> Self {
+ Self(vec![
+ d123456.0, d123456.1, d123456.2, d123456.3, d123456.4, d123456.5,
+ ])
+ }
+}
+
impl From<Vec<usize>> for Shape {
fn from(dims: Vec<usize>) -> Self {
Self(dims)
diff --git a/candle-examples/examples/segment-anything/main.rs b/candle-examples/examples/segment-anything/main.rs
index 368b5a33..a2722270 100644
--- a/candle-examples/examples/segment-anything/main.rs
+++ b/candle-examples/examples/segment-anything/main.rs
@@ -15,7 +15,7 @@ pub mod model_sam;
pub mod model_transformer;
use candle::{DType, IndexOp, Result, Tensor, D};
-use candle_nn::{layer_norm, LayerNorm, Linear, Module, VarBuilder};
+use candle_nn::{Linear, Module, VarBuilder};
use clap::Parser;
pub fn linear(vb: VarBuilder, in_dim: usize, out_dim: usize, bias: bool) -> Result<Linear> {
@@ -27,64 +27,73 @@ pub fn linear(vb: VarBuilder, in_dim: usize, out_dim: usize, bias: bool) -> Resu
}
#[derive(Debug)]
+pub struct LayerNorm2d {
+ weight: Tensor,
+ bias: Tensor,
+ num_channels: usize,
+ eps: f64,
+}
+
+impl LayerNorm2d {
+ pub fn new(num_channels: usize, eps: f64, vb: VarBuilder) -> Result<Self> {
+ let weight = vb.get(num_channels, "weight")?;
+ let bias = vb.get(num_channels, "bias")?;
+ Ok(Self {
+ weight,
+ bias,
+ num_channels,
+ eps,
+ })
+ }
+}
+
+impl Module for LayerNorm2d {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let u = xs.mean_keepdim(1)?;
+ let xs = xs.broadcast_sub(&u)?;
+ let s = xs.sqr()?.mean_keepdim(1)?;
+ let xs = xs.broadcast_div(&(s + self.eps)?.sqrt()?)?;
+ xs.broadcast_mul(&self.weight.reshape((1, self.num_channels, 1, 1))?)?
+ .broadcast_add(&self.bias.reshape((1, self.num_channels, 1, 1))?)
+ }
+}
+
+#[derive(Debug)]
pub struct MlpBlock {
lin1: Linear,
lin2: Linear,
+ activation: candle_nn::Activation,
}
impl MlpBlock {
- pub fn new(embedding_dim: usize, mlp_dim: usize, vb: VarBuilder) -> Result<Self> {
+ pub fn new(
+ embedding_dim: usize,
+ mlp_dim: usize,
+ activation: candle_nn::Activation,
+ vb: VarBuilder,
+ ) -> Result<Self> {
let lin1 = candle_nn::linear(embedding_dim, mlp_dim, vb.pp("lin1"))?;
let lin2 = candle_nn::linear(mlp_dim, embedding_dim, vb.pp("lin2"))?;
- Ok(Self { lin1, lin2 })
+ Ok(Self {
+ lin1,
+ lin2,
+ activation,
+ })
}
}
impl Module for MlpBlock {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
- xs.apply(&self.lin1)?.gelu()?.apply(&self.lin2)
+ xs.apply(&self.lin1)?
+ .apply(&self.activation)?
+ .apply(&self.lin2)
}
}
-/*
- fn interpolate_pos_encoding(&self, xs: &Tensor, w: usize, h: usize) -> Result<Tensor> {
- let npatch = xs.dim(1)? - 1;
- let n = self.pos_embed.dim(1)? - 1;
- let sqrt_n = (n as f64).sqrt();
- if npatch == n && w == h {
- return Ok(xs.clone());
- }
- let class_pos_embed = self.pos_embed.i((.., ..1))?;
- let patch_pos_embed = self.pos_embed.i((.., 1..))?;
- let dim = xs.dim(D::Minus1)?;
- let (w0, h0) = ((w / PATCH_SIZE) as f64 + 0.1, (h / PATCH_SIZE) as f64 + 0.1);
- let patch_pos_embed = patch_pos_embed
- .reshape((1, sqrt_n as usize, sqrt_n as usize, dim))?
- .transpose(2, 3)?
- .transpose(1, 2)?;
- // This uses bicubic interpolation in the original implementation.
- let patch_pos_embed = patch_pos_embed.upsample_nearest2d(h0 as usize, w0 as usize)?;
- let el_count = patch_pos_embed.shape().elem_count();
- let patch_pos_embed =
- patch_pos_embed
- .transpose(1, 2)?
- .transpose(2, 3)?
- .reshape((1, el_count / dim, dim))?;
- Tensor::cat(&[&class_pos_embed, &patch_pos_embed], 1)
- }
-
- fn prepare_tokens_with_mask(&self, xs: &Tensor) -> Result<Tensor> {
- let (_b, _nc, w, h) = xs.dims4()?;
- let xs = self.patch_embed.forward(xs)?;
- let xs = Tensor::cat(&[&self.cls_token, &xs], 1)?;
- &xs + &self.interpolate_pos_encoding(&xs, w, h)?
- }
-*/
-
#[derive(Parser)]
struct Args {
#[arg(long)]
- model: String,
+ model: Option<String>,
#[arg(long)]
image: String,
@@ -99,13 +108,24 @@ pub fn main() -> anyhow::Result<()> {
let device = candle_examples::device(args.cpu)?;
- let image = candle_examples::imagenet::load_image224(args.image)?.to_device(&device);
+ let image = candle_examples::imagenet::load_image224(args.image)?.to_device(&device)?;
println!("loaded image {image:?}");
- let weights = unsafe { candle::safetensors::MmapedFile::new(args.model)? };
+ let model = match args.model {
+ Some(model) => std::path::PathBuf::from(model),
+ None => {
+ let api = hf_hub::api::sync::Api::new()?;
+ let api = api.model("lmz/candle-sam".to_string());
+ api.get("sam_vit_b_01ec64.safetensors")?
+ }
+ };
+ let weights = unsafe { candle::safetensors::MmapedFile::new(model)? };
let weights = weights.deserialize()?;
let vb = VarBuilder::from_safetensors(vec![weights], DType::F32, &device);
- let _sam = model_sam::Sam::new(768, 12, 12, &[2, 5, 8, 11], vb)?; // sam_vit_b
+ let sam = model_sam::Sam::new(768, 12, 12, &[2, 5, 8, 11], vb)?; // sam_vit_b
+ let (mask, iou_predictions) = sam.forward(&image, false)?;
+ println!("mask: {mask:?}");
+ println!("iou_predictions: {iou_predictions:?}");
Ok(())
}
diff --git a/candle-examples/examples/segment-anything/model_image_encoder.rs b/candle-examples/examples/segment-anything/model_image_encoder.rs
index cfcdbb38..f5db2830 100644
--- a/candle-examples/examples/segment-anything/model_image_encoder.rs
+++ b/candle-examples/examples/segment-anything/model_image_encoder.rs
@@ -70,6 +70,60 @@ impl Attention {
rel_pos_hw,
})
}
+
+ fn add_decomposed_rel_pos(
+ &self,
+ attn: Tensor,
+ q: &Tensor,
+ (q_h, q_w): (usize, usize),
+ (k_h, k_w): (usize, usize),
+ ) -> Result<Tensor> {
+ match &self.rel_pos_hw {
+ Some((rel_pos_h, rel_pos_w)) => {
+ let r_h = get_rel_pos(q_h, k_h, rel_pos_h)?;
+ let r_w = get_rel_pos(q_w, k_w, rel_pos_w)?;
+ let (b, _, dim) = q.dims3()?;
+ let r_q = q.reshape((b, q_h, q_w, dim))?;
+ // rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
+ let rel_h = r_q.matmul(&r_h.broadcast_left(b)?.t()?.contiguous()?)?;
+ // rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)
+ let rel_w = r_q
+ .transpose(1, 2)? // -> bwhc
+ .contiguous()?
+ .matmul(&r_w.broadcast_left(b)?.t()?.contiguous()?)? // bwhc,bwck -> bwhk
+ .transpose(1, 2)?;
+ (attn.reshape((b, q_h, q_w, k_h, k_w))?
+ + rel_h.unsqueeze(4)?.broadcast_add(&rel_w.unsqueeze(3)?)?)?
+ .reshape((b, q_h * q_w, k_h * k_w))
+ }
+ None => Ok(attn),
+ }
+ }
+}
+
+fn get_rel_pos(q_size: usize, k_size: usize, rel_pos: &Tensor) -> Result<Tensor> {
+ let max_rel_dist = 2 * usize::max(q_size, k_size) - 1;
+ let dev = rel_pos.device();
+ let rel_pos_resized = if rel_pos.dim(0)? != max_rel_dist {
+ todo!("interpolation")
+ } else {
+ rel_pos
+ };
+ let q_coords = Tensor::arange(0u32, q_size as u32, dev)?
+ .reshape((q_size, 1))?
+ .to_dtype(DType::F32)?;
+ let k_coords = Tensor::arange(0u32, k_size as u32, dev)?
+ .reshape((1, k_size))?
+ .to_dtype(DType::F32)?;
+ let q_coords = (q_coords * f64::max(1f64, k_size as f64 / q_size as f64))?;
+ let k_coords = (k_coords * f64::max(1f64, q_size as f64 / k_size as f64))?;
+ let relative_coords = (q_coords.broadcast_sub(&k_coords)?
+ + (k_size as f64 - 1.) * f64::max(1f64, q_size as f64 / k_size as f64))?;
+ let (d1, d2) = relative_coords.dims2()?;
+ let relative_coords = relative_coords.to_dtype(DType::U32)?;
+ rel_pos_resized
+ .index_select(&relative_coords.reshape(d1 * d2)?, 0)?
+ .reshape((d1, d2, rel_pos_resized.dim(1)?))
}
impl Module for Attention {
@@ -77,24 +131,22 @@ impl Module for Attention {
let (b, h, w, c) = xs.dims4()?;
let qkv = self
.qkv
- .forward(xs)?
+ .forward(&xs.flatten_to(1)?)?
.reshape((b, h * w, 3, self.num_heads, c / self.num_heads))?
.permute((2, 0, 3, 1, 4))?
.reshape((3, b * self.num_heads, h * w, c / self.num_heads))?;
let q = qkv.i(0)?;
let k = qkv.i(1)?;
let v = qkv.i(2)?;
- let attn = (q * self.scale)?.matmul(&k.t()?)?;
- if self.use_rel_pos {
- todo!()
- }
+ let attn = (&q * self.scale)?.matmul(&k.t()?)?;
+ let attn = self.add_decomposed_rel_pos(attn, &q, (h, w), (h, w))?;
let attn = candle_nn::ops::softmax_last_dim(&attn)?;
+ let attn = attn.matmul(&v)?;
let attn = attn
- .matmul(&v)?
.reshape((b, self.num_heads, h, w, c / self.num_heads))?
.permute((0, 2, 3, 1, 4))?
- .reshape((b, h, w, c / self.num_heads))?;
- self.proj.forward(&attn)
+ .reshape((b, h * w, c))?;
+ self.proj.forward(&attn)?.reshape((b, h, w, c))
}
}
@@ -117,8 +169,8 @@ impl Block {
input_size: (usize, usize),
vb: VarBuilder,
) -> Result<Self> {
- let norm1 = layer_norm(dim, 1e-5, vb.pp("norm1"))?;
- let norm2 = layer_norm(dim, 1e-5, vb.pp("norm2"))?;
+ let norm1 = layer_norm(dim, 1e-6, vb.pp("norm1"))?;
+ let norm2 = layer_norm(dim, 1e-6, vb.pp("norm2"))?;
let input_size_attn = if window_size == 0 {
input_size
} else {
@@ -132,7 +184,7 @@ impl Block {
input_size_attn,
vb.pp("attn"),
)?;
- let mlp = crate::MlpBlock::new(dim, dim * 4, vb.pp("mlp"))?;
+ let mlp = crate::MlpBlock::new(dim, dim * 4, candle_nn::Activation::Gelu, vb.pp("mlp"))?;
Ok(Self {
norm1,
attn,
@@ -143,17 +195,76 @@ impl Block {
}
}
+fn window_partition(xs: Tensor, window_size: usize) -> Result<(Tensor, (usize, usize))> {
+ let (b, h, w, c) = xs.dims4()?;
+ let pad_h = (window_size - h % window_size) % window_size;
+ let pad_w = (window_size - w % window_size) % window_size;
+ let xs = if pad_h > 0 {
+ xs.pad_with_zeros(1, 0, pad_h)?
+ } else {
+ xs
+ };
+ let xs = if pad_w > 0 {
+ xs.pad_with_zeros(2, 0, pad_w)?
+ } else {
+ xs
+ };
+ let (h_p, w_p) = (h + pad_h, w + pad_w);
+ let windows = xs
+ .reshape((
+ b,
+ h_p / window_size,
+ window_size,
+ w_p / window_size,
+ window_size,
+ c,
+ ))?
+ .transpose(2, 3)?
+ .contiguous()?
+ .flatten_to(2)?;
+ Ok((windows, (h_p, w_p)))
+}
+
+fn window_unpartition(
+ windows: Tensor,
+ window_size: usize,
+ (h_p, w_p): (usize, usize),
+ (h, w): (usize, usize),
+) -> Result<Tensor> {
+ let b = windows.dim(0)? / (h_p * w_p / window_size / window_size);
+ let xs = windows
+ .reshape((
+ b,
+ h_p / window_size,
+ w_p / window_size,
+ window_size,
+ window_size,
+ windows.elem_count() / b / h_p / w_p,
+ ))?
+ .transpose(2, 3)?
+ .contiguous()?
+ .reshape((b, h_p, w_p, windows.elem_count() / b / h_p / w_p))?;
+ let xs = if h_p > h { xs.narrow(1, 0, h)? } else { xs };
+ let xs = if w_p > w { xs.narrow(2, 0, w)? } else { xs };
+ Ok(xs)
+}
+
impl Module for Block {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let shortcut = xs;
let xs = self.norm1.forward(xs)?;
- if self.window_size > 0 {
- todo!()
- }
+ let hw = (xs.dim(1)?, xs.dim(2)?);
+ let (xs, pad_hw) = if self.window_size > 0 {
+ window_partition(xs, self.window_size)?
+ } else {
+ (xs, (0, 0))
+ };
let xs = self.attn.forward(&xs)?;
- if self.window_size > 0 {
- todo!()
- }
+ let xs = if self.window_size > 0 {
+ window_unpartition(xs, self.window_size, pad_hw, hw)?
+ } else {
+ xs
+ };
let xs = (xs + shortcut)?;
&xs + xs.apply(&self.norm2)?.apply(&self.mlp)?
}
@@ -165,9 +276,9 @@ pub struct ImageEncoderViT {
patch_embed: PatchEmbed,
blocks: Vec<Block>,
neck_conv1: candle_nn::Conv2d,
- neck_ln1: LayerNorm,
+ neck_ln1: crate::LayerNorm2d,
neck_conv2: candle_nn::Conv2d,
- neck_ln2: LayerNorm,
+ neck_ln2: crate::LayerNorm2d,
pos_embed: Option<Tensor>,
}
@@ -222,13 +333,13 @@ impl ImageEncoderViT {
Default::default(),
vb.pp("neck.0"),
)?;
- let neck_ln1 = layer_norm(out_chans, 1e-6, vb.pp("neck.1"))?;
+ let neck_ln1 = crate::LayerNorm2d::new(out_chans, 1e-6, vb.pp("neck.1"))?;
let cfg = candle_nn::Conv2dConfig {
padding: 1,
..Default::default()
};
let neck_conv2 = candle_nn::conv2d_no_bias(out_chans, out_chans, 3, cfg, vb.pp("neck.2"))?;
- let neck_ln2 = layer_norm(out_chans, 1e-6, vb.pp("neck.3"))?;
+ let neck_ln2 = crate::LayerNorm2d::new(out_chans, 1e-6, vb.pp("neck.3"))?;
let pos_embed = if use_abs_pos {
let p = vb.get(
(1, img_size / patch_size, img_size / patch_size, embed_dim),
diff --git a/candle-examples/examples/segment-anything/model_mask_decoder.rs b/candle-examples/examples/segment-anything/model_mask_decoder.rs
index cf3879cd..1ef46eeb 100644
--- a/candle-examples/examples/segment-anything/model_mask_decoder.rs
+++ b/candle-examples/examples/segment-anything/model_mask_decoder.rs
@@ -1,5 +1,5 @@
use candle::{DType, IndexOp, Result, Tensor, D};
-use candle_nn::{layer_norm, LayerNorm, Linear, Module, VarBuilder};
+use candle_nn::{Linear, Module, VarBuilder};
use crate::model_transformer::TwoWayTransformer;
@@ -60,7 +60,7 @@ pub struct MaskDecoder {
mask_tokens: candle_nn::Embedding,
iou_prediction_head: MlpMaskDecoder,
output_upscaling_conv1: candle_nn::ConvTranspose2d,
- output_upscaling_ln: LayerNorm,
+ output_upscaling_ln: crate::LayerNorm2d,
output_upscaling_conv2: candle_nn::ConvTranspose2d,
num_mask_tokens: usize,
output_hypernetworks_mlps: Vec<MlpMaskDecoder>,
@@ -99,7 +99,7 @@ impl MaskDecoder {
vb.pp("output_upscaling.0"),
)?;
let output_upscaling_ln =
- layer_norm(transformer_dim / 4, 1e-6, vb.pp("output_upscaling.1"))?;
+ crate::LayerNorm2d::new(transformer_dim / 4, 1e-6, vb.pp("output_upscaling.1"))?;
let output_upscaling_conv2 = candle_nn::conv_transpose2d(
transformer_dim / 4,
transformer_dim / 8,
@@ -140,7 +140,7 @@ impl MaskDecoder {
})
}
- fn forward(
+ pub fn forward(
&self,
image_embeddings: &Tensor,
image_pe: &Tensor,
@@ -195,7 +195,7 @@ impl MaskDecoder {
// Run the transformer
let (hs, src) = self.transformer.forward(&src, &pos_src, &tokens)?;
let iou_token_out = hs.i((.., 0))?;
- let mask_tokens_out = hs.i((.., 1, 1 + self.num_mask_tokens))?;
+ let mask_tokens_out = hs.i((.., 1..1 + self.num_mask_tokens))?;
// Upscale mask embeddings and predict masks using the masks tokens.
let src = src.transpose(1, 2)?.reshape((b, c, h, w))?;
@@ -213,9 +213,8 @@ impl MaskDecoder {
}
let hyper_in = Tensor::stack(hyper_in_list.as_slice(), 1)?;
let (b, c, h, w) = upscaled_embedding.dims4()?;
- let masks = hyper_in
- .matmul(&upscaled_embedding.reshape((b, c, h * w))?)?
- .reshape((b, 0, h, w))?;
+ let masks = hyper_in.matmul(&upscaled_embedding.reshape((b, c, h * w))?)?;
+ let masks = masks.reshape((b, masks.elem_count() / b / h / w, h, w))?;
// Generate mask quality predictions.
let iou_pred = self.iou_prediction_head.forward(&iou_token_out)?;
@@ -224,6 +223,9 @@ impl MaskDecoder {
}
// Equivalent to torch.repeat_interleave
-fn repeat_interleave(_img: &Tensor, _repeats: usize, _dim: usize) -> Result<Tensor> {
- todo!()
+fn repeat_interleave(img: &Tensor, repeats: usize, dim: usize) -> Result<Tensor> {
+ let img = img.unsqueeze(dim + 1)?;
+ let mut dims = img.dims().to_vec();
+ dims[dim + 1] = repeats;
+ img.broadcast_as(dims)?.flatten(dim, dim + 1)
}
diff --git a/candle-examples/examples/segment-anything/model_prompt_encoder.rs b/candle-examples/examples/segment-anything/model_prompt_encoder.rs
index 7ac4c66d..c6ffffd2 100644
--- a/candle-examples/examples/segment-anything/model_prompt_encoder.rs
+++ b/candle-examples/examples/segment-anything/model_prompt_encoder.rs
@@ -1,5 +1,5 @@
use candle::{DType, IndexOp, Result, Tensor, D};
-use candle_nn::{layer_norm, LayerNorm, Linear, Module, VarBuilder};
+use candle_nn::{Linear, Module, VarBuilder};
#[derive(Debug)]
struct PostionEmbeddingRandom {
@@ -17,7 +17,7 @@ impl PostionEmbeddingRandom {
fn pe_encoding(&self, coords: &Tensor) -> Result<Tensor> {
let coords = coords.affine(2., -1.)?;
- let coords = coords.matmul(&self.positional_encoding_gaussian_matrix)?;
+ let coords = coords.broadcast_matmul(&self.positional_encoding_gaussian_matrix)?;
let coords = (coords * (2. * std::f64::consts::PI))?;
Tensor::cat(&[coords.sin()?, coords.cos()?], D::Minus1)
}
@@ -25,12 +25,14 @@ impl PostionEmbeddingRandom {
fn forward(&self, h: usize, w: usize) -> Result<Tensor> {
let device = self.positional_encoding_gaussian_matrix.device();
let grid = Tensor::ones((h, w), DType::F32, device)?;
- // TODO: cumsum
- let x_embed = (&grid - 0.5)?;
- // TODO: cumsum
- let y_embed = (&grid - 0.5)?;
- let x_embed = (x_embed / w as f64)?;
- let y_embed = (y_embed / h as f64)?;
+ let x_embed = (Tensor::arange(0u32, w as u32, device)?.to_dtype(DType::F32)? + 0.5)?;
+ let y_embed = (Tensor::arange(0u32, h as u32, device)?.to_dtype(DType::F32)? + 0.5)?;
+ let x_embed = (x_embed / w as f64)?
+ .reshape((1, w))?
+ .broadcast_as((h, w))?;
+ let y_embed = (y_embed / h as f64)?
+ .reshape((h, 1))?
+ .broadcast_as((h, w))?;
let coords = Tensor::stack(&[&x_embed, &y_embed], D::Minus1)?;
self.pe_encoding(&coords)?.permute((2, 0, 1))
}
@@ -55,13 +57,14 @@ pub struct PromptEncoder {
point_embeddings: Vec<candle_nn::Embedding>,
not_a_point_embed: candle_nn::Embedding,
mask_downscaling_conv1: candle_nn::Conv2d,
- mask_downscaling_ln1: LayerNorm,
+ mask_downscaling_ln1: crate::LayerNorm2d,
mask_downscaling_conv2: candle_nn::Conv2d,
- mask_downscaling_ln2: LayerNorm,
+ mask_downscaling_ln2: crate::LayerNorm2d,
mask_downscaling_conv3: candle_nn::Conv2d,
no_mask_embed: candle_nn::Embedding,
image_embedding_size: (usize, usize),
input_image_size: (usize, usize),
+ embed_dim: usize,
}
impl PromptEncoder {
@@ -97,8 +100,9 @@ impl PromptEncoder {
vb.pp("mask_downscaling.6"),
)?;
let mask_downscaling_ln1 =
- layer_norm(mask_in_chans / 4, 1e-6, vb.pp("mask_downscaling.1"))?;
- let mask_downscaling_ln2 = layer_norm(mask_in_chans, 1e-6, vb.pp("mask_downscaling.4"))?;
+ crate::LayerNorm2d::new(mask_in_chans / 4, 1e-6, vb.pp("mask_downscaling.1"))?;
+ let mask_downscaling_ln2 =
+ crate::LayerNorm2d::new(mask_in_chans, 1e-6, vb.pp("mask_downscaling.4"))?;
let mut point_embeddings = Vec::with_capacity(num_points_embeddings);
let vb_e = vb.pp("point_embeddings");
for i in 0..num_points_embeddings {
@@ -117,9 +121,16 @@ impl PromptEncoder {
no_mask_embed,
image_embedding_size,
input_image_size,
+ embed_dim,
})
}
+ pub fn get_dense_pe(&self) -> Result<Tensor> {
+ self.pe_layer
+ .forward(self.image_embedding_size.0, self.image_embedding_size.1)?
+ .unsqueeze(0)
+ }
+
fn embed_masks(&self, masks: &Tensor) -> Result<Tensor> {
masks
.apply(&self.mask_downscaling_conv1)?
@@ -133,7 +144,16 @@ impl PromptEncoder {
fn embed_points(&self, points: &Tensor, labels: &Tensor, pad: bool) -> Result<Tensor> {
let points = (points + 0.5)?;
- let points = if pad { todo!() } else { points };
+ let dev = points.device();
+ let (points, labels) = if pad {
+ let padding_point = Tensor::zeros((points.dim(0)?, 1, 2), DType::F32, dev)?;
+ let padding_label = (Tensor::ones((labels.dim(0)?, 1), DType::F32, dev)? * (-1f64))?;
+ let points = Tensor::cat(&[&points, &padding_point], 1)?;
+ let labels = Tensor::cat(&[labels, &padding_label], 1)?;
+ (points, labels)
+ } else {
+ (points, labels.clone())
+ };
let point_embedding = self
.pe_layer
.forward_with_coords(&points, self.input_image_size)?;
@@ -154,7 +174,7 @@ impl PromptEncoder {
Tensor::cat(&[&ce1, &ce2], 1)
}
- fn forward(
+ pub fn forward(
&self,
points: Option<(&Tensor, &Tensor)>,
boxes: Option<&Tensor>,
@@ -172,7 +192,9 @@ impl PromptEncoder {
(Some(se_points), Some(se_boxes)) => Tensor::cat(&[se_points, se_boxes], 1)?,
(Some(se_points), None) => se_points,
(None, Some(se_boxes)) => se_boxes,
- (None, None) => Tensor::zeros(1, DType::F32, &candle::Device::Cpu)?,
+ (None, None) => {
+ Tensor::zeros((1, 0, self.embed_dim), DType::F32, &candle::Device::Cpu)?
+ }
};
let dense_embeddings = match masks {
@@ -180,7 +202,7 @@ impl PromptEncoder {
let emb = self.no_mask_embed.embeddings();
emb.reshape((1, emb.elem_count(), 1, 1))?.expand((
1,
- 0,
+ emb.elem_count(),
self.image_embedding_size.0,
self.image_embedding_size.1,
))?
diff --git a/candle-examples/examples/segment-anything/model_sam.rs b/candle-examples/examples/segment-anything/model_sam.rs
index 5a0d7e8f..1c8e9a59 100644
--- a/candle-examples/examples/segment-anything/model_sam.rs
+++ b/candle-examples/examples/segment-anything/model_sam.rs
@@ -5,6 +5,10 @@ use crate::model_image_encoder::ImageEncoderViT;
use crate::model_mask_decoder::MaskDecoder;
use crate::model_prompt_encoder::PromptEncoder;
+const PROMPT_EMBED_DIM: usize = 256;
+const IMAGE_SIZE: usize = 1024;
+const VIT_PATCH_SIZE: usize = 16;
+
#[derive(Debug)]
pub struct Sam {
image_encoder: ImageEncoderViT,
@@ -22,10 +26,6 @@ impl Sam {
encoder_global_attn_indexes: &[usize],
vb: VarBuilder,
) -> Result<Self> {
- const PROMPT_EMBED_DIM: usize = 256;
- const IMAGE_SIZE: usize = 1024;
- const VIT_PATCH_SIZE: usize = 16;
-
let image_embedding_size = IMAGE_SIZE / VIT_PATCH_SIZE;
let image_encoder = ImageEncoderViT::new(
@@ -69,4 +69,33 @@ impl Sam {
pixel_mean,
})
}
+
+ pub fn forward(&self, img: &Tensor, multimask_output: bool) -> Result<(Tensor, Tensor)> {
+ let img = self.preprocess(img)?.unsqueeze(0)?;
+ let img_embeddings = self.image_encoder.forward(&img)?;
+ let image_pe = self.prompt_encoder.get_dense_pe()?;
+ let (sparse_prompt_embeddings, dense_prompt_embeddings) =
+ self.prompt_encoder.forward(None, None, None)?;
+ let (low_res_mask, iou_predictions) = self.mask_decoder.forward(
+ &img_embeddings,
+ &image_pe,
+ &sparse_prompt_embeddings,
+ &dense_prompt_embeddings,
+ multimask_output,
+ )?;
+ // TODO: post-processing.
+ Ok((low_res_mask, iou_predictions))
+ }
+
+ fn preprocess(&self, img: &Tensor) -> Result<Tensor> {
+ let (c, h, w) = img.dims3()?;
+ let img = img
+ .broadcast_sub(&self.pixel_mean)?
+ .broadcast_div(&self.pixel_std)?;
+ if h > IMAGE_SIZE || w > IMAGE_SIZE {
+ candle::bail!("image is too large ({w}, {h}), maximum size {IMAGE_SIZE}")
+ }
+ let img = img.pad_with_zeros(1, 0, IMAGE_SIZE - h)?;
+ img.pad_with_zeros(2, 0, IMAGE_SIZE - w)
+ }
}
diff --git a/candle-examples/examples/segment-anything/model_transformer.rs b/candle-examples/examples/segment-anything/model_transformer.rs
index a845085d..044dce9b 100644
--- a/candle-examples/examples/segment-anything/model_transformer.rs
+++ b/candle-examples/examples/segment-anything/model_transformer.rs
@@ -36,7 +36,8 @@ impl Attention {
fn separate_heads(&self, x: &Tensor) -> Result<Tensor> {
let (b, n, c) = x.dims3()?;
x.reshape((b, n, self.num_heads, c / self.num_heads))?
- .transpose(1, 2)
+ .transpose(1, 2)?
+ .contiguous()
}
fn recombine_heads(&self, x: &Tensor) -> Result<Tensor> {
@@ -102,8 +103,12 @@ impl TwoWayAttentionBlock {
2,
vb.pp("cross_attn_image_to_token"),
)?;
- // TODO: use relu in this mlp
- let mlp = crate::MlpBlock::new(embedding_dim, mlp_dim, vb.pp("mlp"))?;
+ let mlp = crate::MlpBlock::new(
+ embedding_dim,
+ mlp_dim,
+ candle_nn::Activation::Relu,
+ vb.pp("mlp"),
+ )?;
Ok(Self {
self_attn,
norm1,
@@ -126,7 +131,7 @@ impl TwoWayAttentionBlock {
) -> Result<(Tensor, Tensor)> {
// Self attention block
let queries = if self.skip_first_layer_pe {
- self.self_attn.forward(queries, keys, queries)?
+ self.self_attn.forward(queries, queries, queries)?
} else {
let q = (queries + query_pe)?;
let attn_out = self.self_attn.forward(&q, &q, queries)?;
diff --git a/candle-nn/src/layer_norm.rs b/candle-nn/src/layer_norm.rs
index 08e2f628..d2e80a82 100644
--- a/candle-nn/src/layer_norm.rs
+++ b/candle-nn/src/layer_norm.rs
@@ -28,7 +28,7 @@
//! ```
//!
//! [`Layer Normalization`]: https://arxiv.org/abs/1607.06450
-use candle::{DType, Result, Tensor};
+use candle::{DType, Result, Tensor, D};
#[derive(Debug, Clone, Copy, PartialEq)]
pub struct LayerNormConfig {
@@ -104,15 +104,15 @@ impl crate::Module for LayerNorm {
DType::F16 | DType::BF16 => DType::F32,
d => d,
};
- let (_bsize, _seq_len, hidden_size) = x.dims3()?;
+ let hidden_size = x.dim(D::Minus1)?;
let x = x.to_dtype(internal_dtype)?;
let x = if self.remove_mean {
- let mean_x = (x.sum_keepdim(2)? / hidden_size as f64)?;
+ let mean_x = (x.sum_keepdim(D::Minus1)? / hidden_size as f64)?;
x.broadcast_sub(&mean_x)?
} else {
x
};
- let norm_x = (x.sqr()?.sum_keepdim(2)? / hidden_size as f64)?;
+ let norm_x = (x.sqr()?.sum_keepdim(D::Minus1)? / hidden_size as f64)?;
let x_normed = x.broadcast_div(&(norm_x + self.eps)?.sqrt()?)?;
let x = x_normed.to_dtype(x_dtype)?.broadcast_mul(&self.weight)?;
match &self.bias {
diff --git a/candle-nn/src/linear.rs b/candle-nn/src/linear.rs
index 7028f68c..de335964 100644
--- a/candle-nn/src/linear.rs
+++ b/candle-nn/src/linear.rs
@@ -41,8 +41,9 @@ impl Linear {
impl super::Module for Linear {
fn forward(&self, x: &Tensor) -> candle::Result<Tensor> {
- let w = match x.dims() {
- &[bsize, _, _] => self.weight.broadcast_left(bsize)?.t()?,
+ let w = match *x.dims() {
+ [b1, b2, _, _] => self.weight.broadcast_left((b1, b2))?.t()?,
+ [bsize, _, _] => self.weight.broadcast_left(bsize)?.t()?,
_ => self.weight.t()?,
};
let x = x.matmul(&w)?;