diff options
-rw-r--r-- | candle-examples/examples/llama/convert_checkpoint.py | 199 | ||||
-rw-r--r-- | candle-examples/examples/llama/main.rs | 3 | ||||
-rw-r--r-- | candle-examples/examples/llama_multiprocess/main.rs | 3 |
3 files changed, 0 insertions, 205 deletions
diff --git a/candle-examples/examples/llama/convert_checkpoint.py b/candle-examples/examples/llama/convert_checkpoint.py deleted file mode 100644 index 1b44a04a..00000000 --- a/candle-examples/examples/llama/convert_checkpoint.py +++ /dev/null @@ -1,199 +0,0 @@ -# Adapted from: -# https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py -# Copyright 2022 EleutherAI and The HuggingFace Inc. team. All rights reserved. -import argparse -import gc -import json -import math -import os -import shutil -import warnings - -import torch -import numpy as np - -""" -Sample usage: - -``` -python src/transformers/models/llama/convert_llama_weights_to_hf.py \ - --input_dir /path/to/downloaded/llama/weights --model_size 7B --output_dir /output/path -``` -""" - -INTERMEDIATE_SIZE_MAP = { - "7B": 11008, - "13B": 13824, - "30B": 17920, - "65B": 22016, -} -NUM_SHARDS = { - "7B": 1, - "13B": 2, - "30B": 4, - "65B": 8, -} - - -def compute_intermediate_size(n): - return int(math.ceil(n * 8 / 3) + 255) // 256 * 256 - - -def read_json(path): - with open(path, "r") as f: - return json.load(f) - - -def write_json(text, path): - with open(path, "w") as f: - json.dump(text, f) - - -def write_model(model_path, input_base_path, model_size): - os.makedirs(model_path, exist_ok=True) - - params = read_json(os.path.join(input_base_path, "params.json")) - num_shards = NUM_SHARDS[model_size] - n_layers = params["n_layers"] - n_heads = params["n_heads"] - n_heads_per_shard = n_heads // num_shards - dim = params["dim"] - dims_per_head = dim // n_heads - base = 10000.0 - inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head)) - - # permute for sliced rotary - def permute(w): - return w.view(n_heads, dim // n_heads // 2, 2, dim).transpose(1, 2).reshape(dim, dim) - - print(f"Fetching all parameters from the checkpoint at {input_base_path}.") - # Load weights - if model_size == "7B": - # Not sharded - # (The sharded implementation would also work, but this is simpler.) - loaded = torch.load(os.path.join(input_base_path, "consolidated.00.pth"), map_location="cpu") - else: - # Sharded - loaded = [ - torch.load(os.path.join(input_base_path, f"consolidated.{i:02d}.pth"), map_location="cpu") - for i in range(num_shards) - ] - param_count = 0 - all_dicts = {} - for layer_i in range(n_layers): - if model_size == "7B": - # Unsharded - state_dict = { - f"model.layers.{layer_i}.self_attn.q_proj.weight": permute( - loaded[f"layers.{layer_i}.attention.wq.weight"] - ), - f"model.layers.{layer_i}.self_attn.k_proj.weight": permute( - loaded[f"layers.{layer_i}.attention.wk.weight"] - ), - f"model.layers.{layer_i}.self_attn.v_proj.weight": loaded[f"layers.{layer_i}.attention.wv.weight"], - f"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[f"layers.{layer_i}.attention.wo.weight"], - f"model.layers.{layer_i}.mlp.gate_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w1.weight"], - f"model.layers.{layer_i}.mlp.down_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w2.weight"], - f"model.layers.{layer_i}.mlp.up_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w3.weight"], - f"model.layers.{layer_i}.input_layernorm.weight": loaded[f"layers.{layer_i}.attention_norm.weight"], - f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[f"layers.{layer_i}.ffn_norm.weight"], - } - else: - # Sharded - # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share - # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is - # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. - - state_dict = { - f"model.layers.{layer_i}.input_layernorm.weight": loaded[0][ - f"layers.{layer_i}.attention_norm.weight" - ].clone(), - f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][ - f"layers.{layer_i}.ffn_norm.weight" - ].clone(), - } - state_dict[f"model.layers.{layer_i}.self_attn.q_proj.weight"] = permute( - torch.cat( - [ - loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(n_heads_per_shard, dims_per_head, dim) - for i in range(num_shards) - ], - dim=0, - ).reshape(dim, dim) - ) - state_dict[f"model.layers.{layer_i}.self_attn.k_proj.weight"] = permute( - torch.cat( - [ - loaded[i][f"layers.{layer_i}.attention.wk.weight"].view(n_heads_per_shard, dims_per_head, dim) - for i in range(num_shards) - ], - dim=0, - ).reshape(dim, dim) - ) - state_dict[f"model.layers.{layer_i}.self_attn.v_proj.weight"] = torch.cat( - [ - loaded[i][f"layers.{layer_i}.attention.wv.weight"].view(n_heads_per_shard, dims_per_head, dim) - for i in range(num_shards) - ], - dim=0, - ).reshape(dim, dim) - - state_dict[f"model.layers.{layer_i}.self_attn.o_proj.weight"] = torch.cat( - [loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(num_shards)], dim=1 - ) - state_dict[f"model.layers.{layer_i}.mlp.gate_proj.weight"] = torch.cat( - [loaded[i][f"layers.{layer_i}.feed_forward.w1.weight"] for i in range(num_shards)], dim=0 - ) - state_dict[f"model.layers.{layer_i}.mlp.down_proj.weight"] = torch.cat( - [loaded[i][f"layers.{layer_i}.feed_forward.w2.weight"] for i in range(num_shards)], dim=1 - ) - state_dict[f"model.layers.{layer_i}.mlp.up_proj.weight"] = torch.cat( - [loaded[i][f"layers.{layer_i}.feed_forward.w3.weight"] for i in range(num_shards)], dim=0 - ) - - state_dict[f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq"] = inv_freq - all_dicts |= state_dict - - if model_size == "7B": - # Unsharded - state_dict = { - "model.embed_tokens.weight": loaded["tok_embeddings.weight"], - "model.norm.weight": loaded["norm.weight"], - "lm_head.weight": loaded["output.weight"], - } - else: - state_dict = { - "model.norm.weight": loaded[0]["norm.weight"], - "model.embed_tokens.weight": torch.cat( - [loaded[i]["tok_embeddings.weight"] for i in range(num_shards)], dim=1 - ), - "lm_head.weight": torch.cat([loaded[i]["output.weight"] for i in range(num_shards)], dim=0), - } - all_dicts |= state_dict - all_dicts = {k: v.numpy() for k, v in all_dicts.items()} - np.savez(os.path.join(model_path, "llama.npz"), **all_dicts) - -def main(): - parser = argparse.ArgumentParser() - parser.add_argument( - "--input_dir", - help="Location of LLaMA weights, which contains tokenizer.model and model folders", - ) - parser.add_argument( - "--model_size", - choices=["7B", "13B", "30B", "65B"], - ) - parser.add_argument( - "--output_dir", - help="Location to write HF model and tokenizer", - ) - args = parser.parse_args() - write_model( - model_path=args.output_dir, - input_base_path=os.path.join(args.input_dir, args.model_size), - model_size=args.model_size, - ) - - -if __name__ == "__main__": - main() diff --git a/candle-examples/examples/llama/main.rs b/candle-examples/examples/llama/main.rs index b2c4e55a..9a62eba5 100644 --- a/candle-examples/examples/llama/main.rs +++ b/candle-examples/examples/llama/main.rs @@ -5,9 +5,6 @@ // // The tokenizer config can be retrieved from: // https://huggingface.co/hf-internal-testing/llama-tokenizer/raw/main/tokenizer.json -// -// In order to convert the llama weights to a .npz file, run: -// python examples/llama/convert_checkpoint.py ..../LLaMA/7B/consolidated.00.pth #[cfg(feature = "accelerate")] extern crate accelerate_src; diff --git a/candle-examples/examples/llama_multiprocess/main.rs b/candle-examples/examples/llama_multiprocess/main.rs index 679e5faa..c637a99a 100644 --- a/candle-examples/examples/llama_multiprocess/main.rs +++ b/candle-examples/examples/llama_multiprocess/main.rs @@ -5,9 +5,6 @@ // // The tokenizer config can be retrieved from: // https://huggingface.co/hf-internal-testing/llama-tokenizer/raw/main/tokenizer.json -// -// In order to convert the llama weights to a .npz file, run: -// python examples/llama/convert_checkpoint.py ..../LLaMA/7B/consolidated.00.pth #[cfg(feature = "mkl")] extern crate intel_mkl_src; |