summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--candle-examples/examples/llama/convert_checkpoint.py199
-rw-r--r--candle-examples/examples/llama/main.rs3
-rw-r--r--candle-examples/examples/llama_multiprocess/main.rs3
3 files changed, 0 insertions, 205 deletions
diff --git a/candle-examples/examples/llama/convert_checkpoint.py b/candle-examples/examples/llama/convert_checkpoint.py
deleted file mode 100644
index 1b44a04a..00000000
--- a/candle-examples/examples/llama/convert_checkpoint.py
+++ /dev/null
@@ -1,199 +0,0 @@
-# Adapted from:
-# https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py
-# Copyright 2022 EleutherAI and The HuggingFace Inc. team. All rights reserved.
-import argparse
-import gc
-import json
-import math
-import os
-import shutil
-import warnings
-
-import torch
-import numpy as np
-
-"""
-Sample usage:
-
-```
-python src/transformers/models/llama/convert_llama_weights_to_hf.py \
- --input_dir /path/to/downloaded/llama/weights --model_size 7B --output_dir /output/path
-```
-"""
-
-INTERMEDIATE_SIZE_MAP = {
- "7B": 11008,
- "13B": 13824,
- "30B": 17920,
- "65B": 22016,
-}
-NUM_SHARDS = {
- "7B": 1,
- "13B": 2,
- "30B": 4,
- "65B": 8,
-}
-
-
-def compute_intermediate_size(n):
- return int(math.ceil(n * 8 / 3) + 255) // 256 * 256
-
-
-def read_json(path):
- with open(path, "r") as f:
- return json.load(f)
-
-
-def write_json(text, path):
- with open(path, "w") as f:
- json.dump(text, f)
-
-
-def write_model(model_path, input_base_path, model_size):
- os.makedirs(model_path, exist_ok=True)
-
- params = read_json(os.path.join(input_base_path, "params.json"))
- num_shards = NUM_SHARDS[model_size]
- n_layers = params["n_layers"]
- n_heads = params["n_heads"]
- n_heads_per_shard = n_heads // num_shards
- dim = params["dim"]
- dims_per_head = dim // n_heads
- base = 10000.0
- inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head))
-
- # permute for sliced rotary
- def permute(w):
- return w.view(n_heads, dim // n_heads // 2, 2, dim).transpose(1, 2).reshape(dim, dim)
-
- print(f"Fetching all parameters from the checkpoint at {input_base_path}.")
- # Load weights
- if model_size == "7B":
- # Not sharded
- # (The sharded implementation would also work, but this is simpler.)
- loaded = torch.load(os.path.join(input_base_path, "consolidated.00.pth"), map_location="cpu")
- else:
- # Sharded
- loaded = [
- torch.load(os.path.join(input_base_path, f"consolidated.{i:02d}.pth"), map_location="cpu")
- for i in range(num_shards)
- ]
- param_count = 0
- all_dicts = {}
- for layer_i in range(n_layers):
- if model_size == "7B":
- # Unsharded
- state_dict = {
- f"model.layers.{layer_i}.self_attn.q_proj.weight": permute(
- loaded[f"layers.{layer_i}.attention.wq.weight"]
- ),
- f"model.layers.{layer_i}.self_attn.k_proj.weight": permute(
- loaded[f"layers.{layer_i}.attention.wk.weight"]
- ),
- f"model.layers.{layer_i}.self_attn.v_proj.weight": loaded[f"layers.{layer_i}.attention.wv.weight"],
- f"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[f"layers.{layer_i}.attention.wo.weight"],
- f"model.layers.{layer_i}.mlp.gate_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w1.weight"],
- f"model.layers.{layer_i}.mlp.down_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w2.weight"],
- f"model.layers.{layer_i}.mlp.up_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w3.weight"],
- f"model.layers.{layer_i}.input_layernorm.weight": loaded[f"layers.{layer_i}.attention_norm.weight"],
- f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[f"layers.{layer_i}.ffn_norm.weight"],
- }
- else:
- # Sharded
- # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share
- # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is
- # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned.
-
- state_dict = {
- f"model.layers.{layer_i}.input_layernorm.weight": loaded[0][
- f"layers.{layer_i}.attention_norm.weight"
- ].clone(),
- f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][
- f"layers.{layer_i}.ffn_norm.weight"
- ].clone(),
- }
- state_dict[f"model.layers.{layer_i}.self_attn.q_proj.weight"] = permute(
- torch.cat(
- [
- loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(n_heads_per_shard, dims_per_head, dim)
- for i in range(num_shards)
- ],
- dim=0,
- ).reshape(dim, dim)
- )
- state_dict[f"model.layers.{layer_i}.self_attn.k_proj.weight"] = permute(
- torch.cat(
- [
- loaded[i][f"layers.{layer_i}.attention.wk.weight"].view(n_heads_per_shard, dims_per_head, dim)
- for i in range(num_shards)
- ],
- dim=0,
- ).reshape(dim, dim)
- )
- state_dict[f"model.layers.{layer_i}.self_attn.v_proj.weight"] = torch.cat(
- [
- loaded[i][f"layers.{layer_i}.attention.wv.weight"].view(n_heads_per_shard, dims_per_head, dim)
- for i in range(num_shards)
- ],
- dim=0,
- ).reshape(dim, dim)
-
- state_dict[f"model.layers.{layer_i}.self_attn.o_proj.weight"] = torch.cat(
- [loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(num_shards)], dim=1
- )
- state_dict[f"model.layers.{layer_i}.mlp.gate_proj.weight"] = torch.cat(
- [loaded[i][f"layers.{layer_i}.feed_forward.w1.weight"] for i in range(num_shards)], dim=0
- )
- state_dict[f"model.layers.{layer_i}.mlp.down_proj.weight"] = torch.cat(
- [loaded[i][f"layers.{layer_i}.feed_forward.w2.weight"] for i in range(num_shards)], dim=1
- )
- state_dict[f"model.layers.{layer_i}.mlp.up_proj.weight"] = torch.cat(
- [loaded[i][f"layers.{layer_i}.feed_forward.w3.weight"] for i in range(num_shards)], dim=0
- )
-
- state_dict[f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq"] = inv_freq
- all_dicts |= state_dict
-
- if model_size == "7B":
- # Unsharded
- state_dict = {
- "model.embed_tokens.weight": loaded["tok_embeddings.weight"],
- "model.norm.weight": loaded["norm.weight"],
- "lm_head.weight": loaded["output.weight"],
- }
- else:
- state_dict = {
- "model.norm.weight": loaded[0]["norm.weight"],
- "model.embed_tokens.weight": torch.cat(
- [loaded[i]["tok_embeddings.weight"] for i in range(num_shards)], dim=1
- ),
- "lm_head.weight": torch.cat([loaded[i]["output.weight"] for i in range(num_shards)], dim=0),
- }
- all_dicts |= state_dict
- all_dicts = {k: v.numpy() for k, v in all_dicts.items()}
- np.savez(os.path.join(model_path, "llama.npz"), **all_dicts)
-
-def main():
- parser = argparse.ArgumentParser()
- parser.add_argument(
- "--input_dir",
- help="Location of LLaMA weights, which contains tokenizer.model and model folders",
- )
- parser.add_argument(
- "--model_size",
- choices=["7B", "13B", "30B", "65B"],
- )
- parser.add_argument(
- "--output_dir",
- help="Location to write HF model and tokenizer",
- )
- args = parser.parse_args()
- write_model(
- model_path=args.output_dir,
- input_base_path=os.path.join(args.input_dir, args.model_size),
- model_size=args.model_size,
- )
-
-
-if __name__ == "__main__":
- main()
diff --git a/candle-examples/examples/llama/main.rs b/candle-examples/examples/llama/main.rs
index b2c4e55a..9a62eba5 100644
--- a/candle-examples/examples/llama/main.rs
+++ b/candle-examples/examples/llama/main.rs
@@ -5,9 +5,6 @@
//
// The tokenizer config can be retrieved from:
// https://huggingface.co/hf-internal-testing/llama-tokenizer/raw/main/tokenizer.json
-//
-// In order to convert the llama weights to a .npz file, run:
-// python examples/llama/convert_checkpoint.py ..../LLaMA/7B/consolidated.00.pth
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
diff --git a/candle-examples/examples/llama_multiprocess/main.rs b/candle-examples/examples/llama_multiprocess/main.rs
index 679e5faa..c637a99a 100644
--- a/candle-examples/examples/llama_multiprocess/main.rs
+++ b/candle-examples/examples/llama_multiprocess/main.rs
@@ -5,9 +5,6 @@
//
// The tokenizer config can be retrieved from:
// https://huggingface.co/hf-internal-testing/llama-tokenizer/raw/main/tokenizer.json
-//
-// In order to convert the llama weights to a .npz file, run:
-// python examples/llama/convert_checkpoint.py ..../LLaMA/7B/consolidated.00.pth
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;