summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--README.md2
-rw-r--r--candle-examples/examples/mobilenetv4/README.md18
-rw-r--r--candle-examples/examples/mobilenetv4/main.rs106
-rw-r--r--candle-examples/src/imagenet.rs30
-rw-r--r--candle-transformers/src/models/mobilenetv4.rs800
-rw-r--r--candle-transformers/src/models/mod.rs1
6 files changed, 939 insertions, 18 deletions
diff --git a/README.md b/README.md
index 2bae9860..33c69a74 100644
--- a/README.md
+++ b/README.md
@@ -236,7 +236,7 @@ If you have an addition to this list, please submit a pull request.
- MetaVoice-1B, text-to-speech model.
- Computer Vision Models.
- DINOv2, ConvMixer, EfficientNet, ResNet, ViT, VGG, RepVGG, ConvNeXT,
- ConvNeXTv2, MobileOne, EfficientVit (MSRA).
+ ConvNeXTv2, MobileOne, EfficientVit (MSRA), MobileNetv4.
- yolo-v3, yolo-v8.
- Segment-Anything Model (SAM).
- SegFormer.
diff --git a/candle-examples/examples/mobilenetv4/README.md b/candle-examples/examples/mobilenetv4/README.md
new file mode 100644
index 00000000..c8356466
--- /dev/null
+++ b/candle-examples/examples/mobilenetv4/README.md
@@ -0,0 +1,18 @@
+# candle-mobilenetv4
+
+[MobileNetV4 - Universal Models for the Mobile Ecosystem](https://arxiv.org/abs/2404.10518)
+This candle implementation uses pre-trained MobileNetV4 models from timm for inference.
+The classification head has been trained on the ImageNet dataset and returns the probabilities for the top-5 classes.
+
+## Running an example
+
+```
+$ cargo run --example mobilenetv4 --release -- --image candle-examples/examples/yolo-v8/assets/bike.jpg --which medium
+loaded image Tensor[dims 3, 256, 256; f32]
+model built
+unicycle, monocycle : 20.18%
+mountain bike, all-terrain bike, off-roader: 19.77%
+bicycle-built-for-two, tandem bicycle, tandem: 15.91%
+crash helmet : 1.15%
+tricycle, trike, velocipede: 0.67%
+```
diff --git a/candle-examples/examples/mobilenetv4/main.rs b/candle-examples/examples/mobilenetv4/main.rs
new file mode 100644
index 00000000..26c0dad9
--- /dev/null
+++ b/candle-examples/examples/mobilenetv4/main.rs
@@ -0,0 +1,106 @@
+#[cfg(feature = "mkl")]
+extern crate intel_mkl_src;
+
+#[cfg(feature = "accelerate")]
+extern crate accelerate_src;
+
+use clap::{Parser, ValueEnum};
+
+use candle::{DType, IndexOp, D};
+use candle_nn::{Module, VarBuilder};
+use candle_transformers::models::mobilenetv4;
+
+#[derive(Clone, Copy, Debug, ValueEnum)]
+enum Which {
+ Small,
+ Medium,
+ Large,
+ HybridMedium,
+ HybridLarge,
+}
+
+impl Which {
+ fn model_filename(&self) -> String {
+ let name = match self {
+ Self::Small => "conv_small.e2400_r224",
+ Self::Medium => "conv_medium.e500_r256",
+ Self::HybridMedium => "hybrid_medium.ix_e550_r256",
+ Self::Large => "conv_large.e600_r384",
+ Self::HybridLarge => "hybrid_large.ix_e600_r384",
+ };
+ format!("timm/mobilenetv4_{}_in1k", name)
+ }
+
+ fn resolution(&self) -> u32 {
+ match self {
+ Self::Small => 224,
+ Self::Medium => 256,
+ Self::HybridMedium => 256,
+ Self::Large => 384,
+ Self::HybridLarge => 384,
+ }
+ }
+ fn config(&self) -> mobilenetv4::Config {
+ match self {
+ Self::Small => mobilenetv4::Config::small(),
+ Self::Medium => mobilenetv4::Config::medium(),
+ Self::HybridMedium => mobilenetv4::Config::hybrid_medium(),
+ Self::Large => mobilenetv4::Config::large(),
+ Self::HybridLarge => mobilenetv4::Config::hybrid_large(),
+ }
+ }
+}
+
+#[derive(Parser)]
+struct Args {
+ #[arg(long)]
+ model: Option<String>,
+
+ #[arg(long)]
+ image: String,
+
+ /// Run on CPU rather than on GPU.
+ #[arg(long)]
+ cpu: bool,
+
+ #[arg(value_enum, long, default_value_t=Which::Small)]
+ which: Which,
+}
+
+pub fn main() -> anyhow::Result<()> {
+ let args = Args::parse();
+
+ let device = candle_examples::device(args.cpu)?;
+
+ let image = candle_examples::imagenet::load_image(args.image, args.which.resolution())?
+ .to_device(&device)?;
+ println!("loaded image {image:?}");
+
+ let model_file = match args.model {
+ None => {
+ let model_name = args.which.model_filename();
+ let api = hf_hub::api::sync::Api::new()?;
+ let api = api.model(model_name);
+ api.get("model.safetensors")?
+ }
+ Some(model) => model.into(),
+ };
+
+ let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[model_file], DType::F32, &device)? };
+ let model = mobilenetv4::mobilenetv4(&args.which.config(), 1000, vb)?;
+ println!("model built");
+ let logits = model.forward(&image.unsqueeze(0)?)?;
+ let prs = candle_nn::ops::softmax(&logits, D::Minus1)?
+ .i(0)?
+ .to_vec1::<f32>()?;
+ let mut prs = prs.iter().enumerate().collect::<Vec<_>>();
+ prs.sort_by(|(_, p1), (_, p2)| p2.total_cmp(p1));
+ for &(category_idx, pr) in prs.iter().take(5) {
+ println!(
+ "{:24}: {:.2}%",
+ candle_examples::imagenet::CLASSES[category_idx],
+ 100. * pr
+ );
+ }
+ Ok(())
+}
diff --git a/candle-examples/src/imagenet.rs b/candle-examples/src/imagenet.rs
index 781dcd4f..6b079870 100644
--- a/candle-examples/src/imagenet.rs
+++ b/candle-examples/src/imagenet.rs
@@ -1,15 +1,16 @@
use candle::{Device, Result, Tensor};
-/// Loads an image from disk using the image crate, this returns a tensor with shape
-/// (3, 224, 224). imagenet normalization is applied.
-pub fn load_image224<P: AsRef<std::path::Path>>(p: P) -> Result<Tensor> {
+/// Loads an image from disk using the image crate at the requested resolution.
+// This returns a tensor with shape (3, res, res). imagenet normalization is applied.
+pub fn load_image<P: AsRef<std::path::Path>>(p: P, res: u32) -> Result<Tensor> {
let img = image::io::Reader::open(p)?
.decode()
.map_err(candle::Error::wrap)?
- .resize_to_fill(224, 224, image::imageops::FilterType::Triangle);
+ .resize_to_fill(res, res, image::imageops::FilterType::Triangle);
let img = img.to_rgb8();
let data = img.into_raw();
- let data = Tensor::from_vec(data, (224, 224, 3), &Device::Cpu)?.permute((2, 0, 1))?;
+ let data = Tensor::from_vec(data, (res as usize, res as usize, 3), &Device::Cpu)?
+ .permute((2, 0, 1))?;
let mean = Tensor::new(&[0.485f32, 0.456, 0.406], &Device::Cpu)?.reshape((3, 1, 1))?;
let std = Tensor::new(&[0.229f32, 0.224, 0.225], &Device::Cpu)?.reshape((3, 1, 1))?;
(data.to_dtype(candle::DType::F32)? / 255.)?
@@ -18,21 +19,16 @@ pub fn load_image224<P: AsRef<std::path::Path>>(p: P) -> Result<Tensor> {
}
/// Loads an image from disk using the image crate, this returns a tensor with shape
+/// (3, 224, 224). imagenet normalization is applied.
+pub fn load_image224<P: AsRef<std::path::Path>>(p: P) -> Result<Tensor> {
+ load_image(p, 224)
+}
+
+/// Loads an image from disk using the image crate, this returns a tensor with shape
/// (3, 518, 518). imagenet normalization is applied.
/// The model dinov2 reg4 analyzes images with dimensions 3x518x518 (resulting in 37x37 transformer tokens).
pub fn load_image518<P: AsRef<std::path::Path>>(p: P) -> Result<Tensor> {
- let img = image::io::Reader::open(p)?
- .decode()
- .map_err(candle::Error::wrap)?
- .resize_to_fill(518, 518, image::imageops::FilterType::Triangle);
- let img = img.to_rgb8();
- let data = img.into_raw();
- let data = Tensor::from_vec(data, (518, 518, 3), &Device::Cpu)?.permute((2, 0, 1))?;
- let mean = Tensor::new(&[0.485f32, 0.456, 0.406], &Device::Cpu)?.reshape((3, 1, 1))?;
- let std = Tensor::new(&[0.229f32, 0.224, 0.225], &Device::Cpu)?.reshape((3, 1, 1))?;
- (data.to_dtype(candle::DType::F32)? / 255.)?
- .broadcast_sub(&mean)?
- .broadcast_div(&std)
+ load_image(p, 518)
}
pub const CLASS_COUNT: i64 = 1000;
diff --git a/candle-transformers/src/models/mobilenetv4.rs b/candle-transformers/src/models/mobilenetv4.rs
new file mode 100644
index 00000000..7cbae7c3
--- /dev/null
+++ b/candle-transformers/src/models/mobilenetv4.rs
@@ -0,0 +1,800 @@
+//! MobileNet-v4 inference implementation based on timm.
+//!
+//! See "MobileNetV4 - Universal Models for the Mobile Ecosystem"
+//! https://arxiv.org/abs/2404.10518
+//!
+//! https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/mobilenetv3.py
+
+use candle::{Result, Tensor, D};
+use candle_nn::{
+ batch_norm, conv2d_no_bias, linear, ops::softmax, Activation, Conv2dConfig, Func, VarBuilder,
+};
+
+#[derive(Clone, Debug)]
+enum BlockType {
+ Convolutional {
+ out_channels: usize,
+ kernel: usize,
+ stride: usize,
+ },
+ UniversalBottleneck {
+ out_channels: usize,
+ start_kernel: usize,
+ mid_kernel: usize,
+ stride: usize,
+ expand: usize,
+ },
+ EdgeResidual {
+ out_channels: usize,
+ kernel: usize,
+ stride: usize,
+ expand: usize,
+ },
+ Attention {
+ out_channels: usize,
+ heads: usize,
+ kernel: usize,
+ stride: usize,
+ kv_dim: usize,
+ kv_stride: usize,
+ },
+}
+
+#[derive(Clone, Debug)]
+pub struct Config {
+ stem_dim: usize,
+ activation: Activation,
+ stages: [Vec<BlockType>; 5],
+}
+
+#[rustfmt::skip]
+impl Config {
+ pub fn small() -> Self {
+ Self {
+ stem_dim: 32,
+ activation: Activation::Relu,
+ stages: [
+ vec![
+ BlockType::Convolutional { out_channels: 32, kernel: 3, stride: 2},
+ BlockType::Convolutional { out_channels: 32, kernel: 1, stride: 1},
+ ],
+ vec![
+ BlockType::Convolutional { out_channels: 96, kernel: 3, stride: 2},
+ BlockType::Convolutional { out_channels: 64, kernel: 1, stride: 1},
+ ],
+ vec![
+ BlockType::UniversalBottleneck { out_channels: 96, start_kernel: 5, mid_kernel: 5, stride: 2, expand: 3},
+ BlockType::UniversalBottleneck { out_channels: 96, start_kernel: 0, mid_kernel: 3, stride: 1, expand: 2},
+ BlockType::UniversalBottleneck { out_channels: 96, start_kernel: 0, mid_kernel: 3, stride: 1, expand: 2},
+ BlockType::UniversalBottleneck { out_channels: 96, start_kernel: 0, mid_kernel: 3, stride: 1, expand: 2},
+ BlockType::UniversalBottleneck { out_channels: 96, start_kernel: 0, mid_kernel: 3, stride: 1, expand: 2},
+ BlockType::UniversalBottleneck { out_channels: 96, start_kernel: 3, mid_kernel: 0, stride: 1, expand: 4},
+ ],
+ vec![
+ BlockType::UniversalBottleneck { out_channels: 128, start_kernel: 3, mid_kernel: 3, stride: 2, expand: 6},
+ BlockType::UniversalBottleneck { out_channels: 128, start_kernel: 5, mid_kernel: 5, stride: 1, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 128, start_kernel: 0, mid_kernel: 5, stride: 1, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 128, start_kernel: 0, mid_kernel: 5, stride: 1, expand: 3},
+ BlockType::UniversalBottleneck { out_channels: 128, start_kernel: 0, mid_kernel: 3, stride: 1, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 128, start_kernel: 0, mid_kernel: 3, stride: 1, expand: 4},
+ ],
+ vec![
+ BlockType::Convolutional { out_channels: 960, kernel: 1, stride: 1},
+ ],
+ ],
+ }
+ }
+
+ pub fn medium() -> Self {
+ Self {
+ stem_dim: 32,
+ activation: Activation::Relu,
+ stages: [
+ vec![
+ BlockType::EdgeResidual { out_channels: 48, kernel: 3, stride: 2, expand: 4},
+ ],
+ vec![
+ BlockType::UniversalBottleneck { out_channels: 80, start_kernel: 3, mid_kernel: 5, stride: 2, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 80, start_kernel: 3, mid_kernel: 3, stride: 1, expand: 2},
+ ],
+ vec![
+ BlockType::UniversalBottleneck { out_channels: 160, start_kernel: 3, mid_kernel: 5, stride: 2, expand: 6},
+ BlockType::UniversalBottleneck { out_channels: 160, start_kernel: 3, mid_kernel: 3, stride: 1, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 160, start_kernel: 3, mid_kernel: 3, stride: 1, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 160, start_kernel: 3, mid_kernel: 5, stride: 1, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 160, start_kernel: 3, mid_kernel: 3, stride: 1, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 160, start_kernel: 3, mid_kernel: 0, stride: 1, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 160, start_kernel: 0, mid_kernel: 0, stride: 1, expand: 2},
+ BlockType::UniversalBottleneck { out_channels: 160, start_kernel: 3, mid_kernel: 0, stride: 1, expand: 4},
+ ],
+ vec![
+ BlockType::UniversalBottleneck { out_channels: 256, start_kernel: 5, mid_kernel: 5, stride: 2, expand: 6},
+ BlockType::UniversalBottleneck { out_channels: 256, start_kernel: 5, mid_kernel: 5, stride: 1, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 256, start_kernel: 3, mid_kernel: 5, stride: 1, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 256, start_kernel: 3, mid_kernel: 5, stride: 1, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 256, start_kernel: 0, mid_kernel: 0, stride: 1, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 256, start_kernel: 3, mid_kernel: 0, stride: 1, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 256, start_kernel: 3, mid_kernel: 5, stride: 1, expand: 2},
+ BlockType::UniversalBottleneck { out_channels: 256, start_kernel: 5, mid_kernel: 5, stride: 1, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 256, start_kernel: 0, mid_kernel: 0, stride: 1, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 256, start_kernel: 0, mid_kernel: 0, stride: 1, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 256, start_kernel: 5, mid_kernel: 0, stride: 1, expand: 2},
+
+ ],
+ vec![
+ BlockType::Convolutional { out_channels: 960, kernel: 1, stride: 1},
+ ],
+ ],
+ }
+ }
+
+ pub fn hybrid_medium() -> Self {
+ Self {
+ stem_dim: 32,
+ activation: Activation::Relu,
+ stages: [
+ vec![
+ BlockType::EdgeResidual { out_channels: 48, kernel: 3, stride: 2, expand: 4},
+ ],
+ vec![
+ BlockType::UniversalBottleneck { out_channels: 80, start_kernel: 3, mid_kernel: 5, stride: 2, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 80, start_kernel: 3, mid_kernel: 3, stride: 1, expand: 2},
+ ],
+ vec![
+ BlockType::UniversalBottleneck { out_channels: 160, start_kernel: 3, mid_kernel: 5, stride: 2, expand: 6},
+ BlockType::UniversalBottleneck { out_channels: 160, start_kernel: 0, mid_kernel: 0, stride: 1, expand: 2},
+ BlockType::UniversalBottleneck { out_channels: 160, start_kernel: 3, mid_kernel: 3, stride: 1, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 160, start_kernel: 3, mid_kernel: 5, stride: 1, expand: 4},
+ BlockType::Attention { out_channels: 160, heads: 4, kernel: 3, stride: 1, kv_stride:2, kv_dim: 64},
+ BlockType::UniversalBottleneck { out_channels: 160, start_kernel: 3, mid_kernel: 3, stride: 1, expand: 4},
+ BlockType::Attention { out_channels: 160, heads: 4, kernel: 3, stride: 1, kv_stride:2, kv_dim: 64},
+ BlockType::UniversalBottleneck { out_channels: 160, start_kernel: 3, mid_kernel: 0, stride: 1, expand: 4},
+ BlockType::Attention { out_channels: 160, heads: 4, kernel: 3, stride: 1, kv_stride:2, kv_dim: 64},
+ BlockType::UniversalBottleneck { out_channels: 160, start_kernel: 3, mid_kernel: 3, stride: 1, expand: 4},
+ BlockType::Attention { out_channels: 160, heads: 4, kernel: 3, stride: 1, kv_stride:2, kv_dim: 64},
+ BlockType::UniversalBottleneck { out_channels: 160, start_kernel: 3, mid_kernel: 0, stride: 1, expand: 4},
+ ],
+
+ vec![
+ BlockType::UniversalBottleneck { out_channels: 256, start_kernel: 5, mid_kernel: 5, stride: 2, expand: 6},
+ BlockType::UniversalBottleneck { out_channels: 256, start_kernel: 5, mid_kernel: 5, stride: 1, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 256, start_kernel: 3, mid_kernel: 5, stride: 1, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 256, start_kernel: 3, mid_kernel: 5, stride: 1, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 256, start_kernel: 0, mid_kernel: 0, stride: 1, expand: 2},
+ BlockType::UniversalBottleneck { out_channels: 256, start_kernel: 3, mid_kernel: 5, stride: 1, expand: 2},
+ BlockType::UniversalBottleneck { out_channels: 256, start_kernel: 0, mid_kernel: 0, stride: 1, expand: 2},
+ BlockType::UniversalBottleneck { out_channels: 256, start_kernel: 0, mid_kernel: 0, stride: 1, expand: 4},
+ BlockType::Attention { out_channels: 256, heads: 4, kernel: 3, stride: 1, kv_stride:1, kv_dim: 64},
+ BlockType::UniversalBottleneck { out_channels: 256, start_kernel: 3, mid_kernel: 0, stride: 1, expand: 4},
+ BlockType::Attention { out_channels: 256, heads: 4, kernel: 3, stride: 1, kv_stride:1, kv_dim: 64},
+ BlockType::UniversalBottleneck { out_channels: 256, start_kernel: 5, mid_kernel: 5, stride: 1, expand: 4},
+ BlockType::Attention { out_channels: 256, heads: 4, kernel: 3, stride: 1, kv_stride:1, kv_dim: 64},
+ BlockType::UniversalBottleneck { out_channels: 256, start_kernel: 5, mid_kernel: 0, stride: 1, expand: 4},
+ BlockType::Attention { out_channels: 256, heads: 4, kernel: 3, stride: 1, kv_stride:1, kv_dim: 64},
+ BlockType::UniversalBottleneck { out_channels: 256, start_kernel: 5, mid_kernel: 0, stride: 1, expand: 4},
+ ],
+ vec![
+ BlockType::Convolutional { out_channels: 960, kernel: 1, stride: 1},
+ ],
+ ],
+ }
+ }
+
+ pub fn large() -> Self {
+ Self {
+ stem_dim: 24,
+ activation: Activation::Relu,
+ stages: [
+ vec![
+ BlockType::EdgeResidual { out_channels: 48, kernel: 3, stride: 2, expand: 4},
+ ],
+ vec![
+ BlockType::UniversalBottleneck { out_channels: 96, start_kernel: 3, mid_kernel: 5, stride: 2, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 96, start_kernel: 3, mid_kernel: 3, stride: 1, expand: 4},
+ ],
+ vec![
+ BlockType::UniversalBottleneck { out_channels: 192, start_kernel: 3, mid_kernel: 5, stride: 2, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 192, start_kernel: 3, mid_kernel: 3, stride: 1, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 192, start_kernel: 3, mid_kernel: 3, stride: 1, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 192, start_kernel: 3, mid_kernel: 3, stride: 1, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 192, start_kernel: 3, mid_kernel: 5, stride: 1, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 192, start_kernel: 5, mid_kernel: 3, stride: 1, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 192, start_kernel: 5, mid_kernel: 3, stride: 1, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 192, start_kernel: 5, mid_kernel: 3, stride: 1, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 192, start_kernel: 5, mid_kernel: 3, stride: 1, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 192, start_kernel: 5, mid_kernel: 3, stride: 1, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 192, start_kernel: 3, mid_kernel: 0, stride: 1, expand: 4},
+ ],
+ vec![
+ BlockType::UniversalBottleneck { out_channels: 512, start_kernel: 5, mid_kernel: 5, stride: 2, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 512, start_kernel: 5, mid_kernel: 5, stride: 1, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 512, start_kernel: 5, mid_kernel: 5, stride: 1, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 512, start_kernel: 5, mid_kernel: 5, stride: 1, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 512, start_kernel: 5, mid_kernel: 0, stride: 1, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 512, start_kernel: 5, mid_kernel: 3, stride: 1, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 512, start_kernel: 5, mid_kernel: 0, stride: 1, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 512, start_kernel: 5, mid_kernel: 0, stride: 1, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 512, start_kernel: 5, mid_kernel: 3, stride: 1, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 512, start_kernel: 5, mid_kernel: 5, stride: 1, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 512, start_kernel: 5, mid_kernel: 0, stride: 1, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 512, start_kernel: 5, mid_kernel: 0, stride: 1, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 512, start_kernel: 5, mid_kernel: 0, stride: 1, expand: 4},
+ ],
+ vec![
+ BlockType::Convolutional { out_channels: 960, kernel: 1, stride: 1},
+ ],
+ ],
+ }
+ }
+
+ pub fn hybrid_large() -> Self {
+ Self {
+ stem_dim: 24,
+ activation: Activation::Gelu,
+ stages: [
+ vec![
+ BlockType::EdgeResidual { out_channels: 48, kernel: 3, stride: 2, expand: 4},
+ ],
+ vec![
+ BlockType::UniversalBottleneck { out_channels: 96, start_kernel: 3, mid_kernel: 5, stride: 2, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 96, start_kernel: 3, mid_kernel: 3, stride: 1, expand: 4},
+ ],
+ vec![
+ BlockType::UniversalBottleneck { out_channels: 192, start_kernel: 3, mid_kernel: 5, stride: 2, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 192, start_kernel: 3, mid_kernel: 3, stride: 1, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 192, start_kernel: 3, mid_kernel: 3, stride: 1, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 192, start_kernel: 3, mid_kernel: 3, stride: 1, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 192, start_kernel: 3, mid_kernel: 5, stride: 1, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 192, start_kernel: 5, mid_kernel: 3, stride: 1, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 192, start_kernel: 5, mid_kernel: 3, stride: 1, expand: 4},
+ BlockType::Attention { out_channels: 192, heads: 8, kernel: 3, stride: 1, kv_stride:2, kv_dim: 48},
+ BlockType::UniversalBottleneck { out_channels: 192, start_kernel: 5, mid_kernel: 3, stride: 1, expand: 4},
+ BlockType::Attention { out_channels: 192, heads: 8, kernel: 3, stride: 1, kv_stride:2, kv_dim: 48},
+ BlockType::UniversalBottleneck { out_channels: 192, start_kernel: 5, mid_kernel: 3, stride: 1, expand: 4},
+ BlockType::Attention { out_channels: 192, heads: 8, kernel: 3, stride: 1, kv_stride:2, kv_dim: 48},
+ BlockType::UniversalBottleneck { out_channels: 192, start_kernel: 5, mid_kernel: 3, stride: 1, expand: 4},
+ BlockType::Attention { out_channels: 192, heads: 8, kernel: 3, stride: 1, kv_stride:2, kv_dim: 48},
+ BlockType::UniversalBottleneck { out_channels: 192, start_kernel: 3, mid_kernel: 0, stride: 1, expand: 4},
+ ],
+
+ vec![
+ BlockType::UniversalBottleneck { out_channels: 512, start_kernel: 5, mid_kernel: 5, stride: 2, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 512, start_kernel: 5, mid_kernel: 5, stride: 1, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 512, start_kernel: 5, mid_kernel: 5, stride: 1, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 512, start_kernel: 5, mid_kernel: 5, stride: 1, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 512, start_kernel: 5, mid_kernel: 0, stride: 1, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 512, start_kernel: 5, mid_kernel: 3, stride: 1, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 512, start_kernel: 5, mid_kernel: 0, stride: 1, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 512, start_kernel: 5, mid_kernel: 0, stride: 1, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 512, start_kernel: 5, mid_kernel: 3, stride: 1, expand: 4},
+ BlockType::UniversalBottleneck { out_channels: 512, start_kernel: 5, mid_kernel: 5, stride: 1, expand: 4},
+ BlockType::Attention { out_channels: 512, heads: 8, kernel: 3, stride: 1, kv_stride:1, kv_dim: 64},
+ BlockType::UniversalBottleneck { out_channels: 512, start_kernel: 5, mid_kernel: 0, stride: 1, expand: 4},
+ BlockType::Attention { out_channels: 512, heads: 8, kernel: 3, stride: 1, kv_stride:1, kv_dim: 64},
+ BlockType::UniversalBottleneck { out_channels: 512, start_kernel: 5, mid_kernel: 0, stride: 1, expand: 4},
+ BlockType::Attention { out_channels: 512, heads: 8, kernel: 3, stride: 1, kv_stride:1, kv_dim: 64},
+ BlockType::UniversalBottleneck { out_channels: 512, start_kernel: 5, mid_kernel: 0, stride: 1, expand: 4},
+ BlockType::Attention { out_channels: 512, heads: 8, kernel: 3, stride: 1, kv_stride:1, kv_dim: 64},
+ BlockType::UniversalBottleneck { out_channels: 512, start_kernel: 5, mid_kernel: 0, stride: 1, expand: 4},
+ ],
+ vec![
+ BlockType::Convolutional { out_channels: 960, kernel: 1, stride: 1},
+ ],
+ ],
+ }
+ }
+}
+
+fn depthwise_conv(
+ channels: usize,
+ kernel: usize,
+ stride: usize,
+ padding: usize,
+ vb: VarBuilder,
+) -> Result<Func<'static>> {
+ let conv2d_cfg = Conv2dConfig {
+ stride,
+ padding,
+ groups: channels,
+ ..Default::default()
+ };
+
+ let bn = batch_norm(channels, 1e-5, vb.pp("bn"))?;
+ let conv = conv2d_no_bias(channels, channels, kernel, conv2d_cfg, vb.pp("conv"))?;
+
+ Ok(Func::new(move |xs| xs.apply(&conv)?.apply_t(&bn, false)))
+}
+
+fn pointwise_conv(
+ in_channels: usize,
+ out_channels: usize,
+ vb: VarBuilder,
+) -> Result<Func<'static>> {
+ let conv2d_cfg = Conv2dConfig {
+ ..Default::default()
+ };
+
+ let bn = batch_norm(out_channels, 1e-5, vb.pp("bn"))?;
+ let conv = conv2d_no_bias(in_channels, out_channels, 1, conv2d_cfg, vb.pp("conv"))?;
+
+ Ok(Func::new(move |xs| xs.apply(&conv)?.apply_t(&bn, false)))
+}
+
+//Universal block that uses two pointwise convolutions and all combinations of two depthwise convolutions.
+#[allow(clippy::too_many_arguments)]
+fn universal_inverted_bottleneck_block(
+ cfg: &Config,
+ in_channels: usize,
+ out_channels: usize,
+ expand: usize,
+ start_kernel: usize,
+ mid_kernel: usize,
+ stride: usize,
+ vb: VarBuilder,
+) -> Result<Func<'static>> {
+ let act = cfg.activation;
+ let skip_connection = (in_channels == out_channels) && (stride == 1);
+
+ let dw_start_stride = if mid_kernel > 0 { 1 } else { stride };
+ let dw_start = depthwise_conv(
+ in_channels,
+ start_kernel,
+ dw_start_stride,
+ start_kernel / 2,
+ vb.pp("dw_start"),
+ );
+ let pw_exp = pointwise_conv(in_channels, in_channels * expand, vb.pp("pw_exp"))?;
+ let dw_mid = depthwise_conv(
+ in_channels * expand,
+ mid_kernel,
+ stride,
+ mid_kernel / 2,
+ vb.pp("dw_mid"),
+ );
+ let pw_proj = pointwise_conv(in_channels * expand, out_channels, vb.pp("pw_proj"))?;
+
+ let gamma = vb.get(out_channels, "layer_scale.gamma");
+
+ Ok(Func::new(move |xs| {
+ let residual = xs.clone();
+
+ let mut xs = xs.clone();
+
+ if let Ok(f) = &dw_start {
+ xs = xs.apply(f)?;
+ }
+
+ xs = xs.apply(&pw_exp)?.apply(&act)?;
+
+ if let Ok(f) = &dw_mid {
+ xs = xs.apply(f)?.apply(&act)?;
+ }
+
+ xs = xs.apply(&pw_proj)?;
+
+ if let Ok(g) = &gamma {
+ xs = xs.broadcast_mul(&g.reshape((1, (), 1, 1))?)?;
+ };
+
+ if skip_connection {
+ xs = (xs + residual)?;
+ }
+
+ Ok(xs)
+ }))
+}
+
+// Convolutional block including norm and activation.
+fn conv_block(
+ cfg: &Config,
+ in_channels: usize,
+ out_channels: usize,
+ kernel: usize,
+ stride: usize,
+ vb: VarBuilder,
+) -> Result<Func<'static>> {
+ let conv2d_cfg = Conv2dConfig {
+ stride,
+ padding: kernel / 2,
+ ..Default::default()
+ };
+
+ let act = cfg.activation;
+ let bn = batch_norm(out_channels, 1e-5, vb.pp("bn1"))?;
+ let conv = conv2d_no_bias(in_channels, out_channels, kernel, conv2d_cfg, vb.pp("conv"))?;
+
+ Ok(Func::new(move |xs| {
+ xs.apply(&conv)?.apply_t(&bn, false)?.apply(&act)
+ }))
+}
+
+fn edge_residual_block(
+ cfg: &Config,
+ in_channels: usize,
+ out_channels: usize,
+ kernel: usize,
+ stride: usize,
+ expand: usize,
+ vb: VarBuilder,
+) -> Result<Func<'static>> {
+ let conv_exp_cfg = Conv2dConfig {
+ stride,
+ padding: kernel / 2,
+ ..Default::default()
+ };
+
+ let conv_pwl_cfg = Conv2dConfig {
+ ..Default::default()
+ };
+
+ let act = cfg.activation;
+ let mid_channels = in_channels * expand;
+ let conv_exp = conv2d_no_bias(
+ in_channels,
+ mid_channels,
+ kernel,
+ conv_exp_cfg,
+ vb.pp("conv_exp"),
+ )?;
+ let bn1 = batch_norm(mid_channels, 1e-5, vb.pp("bn1"))?;
+
+ let conv_pwl = conv2d_no_bias(
+ mid_channels,
+ out_channels,
+ 1,
+ conv_pwl_cfg,
+ vb.pp("conv_pwl"),
+ )?;
+ let bn2 = batch_norm(out_channels, 1e-5, vb.pp("bn2"))?;
+
+ Ok(Func::new(move |xs| {
+ let xs = xs
+ .apply(&conv_exp)?
+ .apply_t(&bn1, false)?
+ .apply(&act)?
+ .apply(&conv_pwl)?
+ .apply_t(&bn2, false)?;
+
+ Ok(xs)
+ }))
+}
+
+fn reshape_kv(t: &Tensor) -> Result<Tensor> {
+ let d = t.dims4()?;
+ let t = t
+ .reshape((d.0, d.1, ()))?
+ .transpose(1, 2)?
+ .unsqueeze(1)?
+ .contiguous()?;
+ Ok(t)
+}
+
+fn reshape_query(t: &Tensor, heads: usize, kv_dim: usize) -> Result<Tensor> {
+ let d = t.dims4()?;
+
+ let t = t
+ .reshape((d.0, heads, kv_dim, ()))?
+ .transpose(D::Minus1, D::Minus2)?
+ .contiguous()?;
+ Ok(t)
+}
+
+fn reshape_output(t: &Tensor, heads: usize, h: usize, w: usize) -> Result<Tensor> {
+ let d = t.dims4()?;
+ let t = t.transpose(1, 2)?;
+ let t = t
+ .reshape((d.0, h, w, d.3 * heads))?
+ .permute((0, 3, 1, 2))?
+ .contiguous()?;
+ Ok(t)
+}
+
+// Mobile multi-query attention
+#[allow(clippy::too_many_arguments)]
+fn mqa_block(
+ in_channels: usize,
+ out_channels: usize,
+ heads: usize,
+ kernel: usize,
+ stride: usize,
+ kv_dim: usize,
+ kv_stride: usize,
+ vb: VarBuilder,
+) -> Result<Func<'static>> {
+ let down_conv2d_cfg = Conv2dConfig {
+ stride: kv_stride,
+ padding: kernel / 2,
+ groups: in_channels,
+ ..Default::default()
+ };
+
+ let proj_conv2d_cfg = Conv2dConfig {
+ stride,
+ ..Default::default()
+ };
+
+ let skip_connection = (in_channels == out_channels) && (stride == 1);
+ let gamma = vb.get(out_channels, "layer_scale.gamma");
+ let norm = batch_norm(out_channels, 1e-5, vb.pp("norm"))?;
+ let scale = (kv_dim as f64).powf(-0.5);
+
+ let vb = vb.pp("attn");
+
+ let query_proj = conv2d_no_bias(
+ out_channels,
+ kv_dim * heads,
+ 1,
+ proj_conv2d_cfg,
+ vb.pp("query.proj"),
+ )?;
+
+ let key_down_conv = conv2d_no_bias(
+ in_channels,
+ out_channels,
+ kernel,
+ down_conv2d_cfg,
+ vb.pp("key.down_conv"),
+ );
+ let key_norm = batch_norm(out_channels, 1e-5, vb.pp("key.norm"));
+
+ let key_proj = conv2d_no_bias(out_channels, kv_dim, 1, proj_conv2d_cfg, vb.pp("key.proj"))?;
+
+ let value_down_conv = conv2d_no_bias(
+ in_channels,
+ out_channels,
+ kernel,
+ down_conv2d_cfg,
+ vb.pp("value.down_conv"),
+ );
+
+ let value_norm = batch_norm(out_channels, 1e-5, vb.pp("value.norm"));
+ let value_proj = conv2d_no_bias(
+ out_channels,
+ kv_dim,
+ 1,
+ proj_conv2d_cfg,
+ vb.pp("value.proj"),
+ )?;
+
+ let output_proj = conv2d_no_bias(
+ kv_dim * heads,
+ out_channels,
+ 1,
+ proj_conv2d_cfg,
+ vb.pp("output.proj"),
+ )?;
+
+ Ok(Func::new(move |xs| {
+ let (_, _, h, w) = xs.dims4()?;
+
+ let residual = xs.clone();
+
+ let xs = xs.apply_t(&norm, false)?;
+
+ // Query
+ let q = xs.apply(&query_proj)?;
+
+ let q = reshape_query(&q, heads, kv_dim)?;
+ let q = (q * scale)?;
+
+ // Keys
+ let mut k = xs.clone();
+
+ if let (Ok(kd), Ok(n)) = (&key_down_conv, &key_norm) {
+ k = k.apply(kd)?.apply_t(n, false)?;
+ }
+
+ let k = k.apply(&key_proj)?;
+
+ let k = reshape_kv(&k)?;
+
+ // Value
+ let mut v = xs.clone();
+
+ if let (Ok(vd), Ok(n)) = (&value_down_conv, &value_norm) {
+ v = v.apply(vd)?;
+ v = v.apply_t(n, false)?;
+ }
+
+ let v = v.apply(&value_proj)?;
+ let v = reshape_kv(&v)?;
+
+ let attn = q.broadcast_matmul(&(k.transpose(D::Minus2, D::Minus1)?))?;
+ let attn = softmax(&attn, D::Minus1)?;
+ let o = attn.broadcast_matmul(&v)?;
+
+ let o = reshape_output(&o, heads, h, w)?;
+
+ let mut xs = o.apply(&output_proj)?;
+
+ // Layer scale
+
+ if let Ok(g) = &gamma {
+ xs = xs.broadcast_mul(&g.reshape((1, (), 1, 1))?)?;
+ };
+
+ if skip_connection {
+ xs = (xs + residual)?;
+ }
+ Ok(xs)
+ }))
+}
+
+// Stem.
+fn mobilenetv4_stem(cfg: &Config, vb: VarBuilder) -> Result<Func<'static>> {
+ let conv2d_cfg = Conv2dConfig {
+ stride: 2,
+ padding: 1,
+ ..Default::default()
+ };
+
+ let act = cfg.activation;
+ let out_channels = cfg.stem_dim;
+ let bn = batch_norm(out_channels, 1e-5, vb.pp("bn1"))?;
+ let conv = conv2d_no_bias(3, out_channels, 3, conv2d_cfg, vb.pp("conv_stem"))?;
+
+ Ok(Func::new(move |xs| {
+ let xs = xs.apply(&conv)?.apply_t(&bn, false)?.apply(&act)?;
+ Ok(xs)
+ }))
+}
+
+// The blocks in all the 5 stages of the model.
+fn mobilenetv4_blocks(cfg: &Config, vb: VarBuilder) -> Result<Func<'static>> {
+ let mut in_channels = cfg.stem_dim;
+ let mut blocks = Vec::new();
+
+ for stage in 0..5 {
+ let nblocks = cfg.stages[stage].len();
+
+ for block in 0..nblocks {
+ match cfg.stages[stage][block] {
+ BlockType::Convolutional {
+ out_channels,
+ kernel,
+ stride,
+ } => {
+ blocks.push(conv_block(
+ cfg,
+ in_channels,
+ out_channels,
+ kernel,
+ stride,
+ vb.pp(format!("{stage}.{block}")),
+ )?);
+ in_channels = out_channels;
+ }
+
+ BlockType::EdgeResidual {
+ out_channels,
+ kernel,
+ stride,
+ expand,
+ } => {
+ blocks.push(edge_residual_block(
+ cfg,
+ in_channels,
+ out_channels,
+ kernel,
+ stride,
+ expand,
+ vb.pp(format!("{stage}.{block}")),
+ )?);
+ in_channels = out_channels;
+ }
+
+ BlockType::UniversalBottleneck {
+ out_channels,
+ start_kernel,
+ mid_kernel,
+ stride,
+ expand,
+ } => {
+ blocks.push(universal_inverted_bottleneck_block(
+ cfg,
+ in_channels,
+ out_channels,
+ expand,
+ start_kernel,
+ mid_kernel,
+ stride,
+ vb.pp(format!("{stage}.{block}")),
+ )?);
+ in_channels = out_channels;
+ }
+
+ BlockType::Attention {
+ out_channels,
+ heads,
+ kernel,
+ stride,
+ kv_dim,
+ kv_stride,
+ } => {
+ blocks.push(mqa_block(
+ in_channels,
+ out_channels,
+ heads,
+ kernel,
+ stride,
+ kv_dim,
+ kv_stride,
+ vb.pp(format!("{stage}.{block}")),
+ )?);
+ in_channels = out_channels;
+ }
+ }
+ }
+ }
+
+ Ok(Func::new(move |xs| {
+ let mut xs = xs.clone();
+ for block in blocks.iter() {
+ xs = xs.apply(block)?
+ }
+ Ok(xs)
+ }))
+}
+
+// Classification head.
+fn mobilenetv4_head(
+ cfg: &Config,
+ outputs: usize,
+ nclasses: usize,
+ vb: VarBuilder,
+) -> Result<Func<'static>> {
+ let conv2d_cfg = Conv2dConfig {
+ ..Default::default()
+ };
+
+ let act = cfg.activation;
+ let conv = conv2d_no_bias(960, outputs, 1, conv2d_cfg, vb.pp("conv_head"))?;
+ let norm = batch_norm(outputs, 1e-5, vb.pp("norm_head"))?;
+ let cls = linear(outputs, nclasses, vb.pp("classifier"))?;
+
+ Ok(Func::new(move |xs| {
+ let mut xs = xs.clone();
+ xs = xs.apply(&conv)?;
+ xs = xs.apply_t(&norm, false)?.apply(&act)?;
+ xs = xs.flatten_from(1)?;
+ xs = xs.apply(&cls)?;
+ Ok(xs)
+ }))
+}
+
+// Build a mobilenetv4 model for a given configuration.
+fn mobilenetv4_model(
+ cfg: &Config,
+ nclasses: Option<usize>,
+ vb: VarBuilder,
+) -> Result<Func<'static>> {
+ let cls = match nclasses {
+ None => None,
+ Some(nclasses) => {
+ let outputs = 1280;
+ let head = mobilenetv4_head(cfg, outputs, nclasses, vb.clone())?;
+ Some(head)
+ }
+ };
+
+ let stem = mobilenetv4_stem(cfg, vb.clone())?;
+
+ let blocks = mobilenetv4_blocks(cfg, vb.pp("blocks"))?;
+
+ Ok(Func::new(move |xs| {
+ let xs = xs.apply(&stem)?.apply(&blocks)?;
+ let xs = xs.mean_keepdim(D::Minus1)?.mean_keepdim(D::Minus2)?;
+ match &cls {
+ None => Ok(xs),
+ Some(cls) => xs.apply(cls),
+ }
+ }))
+}
+
+pub fn mobilenetv4(cfg: &Config, nclasses: usize, vb: VarBuilder) -> Result<Func<'static>> {
+ mobilenetv4_model(cfg, Some(nclasses), vb)
+}
+
+pub fn mobilenetv4_no_final_layer(cfg: &Config, vb: VarBuilder) -> Result<Func<'static>> {
+ mobilenetv4_model(cfg, None, vb)
+}
diff --git a/candle-transformers/src/models/mod.rs b/candle-transformers/src/models/mod.rs
index f5859a99..86a0ec08 100644
--- a/candle-transformers/src/models/mod.rs
+++ b/candle-transformers/src/models/mod.rs
@@ -28,6 +28,7 @@ pub mod metavoice;
pub mod mistral;
pub mod mixformer;
pub mod mixtral;
+pub mod mobilenetv4;
pub mod mobileone;
pub mod moondream;
pub mod mpt;